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and Jean-François Boulicaut1(B)

1 Univ de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, 69621 Villeurbanne, France
{alexandre.millot,romain.mathonat,jean-francois.boulicaut}@insa-lyon.fr

2 Atos, 69100 Villeurbanne, France
3 Univ de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205,
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Abstract. Designing, selling and/or exploiting connected vertical urban
farms is now receiving a lot of attention. In such farms, plants grow in
controlled environments according to recipes that specify the different
growth stages and instructions concerning many parameters (e.g., tem-
perature, humidity, CO2, light). During the whole process, automated
systems collect measures of such parameters and, at the end, we can
get some global indicator about the used recipe, e.g., its yield. Looking
for innovative ideas to optimize recipes, we investigate the use of a new
optimal subgroup discovery method from purely numerical data. It con-
cerns here the computation of subsets of recipes whose labels (e.g., the
yield) show an interesting distribution according to a quality measure.
When considering optimization, e.g., maximizing the yield, our virtuous
circle optimization framework iteratively improves recipes by sampling
the discovered optimal subgroup description subspace. We provide our
preliminary results about the added-value of this framework thanks to a
plant growth simulator that enables inexpensive experiments.
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1 Introduction

Conventional farming methods have to face many challenges like, for instance,
soil erosion and/or an overuse of pesticides. The crucial problems related to
climate change also stimulate the design of new production systems. The concept
of urban farms (see, e.g., AeroFarms, FUL, Infarm1) could be part of a solution.
It enables the growth of plants in fully controlled environments close to the place
where consumers are [8]. Most of the crop protection chemical products can be
removed while being able to optimize both the quantity and the quality of plants
(e.g., improving the flavor [9] or their chemical proportions [20]).
1 https://aerofarms.com/, http://www.fermeful.com/, https://infarm.com/.
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Urban farms can generate large amounts of data that can be pushed towards a
cloud environment such that various machine learning and data mining methods
can be used. We may then provide new insights about the plant growth process
itself (discovering knowledge about not yet identified/understood phenomena)
but also offer new services to farm owners. We focus here on services that rely
on the optimization of a given target variable, e.g., the yield. The number of
parameters influencing plant growth can be relatively large (e.g., temperature,
hygrometry, water pH level, nutrient concentration, LED lighting intensity, CO2

concentration). There are numerous ways of measuring the crop end-product
(e.g., energy cost, plant mass and size, flavor and chemical properties). In gen-
eral, for a given type of plants, expert knowledge exists that concerns the avail-
able sub-systems (e.g., to model the impact of nutrient on growth, the effect
of LED lighting on photosynthesis, the energy consumption w.r.t. the tempera-
ture instruction) but we are far from a global understanding of the interaction
between the various underlying phenomena. In other terms, setting the optimal
instructions for the diverse set of parameters given an optimization task remains
an open problem.

We want to address such an issue by means of data mining techniques. Plant
growth recipes are made of instructions in time and space for many numerical
attributes. Once a recipe is completed, collections of measures have been col-
lected and we assume that at least one numerical target label value is available,
e.g., the yield. Can we learn from available recipe records to suggest new ones
that should provide better results w.r.t. the selected target attribute? For that
purpose, we investigate the use of subgroup discovery [12,21]. It aims at discov-
ering subsets of objects - called subgroups - with high quality according to a
quality measure calculated on the target label. Such a quality measure has to
capture deviations in the target label distribution when we consider the overall
data set or the considered subset of objects. When addressing only subgroup
discovery from numerical data, a few approaches for numerical attributes [6,15]
and numerical target labels [14] have been described. To the best of our knowl-
edge, the reference algorithm for subgroup discovery in purely numerical data
is SD-Map* [14]. However, like other methods, it uses discretization and leads to
loss of information and sub-optimal results.

Our first contribution concerns the proposal of a simple branch and bound
algorithm called MinIntChange4SD that exploits the exhaustive enumeration
strategy from [11] to achieve a guaranteed optimal subgroup discovery in numeri-
cal data without any discretization. Discussing details about this algorithm is out
of the scope of this paper and we recently designed a significantly optimized ver-
sion of MinIntChange4SD in [17]. Our main contribution concerns a new method-
ology for plant growth recipe optimization that (i) uses MinIntChange4SD to
find the optimal subgroup of recipes and (ii) exploits the subgroup description
to design better recipes which can in turn be analyzed with subgroup discovery,
and so on.

The paper is organized as follows. Section 2 formalizes the problem. In Sect. 3,
we discuss related works and their limitations. In Sect. 4, we introduce our new
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Fig. 1. (left) Purely numerical dataset. (center) Non-closed (p1 =
〈
[2, 4], [1, 3]

〉
, non-

hatched) and closed (p2 =
〈
[2, 4], [2, 3]

〉
, hatched) interval patterns. (right) Depth-first

traversal of m2 using minimal changes.

optimal subgroup discovery algorithm and we detail our framework for plant
growth recipe optimization. An empirical evaluation of our method is in Sect. 5.
Section 6 briefly concludes.

2 Problem Definition

Numerical Dataset. A numerical dataset (G,M, T ) is given by a set of objects
G, a set of numerical attributes M and a numerical target label T . In a given
dataset, the domain of any attribute m ∈ M (resp. label T ) is a finite ordered
set denoted Dm (resp. DT ). Figure 1 (left) provides a numerical dataset made of
two attributes M = {m1,m2} and a target label T . A subgroup p is defined by
a pattern, i.e., its intent or description, and the set of objects from the dataset
where it appears, i.e., its extent, denoted ext(p). For instance, in Fig. 1, the
domain of m1 is {1, 2, 3, 4} and the intent 〈[2, 4], [1, 3]

〉
(see the definition of

interval patterns later) denotes a subgroup whose extent is {g3, g4, g5, g6}.

Quality Measure, Optimal Subgroup. The interestingness of a subgroup in a
numerical dataset is measured by a numerical value. We consider here the quality
measure based on the mean introduced in [14]. Let p be a subgroup. The quality
of p is given by: qamean(p) = |ext(p)|a × (µext(p) − µext(∅)), a ∈ [0, 1]. |ext(p)|
denotes the cardinality of ext(p), µext(p) is the mean of the target label in the
extent of p, µext(∅) is the mean of the target label in the overall dataset, and a is
a parameter that controls the number of objects of the subgroups. Let (G,M, T )
be a numerical dataset, q a quality measure and P the set of all subgroups of
(G,M, T ). A subgroup p ∈ P is said to be optimal iff ∀p′ ∈ P : q(p′) ≤ q(p).

Plant Growth Recipe and Optimization Measure. A plant growth recipe
(M, P, T) is given by a set of numerical parameters M specifying the growing
conditions thanks to intervals on numerical values, a numerical value P repre-
senting the number of stages of the growth cycle, and a numerical target label T
to quantify the recipe quality. In a given recipe, each parameter of M is repeated
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P times s.t. we have |M |×P numerical attributes. Our goal is to optimize recipes
and we want to discover actionable patterns in the sense that delivering such
patterns will support the design of new growing conditions. An optimization
measure f quantifies the quality of an iteration. We are interested in the mean
of the target label of the objects of the optimal subgroup after each iteration.
The measure is given by fmean =

∑
i∈ext(p) T (i)

|ext(p)| where T (i) is the value of the
target label for object i.

3 Related Work

Designing recipes that optimize a given target attribute (e.g., the mass, the
energy cost) is often tackled by domain experts who exploit the scientific liter-
ature. However, in our setting, it has two major drawbacks. First, most of the
literature remains oriented towards conventional growing conditions and farm-
ing methods. In urban farms, there are more parameters that can be controlled.
Secondly, the amount of knowledge about plants is unbalanced from one plant to
another. Therefore, relying only on expert knowledge for plant recipe optimiza-
tion is not sufficient. We have an optimization problem and the need for a limited
number of iterations. Indeed, experimenting with plant growth recipes is time
consuming (i.e., asking for weeks or months). Therefore, we have to minimize
the number of experiments that are needed to optimize a given recipe. There are
two main families of methods addressing the problem of optimizing a function
over numerical variables: direct and model-based [18]. For direct methods, the
common idea is to apply various strategies to sequentially evaluate solutions in
the search space of recipes. However such methods do not address the problem
of minimizing the number of experiments. For model-based methods, the idea
is to build a model simulating the ground truth using available data and then
to use it to guide the search process. For instance, [9] introduced a solution for
recipe optimization using this type of method with the goal of optimizing the
flavor of plants. Their framework is based on using a surrogate model, in this
case a Symbolic Regression [13]. It considers recipe optimization by means of a
promising virtuous circle. However, it suffers from several shortcomings: there
is no guarantee on the quality of the generated models (i.e., they may not be
able to model correctly the ground truth), the number of tested parameters is
small (only 3), and the ratio between the number of objects and the number of
parameters in the data needs to be at least ten for Symbolic Regression [10].
Clearly, it would restrict the search to only a few parameters.

Heuristic [2,15] and exhaustive [1,5] solutions have been proposed for sub-
group discovery. Usually, these approaches consider a set of nominal attributes
with a binary label. To work with numerical data, prior discretization of the
attributes is then required (see, e.g., [3]) and it leads to loss of information and
suboptimal results. A major issue with exhaustive pattern mining is the size
of the search space. Fortunately, optimistic estimates can be used to prune the
search space and provide tractability in practice [7,21]. [14] introduces a large
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panel of quality measures and corresponding optimistic estimates for an exhaus-
tive subgroup mining given numerical target labels. They describe SD-Map*,
the reference algorithm for subgroup discovery in numerical data. Notice how-
ever that for [14] or others [6,15], discretization techniques over the numerical
attributes have to be performed. When looking for an exhaustive search of fre-
quent patterns - not subgroups - in numerical data without discretization, we
find the MinIntChange algorithm [11]. Using closure operators (see, e.g., [4]) has
become a popular solution to reduce the size of the search space. We indeed
exploit most of these ideas to design our optimal subgroup discovery algorithm.

4 Optimization with Subgroup Discovery

4.1 An Efficient Algorithm for Optimal Subgroup Discovery

Let us first introduce MinIntChange4SD, our branch and bound algorithm for the
optimal subgroup discovery in purely numerical data. It exploits smart concepts
about interval patterns from [11].

Interval Patterns, Extent and Closure. In a numerical dataset (G,M, T ),
an interval pattern p is a vector of intervals p =

〈
[ai, bi]

〉
i∈{1,...,|M |} with ai, bi ∈

Dmi, where each interval is a restriction on an attribute of M , and |M | is the
number of attributes. Let g ∈ G be an object. g is in the extent of an interval
pattern p =

〈
[ai, bi]

〉
i∈{1,...,|M |} iff ∀i ∈ {1, ..., |M |},mi(g) ∈ [ai, bi]. Let p1 and

p2 be two interval patterns. p1 ⊆ p2 means that p2 encloses p1, i.e., the hyper-
rectangle of p1 is included in that of p2. It is said that p1 is a specialization of
p2. Let p be an interval pattern and ext(p) its extent. p is defined as closed if
and only if it is the most restrictive pattern (i.e., the smallest hyper-rectangle)
that contains ext(p). Figure 1 (center) depicts the dataset of Fig. 1 (left) in a
cartesian plane as well as examples of interval patterns that are closed (p2) or
not (p1).

Traversing the Search Space with Minimal Changes. To guarantee the
optimal subgroup discovery, we proceed to the so-called minimal changes intro-
duced in MinIntChange. It enables an exhaustive enumeration within the interval
pattern search space. A left minimal change consists in replacing the left bound
of an interval by the current value closest higher value in the domain of the
corresponding attribute. Similarly, a right minimal change consists in replacing
the right bound by the current value closest lower value. The search starts with
the computation of the minimal interval pattern that covers all the objects of
the dataset. The premise is to apply consecutive right or left minimal changes
until obtaining an interval whose left and right bounds have the same value for
each interval of the minimal interval pattern. In that case, the algorithm back-
tracks until it finds a pattern on which a minimal change can be applied. Figure 1
(right) depicts the depth-first traversal of attribute m2 from the dataset of Fig. 1
(left) using minimal changes.
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Compressing and Pruning the Search Space. We leverage the concept of
closure to significantly reduce the number of candidate interval patterns. After
a minimal change and instead of evaluating the resulting interval pattern, we
compute its corresponding closed interval pattern. We exploit advanced prun-
ing techniques to reduce the size of the search space thanks to the use of a
tight optimistic estimate. We also exploit a combination of forward checking
and branch reordering. Given an interval pattern, the set of all its direct spe-
cializations (application of a right or left minimal change on each interval) are
computed - forward checking - and those whose optimistic estimate is higher than
the best subgroup quality are stored. Branch reordering by descending order of
the optimistic estimate value is then carried out which enables to explore the
most promising parts of the search space first. It also enables a more efficient
pruning by raising the minimal quality early. In fact, providing details about the
algorithm is out of the scope of this paper though its source code is available at
https://bit.ly/3bA87NE. The important outcome is that it guarantees the dis-
covery of optimal subgroups for a given quality measure. Indeed, provided that it
remains tractable, the runtime efficiency is not here an issue given that we want
to use the algorithm at some steps of quite slow vegetable growth processes.

4.2 Leveraging Subgroups to Optimize Recipes

A Virtuous Circle. Our optimization framework can be seen as a virtuous
circle, where each new iteration uses information previously gathered to itera-
tively improve the targeted process. First, a set of recipe experiments - which
can be created with or without the use of expert knowledge - is created. With
the use of expert knowledge, values or domain of values are defined for each
attribute and then recipes are produced using these values. When generating
recipes without prior knowledge, we create recipes by randomly sampling the
values of each attribute. Secondly, we use subgroup discovery to find the best
subgroup of recipes according to the chosen quality measure (e.g., the subgroup
of recipes with the best average yield). Then, we exploit the subgroup descrip-
tion - i.e., we apply new restrictions on the range of each parameter according
to the description - to generate new, better, recipe experiments. Finally these
recipes are in turn processed to find the best subgroup for the new recipes, and
so on until recipes cannot be improved anymore. This way, we sample recipes in
a space which gets smaller after each iteration and where the ratio between good
and bad solutions gets larger and larger. Figure 2 depicts a step-by-step exam-
ple of the process behind the framework. Our framework makes use of several
hyperparameters that affect runtime efficiency, the number of iterations and the
quality of the results.

Convergence. The first hyperparameter is the parameter a used in the qamean

quality measure. In standard subgroup discovery, it controls the number of
objects in the returned subgroups. A higher value of a means larger subgroups.
For us, a larger subgroup means a larger search space to sample. By extension, a
higher value of a means more iterations to be able to reach smaller subspaces of

https://bit.ly/3bA87NE
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Fig. 2. Example of execution of the optimization framework in 3 iterations. We consider
a two-dimensional space (i.e., 2 attributes m1 and m2) where 4 recipes are generated
during each iteration using our first sampling method. The best subgroup (optimizing
the yield) of each iteration (hatched) serves as the next iteration sampling space.

the search space. For that reason, we rename the parameter as the convergence
rate. The second hyperparameter is called the minimal improvement (minImp).
It defines the minimal improvement of the Optimization measure - fmean in our
setting - needed from one iteration to another for the framework to keep running.
After each iteration, we check whether the following statement is true or false.

fmeanit
− fmeanit−1

fmeanit−1

≥ minImp

If it is true, then the optimization framework keeps running, else we consider
that the recipes cannot be improved any further. This parameter has a direct
effect on the number of iterations needed for the algorithm to converge. A higher
value for minImp means a lower number of iterations and vice versa. We can also
forget minImp and set the number of iterations by means of another parameter
that would denote a budget.

Sampling the Subspace. After each iteration, to generate new recipes to
experiment with, we need to sample the subspace corresponding to the descrip-
tion of the best subgroup. Three sampling methods are currently available and
this defines again a new hyperparameter. The first method consists in sampling
recipes using the original set of values of each attribute (i.e., in the first iter-
ation) minus the excluded values due to the new restrictions applied on the
subspace. Let D1

m be the domain of values of attribute m at Iteration 1 and
[aim, bim] be the interval of attribute m at Iteration i according to the description
of the best subgroup of Iteration i−1. Then, ∀v ∈ D1

m, v ∈ Di
m ⇔ bim ≥ v ≥ aim.

Using this method, the number of values available for sampling for each attribute
gets smaller after each iteration, meaning that each iteration is faster than the
previous one. The second consists in discretizing the search space through the
discretization of each attribute in k intervals of equal length. Parameter k is
set before launching the framework. Recipes are then sampled using the dis-
cretized domain of values for each attribute. Finally, we can use Latin Hypercube
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Sampling [16] as a third method. In Latin Hypercube Sampling, each attribute
is divided in S equally probable intervals, with S the number of samples (i.e.,
recipes). Using this method, recipes are sampled such that each recipe is the
only one in each hyperspace that contains it. The number of samples generated
for each iteration is also a hyperparameter of the framework.

An Explainable Generic Framework. Our optimization framework is
explainable contrary to black box optimization algorithms. Each step of the pro-
cess is easily understandable due to the descriptive nature of subgroup discovery.
Although we have been referring to our algorithm MinIntChange4SD when intro-
ducing the optimization framework, other subgroup discovery algorithms can be
used, including [14] and [17]. Notice however that the better the quality of the
provided subgroup, the better the results returned by our framework will be.
Finally, our method can be applied to quite many application domains where
we want to optimize a numerical target given collections of numerical features
(e.g., hyperparameter optimization in machine learning).

5 Experiments

We work on urban farm recipe optimization while we do not have access to real
farming data yet. One of our partners in the FUI DUF 4.0 project (2018–2021)
is designing new types of urban farms. We found a way to support the empiri-
cal study of our recipe optimizing framework thanks to inexpensive experiments
enabled by a simulator. In an urban farm, plants grow in a controlled envi-
ronment. In the absence of failure, recipe instructions are followed and we can
investigate the optimization of the plant yield at the end of the growth cycle.
We simulate recipe experiments by using the PCSE2 simulation environment by
setting the characteristics (e.g., the climate) of the different growth stages. We
focus on 3 variables that set the amount of solar irradiation (range [0, 25000]),
wind (range [0, 30]) and rain (range [0, 40]). The plant growth is split into 3 stages
of equal length such that we finally get 9 attributes. In real life, we can control
most of the parameters of an urban farm (e.g., providing more or less light)
and a recipe optimization iteration needs for new insights about the promising
parameter values. This is what we can emulate using the crop simulator: given
the description of the optimal subgroup, we get insights to support the design
of the next simulations, say experiments, as if we were controlling the growth
environment. At the end of the growth cycle, we retrieve the total mass of plants
harvested using a given recipe. Note that in the following experiments, unless
stated otherwise, no assumption is made on the values of parameters (i.e., no
restriction is applied on the range of values defined above and expert knowledge
is not taken into account). Table 1 features examples of plant growth recipes.
The source code and datasets used in our evaluation are available at https://
bit.ly/3bA87NE.

2 https://pcse.readthedocs.io/en/stable/index.html.

https://bit.ly/3bA87NE
https://bit.ly/3bA87NE
https://pcse.readthedocs.io/en/stable/index.html
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Table 1. Examples of growth recipes split in 3 stages (P1, P2, P3), 3 attributes, and
a target label (Yield).

R RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Yield

r1 10 23250 5 10 23250 5 15 21000 10 22000

r2 35 10000 14 5 25000 10 16 19500 30 20500

r3 15 17500 26 22 15000 18 30 4000 3 8600

r4 18 22800 17 38 17000 25 38 12000 19 14200

Table 2. Comparison between descriptions of the overall dataset (DS), the optimal
subgroup returned by MinIntChange4SD (MIC4SD), the optimal subgroup returned
by SD-Map*. “–” means no restriction on the attribute compared to DS, Q and S
respectively the quality and size of the subgroup.

SubgroupRainP1 IrradP1 WindP1RainP2 IrradP2 WindP2RainP3 IrradP3 WindP3Q S

DS [0, 39] [1170, 23471][2, 29] [0, 37] [111, 24111] [0, 29] [2, 40] [964, 24197] [1, 30] 0 30

MIC4SD [16, 37] [1170, 22085][2, 24] [7, 37] [18309, 23584][2, 24] [15, 37] [12626, 24197][1, 25] 338747

SD-Map* [21, 39] – – – [14455, 24111]– – [12760, 24197]– 306625

5.1 MinIntChange4SD vs SD-Map*

We study the description of the best subgroup returned by MinIntChange4SD
and SD-Map*, the state-of-the art algorithm for subgroup discovery in numeri-
cal data. Table 2 depicts the descriptions for a dataset comprised of 30 recipes
generated randomly with the simulator. Besides the higher quality of the sub-
group returned by MinIntChange4SD, the optimal subgroup description also
enables to extract information that is missing from the description obtained
with SD-Map*. In fact, where SD-Map* only offers a strong restriction on 3
attributes, MinIntChange4SD provides actionable information on all the con-
sidered attributes, i.e., the 9 attributes. This confirms its qualitative superiority
over SD-Map* which has to proceed to attribute discretizations.

5.2 Empirical Evaluation of the Model Hyperparameters

Our optimization framework involves several hyperparameters whose values need
to be studied to define proper ranges or values that will lead to optimized results
with a minimized number of recipe experiments. We choose to apply a random
search on discretized hyperparameters. Note that in this setting, grid search
is a bad solution due to the combinatorial number of hyperparameter values
and the high time cost of the optimization process itself. We discretize each
hyperparameter in several values (the convergence rate is split into 10 values
ranging from 0.1 to 1, the minimal improvement parameter is split into 12 values
between 0 and 0.05, the sampling parameter is split between the 3 available
methods, and the number of recipes for each iteration is either 20 or 30). We
run 100 iterations of random search, with each iteration - read set of parameter
values - being tested 10 times and averaged to account for randomness of the
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Fig. 3. Yield of the best recipe depending on the value of different hyperparameters
using 100 sample recipes for each hyperparameter.

recipes generated. After each iteration of random search, we store the set of
hyperparameter values and the corresponding best recipe found. Figure 3 depicts
results of the experiments. Optimal values for convergence rate seem to be around
0.5, between 0.001 and 0.01 for minimal improvement, and the best sampling
method is tied between the first and second one. Generating 30 recipes for each
iteration yields better results than 20 (average yield of 23857 for 30 recipes
against 22829 for 20 recipes). To compare our method against other methods, we
run our framework with the following parameters: 30 recipes times 5 iterations
(for a total of 150 recipes), 0.5 convergence rate, using the second sampling
method with k = 15. To address the variance in the yield due to randomness
in the recipe generation process, we run the framework 10 times, we store the
best recipe found at each iteration and then compute the average of the stored
recipes. We report the results in Table 3.

5.3 Comparison with Alternative Methods

Good hyperparameter values have been defined for our optimization framework
and we can now compare our method with other ones. Let us consider the use
of expert knowledge and random search. First, we want to create a model using
expert knowledge. With the help of an agricultural engineer, we defined a priori
good values for each parameter using expert knowledge and we generated a recipe
that can serve as a baseline for our experiments. We then choose to compare our
method against a random search model without expert knowledge. We set the
number of recipes to 150 for all methods to provide a fair comparison with our
own model where the number of recipes is set to 150. To account for randomness
in the recipe generation, we run 10 iterations of the random search model, we
store the value of the best recipe found in each iteration, and we compute their
average yield. Results of the experiments and a description of the best recipe for
each method are available in Table 3. Random search and expert knowledge find
recipes with almost equal yields, while our framework find recipes with higher
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Table 3. Comparison of the description and the yield of the best recipe returned
by each method. EK = Expert Knowledge, RS = Random Search, SM = Surrogate
Modeling, VC = Virtuous Circle (our framework).

Method RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Yield

EK 10 0 5 10 25000 5 10 25000 5 23472

RS 17 23447 8 31 22222 23 39 22385 7 23561

SM 20 44 0 20 24981 0 40 31 30 10170

VC 19 16121 18 25 24052 28 14 21126 7 24336

yield. Note that in industrial settings, an improved yield of 3% to 4% has a
significant impact on revenues.

Let us now compare our framework to the Surrogate Modeling method pre-
sented in [9]. To be fair, we give the same number of data points to build the
Symbolic Regression surrogate model as we used in previous experiments, i.e.,
150 for training the model (we evaluated the RMSE of the model on a test set
of 38 other samples). We use gplearn [19], with default parameters, except for
the number of generations and the number of models evaluated for each gener-
ations, which are respectively of 1000 and 2000, as in [9]. Note that the model
obtained has a RMSE of 2112, and it is composed of more than 2000 terms
(including mathematical operators), therefore the argument of interpretability
is questionable. A grid search is finally done on this model and we select the
best recipe and obtain their true yield using the PCSE simulation environment.
The number of steps for each attribute for the grid search has to be defined.
We set it to 5. As we have 9 parameters, it means that the model needs to be
evaluated on nearly 9 million potential recipes. Also, the model is composed of
hundreds of terms such that experiments are computationally expensive. The
best recipe found so far is given in Table 3. The surrogate model predicts a yield
value of 21137. Compared to the ground truth of 10170, the model has a strong
bias. It illustrates that using a surrogate model for this kind of problem will
give good recipes only if it is reliable enough. Interestingly, the RMSE seems to
be quite good at first glance, but this does not guarantee that the model will
behave correctly on all elements of the search space: on the best recipe found,
it largely overestimates the yield, leading to a non-interesting recipe. It seems
that this method performs poorly on recipes with more attributes than in [9].
Further studies are here needed.

6 Conclusion

We investigated the optimization of plant growth recipes in controlled environ-
ments, a key process in connected urban farms. We motivated the reasons why
existing methods fall short of real life constraints, including the necessity to min-
imize the number of experiments needed to provide good results. We detailed a
new optimization framework that leverages subgroup discovery to iteratively find
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better growth recipes through the use of a virtuous circle. We also introduced
an efficient algorithm for the optimal subgroup discovery in purely numerical
datasets. It has been recently improved much further in [17]. We avoid dis-
cretization and it provides a qualitative added-value (i.e., more interesting opti-
mal subgroups). Future work includes extending our framework to deal with
multiple target labels at the same time (e.g., optimizing the yield while keeping
the energy cost as low as possible).
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