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Abstract—Subgroup discovery (SD) enables one to elicit pat-
terns that strongly discriminate a class label. When it comes
to numerical data, most of the existing SD approaches perform
data discretizations and thus suffer from information loss. A
few algorithms avoid such a loss by considering the search
space of every interval pattern built on the dataset numerical
values and provide an “anytime” property: at any moment, they
are able to provide a result that improves over time. Given a
sufficient time/memory budget, they may eventually complete
an exhaustive search. However, such approaches are often in-
tractable when dealing with high-dimensional numerical data, for
instance, when extracting features from real-life multivariate time
series. To overcome such limitations, we propose MonteCloPi,
an approach based on a bottom-up exploration of numerical
patterns with a Monte Carlo Tree Search. It enables to have a
better exploration-exploitation trade-off between exploration and
exploitation when sampling huge search spaces. Our extensive set
of experiments proves the efficiency of MonteCloPi on high-
dimensional data with hundreds of attributes. We finally discuss
the actionability of discovered subgroups when looking for skill
analysis from Rocket League action logs.

Index Terms—Numerical Subgroup Discovery, Monte Carlo
Tree Search

I. INTRODUCTION

Exploratory data analysis is an important task to support
knowledge discovery in data. It consists in automatically
highlighting hidden structures and relations with data mining
algorithms. In the presence of labeled data, many techniques
have been proposed for eliciting patterns that characterize a
given label. They were introduced using different terms: sub-
groups, emerging patterns, hypotheses, etc. [1]. In this article,
we use the terminology of Subgroup Discovery (SD) [2].
Such patterns also called subgroup descriptions provide un-
derstandable and interpretable hypotheses on the phenomena
that “produced” the data. Not only these patterns give insights
to domain experts but also they can be exploited to build
interpretable, say transparent, pattern-based prediction models.
Let us take a timely example when we have an object/attribute
data table containing both numerical and categorical patient
data (age, sex, weight, blood pressure, glycated hemoglobin
level HbAlc, etc., and their COVID-19 test results) with a
label indicating the severeness level of patient’s state. SD
can lead to discovery of patterns that can characterise each
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of these states. For instance, we may discover that a pattern
like “Sex = Male A (52 < age < 64) A (HbAlc >
6.3) A COVID-19 = True” discriminates well the label
“Severe Case”. A quality measure would indeed quantify
how the defined subgroup deviates from the norm, i.e., the
distribution of labels in the whole data. Roughly speaking,
such a pattern may emphasize that, in this data, even rather
“young” male seniors who are close to a diabetes diagnosis
tend to develop severe cases of COVID-19 disease.

Among the various applications of SD in numerical data,
we investigate more precisely its added-value when process-
ing time series. Indeed, we can transform the original time
series into potentially high-dimensional numerical data, and
take advantage of the interpretability of numerical patterns.
For instance, we consider here a use case about the video
game data analytics (e-sport). Game activity usually produces
sequences of time-tagged data points, i.e., time series. One in-
teresting challenge is then to design efficient and interpretable
prediction models for a variety of tasks (e.g., predicting player
behaviour for game customization, user profiling for adaptive
skill mastery training, etc.).

We consider hereafter only numerical data labeled with
discrete values. In other terms, our subgroup descriptions
are given by the so-called interval patterns. Mining interval
patterns can be seen as finding multi-dimensional intervals
containing objects (points) in an n-dimensional Euclidean
space. Even though the number of interval patterns appears
theoretically infinite, thanks to the concept of closure, it can
be restricted to a finite set when interval borders correspond
to data points. However, even finite, the set of patterns is too
large for an exhaustive exploration. To deal with that, different
paradigms have been proposed.

Efficient exhaustive algorithms designed for categorical data
can be applied on discretized data or directly on numer-
ical data with greedy discretization during the exploration
(e.g., SD-MAP [3]). Also, greedy algorithms such as Beam
Search (e.g., DSSD [4]) are widely used. Recently, two
appealing anytime algorithms have been proposed, attempting
to take the most of both paradigms: a best first search that can
produce a solution at anytime if interrupted, whose quality
improves over time and eventually performs an exhaustive



search if let running long enough. First, the MCTS4DM algo-
rithm exploits a Monte Carlo Tree Search (MCTS, see [5]
for a survey) to explore the whole interval pattern search
space focusing on both unvisited and promising parts, i.e.,
performing an exploration-exploitation trade-off [[6]. It was the
first investigation of the usage of MCTS framework for pattern
discovery. Second, the algorithm Refine&Mine proposes
an exhaustive interval pattern search that can be operated
on increasingly refined data discretizations [7]. In the case
of high-dimensional numerical data (hundreds of attributes),
both MCTS4DM and Refine&Mine are inefficient. MCTS4DM
considers interval patterns in a top-down fashion, sampling the
search space with random draws that are costly. Thus, it hardly
reaches lower parts of the search space where interesting
patterns can be hidden. Refine&Mine provides guarantees
and runs fast on very rough data representations, but not when
it reaches some finer representations for high-dimensional
numerical data.

We want to use the MCTS framework to control the search
for subgroups but, in contrast to MCTS4DM, we propose to
explore the search space of extents in a bottom-up way,
restricting the search space by exploring only closed on the
positive elements to reduce its size without pruning interesting
patterns. We also define new policies for the EXPAND and
ROLLOUT steps of MCTS to deal with high-dimensional data.
Our contributions can be summarized as follows:

o« We extend the previous works on the closed on the
positive (COTP) interval patterns [7] by defining and
proving a key property, allowing to explore COTPs only,
without loss of the relevance of the search space for
discriminating the target class.

e« We propose a MCTS-based algorithm called
MonteCloPi that performs a bottom-up best first
search exploration based on the above mentioned
mathematical property.

o Through an extensive set of experiments, we demonstrate
that MonteCloP1i can be applied to collections of mul-
tivariate time series of both equal and different lengths
and show that the extracted interval patterns are of high
value.

o« We provide a video game analytics use case, showing
how particular strategies can be detected and interpreted.
We demonstrate that MonteCloPi is able to classify
multivariate time series of different lengths in real time,
gaining a competitive advantage over 1NN DTW [J].

We formalize our SD task in Section We define COTP
interval patterns and discuss their properties in Section [[II]
Section describes our algorithm before a survey of re-
lated work in Section Both quantitative and qualitative
experimental studies are reported in Sections [V and
respectively. Section concludes.

II. SUBGROUP DISCOVERY IN NUMERICAL DATA

Objects of a numerical dataset with n attributes are points in
the n-dimensional Euclidean space. Interval patterns are multi-
dimensional intervals, i.e., hyper-rectangles with sides parallel

to the plane axes . The extent of an interval pattern is the set
of data points that fall within this rectangle. Hence, interval
patterns are partially ordered by interval inclusion, and they
form a lattice, structuring the search space [9].

Definition 1 (Numerical dataset D(O, A,C)). Let O, A and C
be respectively a set of objects, a set of numerical attributes,
and a set of class labels. When an object o takes a value v for
an attribute attr, we write attr(o) = v. The finite domain of a
numerical attribute attr € A in a given dataset is denoted by
Dom(attr) = {attr(o) | Yo € O} The mapping f : O — C
associates each object to a unique class label.

Definition 2. (INTERVAL PATTERN, EXTENT, SUPPORT, FRE-
QUENCY) An interval pattern of length n is a vector of
intervals p = (I1,Is....I,), with I; = la;,b;], a;,b; €
Dom(attr;)?, a; < b;. The extent of a pattern p is ext(p) =
{o € O | attr;(o) € I;, VI; € p}. We say that p covers
objects of its extent. We have supp(p) = |ext(p)| and
freq(p) = supp(p)/|O|.

Definition 3. (INTERVAL PATTERN ORDERING AND SEARCH
SPACE) (P, C) is the poset of all interval patterns ordered with
inclusion: p1 C pa <= [a?,b?] C [a},b}],Vi < n,[al,b]]

79 Y 79 Y1
referring to the it" interval of the pattern p;. It is a finite

lattice with 1], |D°m(att”)‘X(|2Dom(“tt”)‘+1) elements.

A subgroup is composed of a pattern (i.e., an intent), its
extent, and a score that reflects its interestingness, such as, for
instance, the famous Weighted Relative Accuracy (W RAcc)
[10]. When the context is clear, we use the terms pattern and
subgroup interchangeably.

Definition 4. (SUBGROUP AND QUALITY MEASURE) Given
an interval pattern p, (p,ext(p)) is a subgroup. Let S be
the set of all possible subgroups. A quality measure  is an
application ¢ : S — R that maps every subgroup from s € S
to a real number reflecting its interestingness.

Definition 5. (WEIGHTED RELATIVE ACCURACY) Given
an interval pattern p, a dataset D, and D. being the set
of its elements labeled with class ¢, WRAcc(p,D,D.) =

supp(p,D) supp(p,De) _ |De| i
SRR < (ST — ). hs range s [-0.25,023]

the closer to the bounds the better.

Example 1. Table [l| provides a numerical dataset with 4
objects, 6 attributes and 2 labels. An interval pattern is
p = ([1,2],[4,5],[3,4],[7,8],[5,7],[8,9]) and its support is
supp(p, D) = 2. Accordingly, (0l,03) is a subgroup w.rt.
p, and WRAce(p,D,Dy) = 0.25. As example of a pair
belonging to the ordering relation, we have ([1,4],[2,4]) C
([1,3], [3,3]).

The maximum value the WRAcc can take on a dataset D
for a class ¢, D, being the set of its elements labeled by class
¢, is WRAcCmqz(c) = 2| (1 — D]

D] D]
Proof.

supp(p, D.)

supp(p, D) _ D] >
supp(p,D)  |D|

WRAcc(p,D,D,) = D] X (




TABLE I: Toy dataset

ID || attrl attr2 attr3 attrd attr5 attr6 [| class(.)
ol 1 5 3 8 7 9 +
02 8 9 0 1 2 1 -
03 2 4 4 7 5 8 +
o4 5 5 1 2 3 2 -

Note that supp(p, D) = supp(p, D..) + supp(p, D..). We then
have:

WRAce(p,D,D,.) =

1 D, |D.|
— _ D,
D] D] ) — supp(p, D.) D

To maximise the W RAcc, the rightmost term must be
minimized. This is the case for supp(p, D.) = 0: it means the
pattern does contain only element with positive class. Notice
also that supp(p,D) = [B|D.|], with 0 < B < 1 as the
number of elements having the target class must be a subset
of all elements having the target class. We then have:

Dl Dl
WRAcCmar(D,D.) = 3 D] <1 D] >

Directly, 3 needs to be set to 1 to maximize the WRAcc. B

X <supp(p7 De)(1 -

Note that the minimal and maximal values of the W RAcc
depend on the proportion of the target class in the dataset.
Using directly its value to assess its discriminating power
could then bias user interpretation. For example, a W RAcc
of 0.09 for a class which is represented at 10% would mean
that the pattern covers all elements having this class and only
them, i.e., it would be somehow the best pattern. But on a
dataset with a representation of this class at 50%, it would be
much less relevant. We then propose to normalize the W R Acc.

Definition 6. (NORMALIZED WEIGHTED RELATIVE ACCU-
RACY (NW RAcc)) NW RAcc(p, c) takes its values in [—1,1]
and is defined by:
WRAcc(p,D,D.)  WRAcc(p,D,D,)
WRACC4:(D, D.) N

& (1)

NW RAcc can be used to compare patterns that discrimi-
nate classes with different sizes (see supplementary materials
for proof).

Definition 7 (Non f-redundant patterns). A set of patterns
S, C S is non O-redundant if given 0 € [0;1] and Vpl,p2 €
Sp, where p1 # pa, we have: sim(p1,p2) < 0, where sim is
a similarity function such as the classical Jaccard index:

_ lext(p1) Next(pz)|
lext(p1) U ext(pa)|

Problem (Non-redundant subgroup set discovery). Given a
numerical dataset D, a target class c, an integer k, a quality
measure o, a similarity measure sim limited by 6 € [0;1],
find the set of at most k interval patterns that are the best
w.r.t @ and non 0-redundant.

sim(p1,p2)

Note that this problem is NP-Hard as proven in [[11]].

III. CLOSED ON THE POSITIVE INTERVAL PATTERNS

It has been shown that Problem the non-redundant subgroup
set discovery problem is equivalent to the discovery of closed
on the positive patterns (COTP): [12] addresses the general
case while [[7], [L1] consider the discovery of closed on the
positive interval patterns within numerical data. The key idea
is that any sub-interval of a COTP will drop at least one
positive object, thus, reducing the frue positive rate, hence
many measures such as the W RAcc.

Definition 8 (Closed pattern). An interval pattern p is closed
iff Bp’ st. pC o, ext(p) = ext(p).

Definition 9. (CLOSED ON THE POSITIVE INTERVAL PAT-
TERN)Let extt(p) be the set of objects labeled with + for
an interval pattern p. p is said to be a closed on the positive

iff Ap" st.pCp, extt(p) = extt(p)).

Definition 10 (MEET operator [9]]). The set of all interval
patterns form a lattice (P,C). For Vp,q € P? the MEET
operator T is defined as MN(p,q) = (I1,..., I, ) with I; =
[min(a?, al), max(b?,bl)]. For example ([1,2],[6,7]) M

<[17 1]7 [81 9]> = <[1v 2} [67 QD

Theorem 1. The MEET of two COTP interval patterns is a
COTP.

Proof. For any interval pattern p’ s.t. p C p’, where p is the
MEET of two closed on the positive interval patterns, we have
a restriction (i.e., a smaller interval) on at least one interval
compared to p. As bounds of those intervals are extracted from
values of COTP patterns, i.e., they are as “tight” as possible,
any restriction on it would lead to a decrease of the extent of
positive elements of p. By definition, p is then a COTP interval
pattern. Note that any “widening” of an interval would create
an interval pattern p”. If p”’ could have the same extent as
p, we would have p C p” and extent™(p) = extent™(p’),
which is a contradiction with the definition of a COTP pattern
for p: the MEET is unique by definition. ]

IV. ALGORITHM MONTECLOPI

Classical lattice exploration methods, like Beam-Search,
are top-down by nature, going from the most general descrip-
tion (i.e., pattern) down in the search space through successive
refinements. In contrast, we suggest to use a bottom-up strat-
egy. The idea is to consider positive objects of the database,
i.e., objects labeled with the target class, and to compute their
MEET with other positive objects, successively climbing the
lattice of COTP, containing discriminative patterns. We aim
at creating patterns that are the most restrictive descriptions
that cover a set of chosen positive elements, i.e., they are
by definition discriminating the positive class. We then use
a Monte Carlo Tree Search (MCTS) strategy. The idea is to
iteratively explore the search space using sampling and provide
an anytime property. MCTS also guarantees the exhaustiveness
on the lattice it explores, if given enough time budget.

Our algorithm is called MonteCloPi (MONTE carlo tree
search for CLOsed on the Posltives). MCTS typically consists



of 4 steps (i.e., SELECT, EXPAND, ROLLOUT, UPDATE)
that are repeated successively. Its idea is to grow an asym-
metric tree following an exploration-exploitation trade-off to
quickly find interesting areas of the search space. Hereafter,
we explain these generic steps and how we instantiate them to
our problem. The schema describing MonteCloPi is given
in Fig. [T] and its pseudocode is given in Alg. [I] Each node
of the tree is composed of a set of database objects, i.e., its
extent, and a pattern covering those objects.

A. Step 1 SELECT

The first step consists in selecting a non fully-expanded
node (i.e., new nodes can be created as its children). The idea
is to choose the most relevant area of the search space to
explore. We use the UC B function (see, e.g., [5]]) to guide us
through the tree, achieving an exploration-exploitation trade-
off. We begin with the | node that has all database objects as
children. We compute the UC'B of all its children and select
the one maximizing it. We perform this step recursively until
reaching a non fully-expanded node. UC' B gives a better score
to nodes (i.e., patterns with their extent) that are good patterns,
but also to nodes that are less explored.

We use here UCB(i) = &; + 1/%@, with x; being the
mean quality of children node, N the number of times the
current node has been chosen, and N; the number of times
the i*" child has been chosen.

In Fig. [T} the initial bottom node L is given in blue. It is
fully expanded, so the SELECT procedure will choose its best
child w.r.t. UC'B. Suppose it is the node “3” and it has not
been fully expanded, then it is selected (given in red).

B. Step 2 EXPAND

Then, the selected node is expanded. This step consists in
taking a positive element, i.e., an object labeled with the target
class, transforming it to an interval pattern, and computing its
MEET with the interval pattern of the current node. Next, the
extent of this MEET is computed: we create a pattern with
the most restrictive description that covers elements from the
selected node plus this positive element. The transformation
step from an object to a pattern is straightforward: each
attribute attr;(o) becomes an interval [attr;(o), attr;(o)].

In Fig. [I] we take the node covering the positive element
“3”, add the positive element “2” (node “2,3”). We then
compute the MEET of their patterns, its extent, and its quality:
it covers elements “3”, “2”, but also “1” (node “1,2,3”).
Note that the pattern obtained from an object labeled with
the target class o4 is COTP, and the first iterations of the
current procedure consider single object descriptions, i.e.,
COTP patterns. From theorem I] it follows that this EXPAND
step creates a new COTP pattern.

Note that to deal with the case of computing an already dis-
covered pattern, we use the permutation-unification principle
as described in [6].

Algorithm 1 MonteCloP1i algorithm

1: function MonTECLOP 1(timeBudget)

2 7 < PriorityQueue()

3 create | initial node having all objects as children
4 while within timeBudget do

5: Psel  Select(L)

6 Pezxp qualewp <~ Empand(psel)

7 Droil, A < Rollout(pegp)

8 Update(peap, A)

9: 7.add(Dezp, qQualeqp)
10: W.add(pm”, A)

11: end while

12: return 7.topK ()

13: end function

14:

15: function SELECT(p)

16: while p is not T do > T is the most general pattern

17: if p is not fully-expanded then

18: return p

19: else

20: p < BestChild(p)

21: end if

22: end while

23: return p

24: end function

25:

26: function EXPAND(p)

27: o4 <+ randomly choose a positive object

28: py < Interval Pattern(os)  © Transform each a;
into [a;, a4

29: Pexp < meet(p, py)

30: return Pexp w(pexp)

31: end function

32:

33: function ROLLOUT(p)

34: j < Rand(1,n) > Randomly pick an index of one of
n intervals constituting p

35:  foriin[1,5—1]U[j+1,n] do
interval I; of p, i.e. p\ I;

36: pli] < [—00, +00]

37: end for

38: return p, p(p)

39: end function

40:

41: function UPDATE(p, A)

42: while p # | do

> Exclude the j*"

43: o(p) + % > N(p) is the number of
times p has been chosen

44: N(p) < N(p)+1

45 p < parent of p

46: end while

47: end function

48:

49: function BESTCHILD(p)

50: return argmax UCB(p,p’)
p'€C(p)
children of p
51: end function

> C(p) is the set of
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Fig. 1: Simple illustration of MonteCloP1i steps

C. Step 3 ROLLOUT

Our ROLLOUT step consists in taking the corresponding
interval pattern of the expanded node, randomly choosing an
interval among n available ones (;), widening it by setting
its value to random values from the data, and removing
restrictions on all others, i.e., setting them to [—oo,00]. It
corresponds to going “up” in the search space, until reaching
the first level of the search space in a top-down approach
(see the top red node in Fig. [T). We then compute the quality
of this pattern. Note that Monte Carlo strategies consist in
drawing a large number of samples, maximizing the sampling
to approximate the underlying data distribution, so they require
a fast ROLLOUT policy to be efficient.

D. Step 4 UPDATE

Finally, we update parent nodes of the ROLLOUT node
with its computed quality A. These parent nodes include
the expanded node, the selected node and all nodes chosen
in the SELECT step until reaching the selected node. The
UC B will orient the tree exploration towards the nodes whose
ROLLOUTSs give good qualities, so they will be prioritized
on the next iterations of MCTS, leading to the discovery of
interesting patterns.

Steps 1-4 are repeated iteratively until the time budget has
not been reached or until the whole search space is explored.
The time complexity of MonteCloPi is O(Iter Numsn|D|),
with n the number of attributes. The memory complexity is
O(Iter Num), as the whole tree needs to be held in memory.

Theorem 2. MonteCloPi explores all COTP interval pat-
terns if given enough time.

Proof. The EXPAND step creates a COTP. We now need to
show that Ve € COT P, ¢ will be enumerated by our method.
By construction: let ¢ be a COTP interval pattern. If we
remove positive objects from ext(c) one by one, and compute
the corresponding COTP interval pattern, we create a list of
COTP interval patterns until we reach a COTP interval pattern
containing only one object (or a set of identical objects). This
list of successive COTP interval patterns is exactly the list
built by our method in reverse order, by adding objects one
by one and computing the MEET in EXPAND step. As a
COTP interval pattern created from the MEET of two COTP
interval patterns is unique (see Proposition [I)), MonteCloP1i
will create c. ]



E. Dealing with time series

In many application settings, we have to deal with time
series of equal or different lengths, in an univariate or a
multivariate case. We can use MonteCloPi for mining time
series. For that purpose, we can transform such a data type into
numerical data similarly to [[13]]. Basically, a multivariate time
series of fixed length dataset is composed of a set of variables
X at each timestamp in 7. The corresponding numerical
dataset is then given by (O, X x T, C): each numerical attribute
gives the value of a variable at a given time. To deal with
time series of different lengths, two modifications of the
algorithm are required. First, we adapt the computation of
the MEET for two interval patterns: we randomly remove
intervals from the longest one to have two interval patterns
of the same length, and then compute their MEET. Second,
we re-define the notion of coverage: a time series transformed
into a numerical object o of length n;, is said to be covered
by an interval pattern p of length n, iif: 31 < ¢; < ... <
inp < Mus s.t. attri1 (o) € In,. .., attriy(o) € I,,. Note that
we loose here the guarantee of exhaustiveness on COTP, as
the MEET operator is no more unique.

To summarize, MonteCloP1i is an anytime algorithm. It
explores COTP patterns, with a guarantee of exhaustiveness, if
given enough time budget. It is agnostic of the quality measure.
In contrast to MCTS4DM, it explores the search space in a
bottom-up way, exploring only COTPs by redefining in an
original way the EXPAND and the ROLLOUT steps.

V. MORE RELATED WORK

Various subgroup discovery approaches have been proposed
in the literature. Top-down approaches using tight optimistic
estimates like the recent work of Millot et al. [14]], or
using those optimistic estimates to prune the search space
for Beam-Search can be considered. However, they are
dependent on the quality measure. Besides, using optimistic
estimates when looking for a non-redundant pattern set, where
non-redundancy is performed as post-processing, is quite diffi-
cult. To avoid pruning interesting search space areas, it would
require to know the quality of the last top-k non-redundant
patterns w.r.t. the quality measure at any time. It would have
a high computational cost.

Misere, by Egho er al. [15], [[16] has been proposed to
sample interesting rules (originally in the case of sequences
of itemsets) in a simple way, giving good results when
those rules are used to build a classifier. Genetic algorithm
can be considered to tackle this problem, but they do not
offer strong guarantees like exhaustiveness or exploring only
COTPs. For example, Lucas et al. proposed SSDP to mine top-
k discriminative rules in high-dimensional data [17]]. However,
they only consider categorical and discrete attributes.

From a time series perspective, Morchen and Ultsch [[18]]
proposed a new language on interval time series. The problem
is different: events have a duration instead of being instan-
taneous (e.g., injection of a drug in medical conditions), and
they look for frequent rather than discriminative patterns. They

used a frequent pattern mining approach, which is a different
problem: we want to be able to find discriminating patterns.
Similarly, Batal et al. [|19]] worked on predictive frequent time-
interval patterns.

Atzmueller er al. [20] propose a method for the classifi-
cation of time series. They discretize data with SAX [21]],
incurring information loss. Features are extracted with the
FRESH algorithm from raw time series, and anomaly detection
is done to improve the overall workflow. It requires human-in-
the-loop. Nanlin Jin ef al. used SD in Smart Electricity Meter
Data [[13]]. Using the state-of-the-art algorithm in Subgroup
Discovery (Beam-search), they explored different quality
measures on data similar to time series but also containing
categorical data. They showed the relevance of a SD approach
to create interpretable rules used further in classification in the
context of energy consumption. Nguyen et al. [22] propose
a method that learns a linear classifier on discretized data
(SAX or SFA). A feature (pattern) with the largest weight is
considered the most discriminating. The goal is first to classify,
then to extract patterns from the model. They use a smart
pruning strategy to minimize the loss function, dynamically
selecting features. However, such an approach ignores the
quality measure (e.g., it is impossible to specify to Precision
or Lift maximization).

VI. QUANTITATIVE EXPERIMENTAL STUDY

We conduct experiments to assess the performance of
MonteCloPi. To guarantee reproducibility, all the materials
are available onlind]

A. Experimental Setup

a) Datasets: We considered two high dimensional nu-
merical datasets, namely LSVT [23]] and gastro [24], coupled
with 13 other benchmark datasets of the time series domain
[25]. We also used a RocketLeague dataset, containing anno-
tated video game traces [26]. The properties of the resulting
datasets are summarized in Table [[Il

www.dropbox.com/s/xhy 14vvkr3kongr/monteclopi.zip?dl=0

TABLE II: Dataset statistics.

Dataset |D| n m |C| MLEI,U_ Space
variate Size
Computers 250 720 1 2 False ~ 108
Earthquakes 322 512 1 2 False ~ 108
ECG5000 500 140 1 5 False ~ 10°
Gunpoint 50 150 1 2 False ~ 107
Lightning2 60 637 1 2 False ~ 108
Worms 182 900 1 5 False ~ 10°
Yoga 300 426 1 2 False ~ 10°
Handwriting 150 152 326 True ~ 1023
JapaneseVowels 270 29 12 9 True ~ 1082
NATOPS 180 51 24 6 True ~ 10182
RacketSports 151 30 6 4 True ~ 1039
RocketLeague 298 64 8 7 True ~ 10°°
StandWalkJump 12 2,500 4 3 True ~ 102°
UWaveGest 2238 315 3 8 True ~ 10%°
LSVT 698 126 - 2 Num ~ 108
gastro 309 76 - 3 Num ~ 108



www.dropbox.com/s/xhy14vvkr3konqr/monteclopi.zip?dl=0

b) Baselines: We compare MonteCloPi with several
algorithms:

e Beam-Search (see.e.g., [27]): Starting from the most
general subgroup, i.e., containing intervals in the form
[min(Dom/(attr)), maxz(Dom(attr))], Vattr € A, it ex-
plores the search space level-wise, taking the best ele-
ments (beam width) at each level. Each restriction (going
down by one level) consists in taking an interval and
splitting it in 6 equal-sized bins like in [4]. It prevents the
search space from exploding, but forfeits exhaustiveness.
We set the beam width to 50. Other settings do not impact
significantly the reported results.

e Misere [15], [16]: It draws uniformly an object from
the data, and then generates random generalizations to
find the best possible prediction rules for this object. It
iterates until the time budget is exhausted.

e MCTS4DM [6]: It is a MCTS-based top-down approach
that processes numerical data without discretization. Its
strategy guides the search following an exploration-
exploitation trade-off to compute non-redundant pat-
terns. It explores the lattice of intents, contrary to
MonteCloPi that explores the lattice of extents.

We tried to use Refine&Mine designed for numerical
subgroup discovery [7] but it provided only extremely rough
discretizations on every dataset: it does not scale with high
dimensional numerical data.

c) Evaluation Process: The assessment procedure is as
follows. Given a time budget, each algorithm extracts the best
patterns. Next, the following post-processing routine is applied
for removing redundant patterns: we sort patterns by quality,
keep the best, while removing similar patterns (in terms of
Jaccard index) of poorer quality. Then we take the second best,
etc, until we obtain k patterns. If not specified otherwise, the
default parameters for the algorithms are the following: 60s of
time budget, 8 = 0.8, top_k = 5. Experiments were conducted
on a laptop (Intel Core i7-8750H CPU and 16GB RAM).

d) Quality Measure: We explore performances of algo-
rithms on different datasets, and study the impact of varying
available time budget. In the following, if not stated otherwise,
we use NW RAcc as the quality measure. We average it over
top-5 non-redundant patterns of 5 runs of the algorithms. Note
that our approach is agnostic of the quality measure, and that
any other discriminative quality measure could be considered.

B. Experimental results

1) Overall Performance: First, we look at the overall per-
formance of MonteCloPi in terms of NW RAcc compared
to Beam-Search, Misere and MCTS4DM. In Fig. ] we
plot the results for all datasets, and one-vs-one comparisons
of algorithms are proposed in Fig. Bl [ [5] As we can see,
MonteCloPi is the best approach on nearly all of them.
Beam-Search may also be a good solution and its results
are quite stable over datasets. However, our approach clearly
outperforms it in the majority of cases. As for Misere,
its results vary significantly depending on the dataset. For
instance, it performs very well on GunPoint, while returning
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Fig. 2: Mean NW RAcc of top-5 patterns with different
algorithms. Bar errors represent the 95% confidence intervals

patterns having a zero quality on UWaveGestureLibrary.
Finally, MCTS4DM that performs a MCTS-based approach but
in a “top-down” way on intents clearly gives less interesting
results on such datasets.

2) Varying Time Budget.: We illustrate the performance
of MonteCloPi, Beam-Search, and Misere versus time
budget in Fig.[6] As we can see, MonteCloPi quickly gives
better results, improving over time. Moreover, those results
are quite stable over runs of the same duration, contrary to
the Misere case. Our hypothesis is that this is due to the
exploration-exploitation trade-off, where we focus on interest-
ing areas of the search space, whereas Misere performs a
pure exploration. Another problem faced by Misere is the
number of patterns one can create from an high-dimensional
numerical object is very large. It results in a strong dependency
of the quality of a pattern on the object that was randomly
drawn. It explains the large variability of the results for
Misere.

VII. A QUALITATIVE ASSESSMENT IN GAME ANALYTICS

We propose a use case based on the video game Rocket
League (https://www.rocketleague.com). It is a competitive
online e-sport game where each player controls a car on a
football field having a ceiling and walls. The aim is to score
goals with a ball more than the opponent team. Additionally to
the speed and direction control of the car, players can make the
car jump, flip (double jump), rotate in 3-dimensional space,
slide, and use boost to accelerate. Those simple mechanics
can be combined to create particular skills (like “nutmeg”
skills in classical football). Rocket League players perform
particular “skillshots” to take advantage of their opponent.
Consider the “Musty Flick” as an example (see Fig. [7). It
consists of a reverse flick well executed to lob the defender.
Such action can easily be detected by an expert, such as an
e-sport commentator. A question that arises is then: how can
we detect it automatically in real time? It is a challenging
problem. Indeed, as controls of a player over a car is very


https://www.rocketleague.com
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precise, each performance of a “Musty Flick” is unique, even
for the same player. Most of the variables are instance related:
positions of both ball and players, timing, and even inputs
of the player, as there are a lot of micro-adjustments made
that can be considered as noise. Players are ranked using
a system similar to Elo score in chess [28]. As skills have
different levels of difficulty, using a detection system could
allow assigning different points based on the difficulty level
of performed skills. Moreover, it can be interesting per se
to better understand players behavior, or to create new game
modes where the goal would be to perform the best skills, as in
figure skating or in gymnastics where, incidentally, real-time
automated scoring of skills is being tested. However, instead of
needing humans to judge, we may use a system for it, making
those competitions available to millions of users.

a) Data: In I@], authors introduced a dataset of se-
quences of states, each state being composed of contextual
numerical values and itemset of events. Those sequences
can be encoded into multivariate time series (and then high
dimensional numerical data), by setting value of event ¢ to 1
when event ¢ fires, 0 otherwise.

b) Classification Results: To the best of our knowledge,
the classification problem we address cannot be easily solved
with the state-of-the-art algorithms: the lengths of the multi-
variate time series being unequal, classification being subject
to real-time constraint, and interpretable features being de-

TABLE III: Confusion matrix

s} Z ) 4
RN
s 3 3 & 5 2 3
zZ O & 2B < =
Noise o 0 0 0 1025 025
Ceiling shot 0 0 0 0 0 0
Power shot 0 0 0 0 0 0
Waving Dash 0 0 0 0 0 0
Air Dribble 0 0 0 0 0 0
Flick 0 0 0 0 0 (\WFA 0.23
Musty Flick 0 0 0 0 0 043 |

sired. Using 1NN DTW is unfeasible in practice if we want to
classify in real time: the classification on the test set, composed
of 59 objects, took 7 minutes, achieving an accuracy of 71.5%.
The confusion matrix obtained during cross-validation is given
in Table m Note that the noise is difficult to classify. Indeed,
it is composed not only of random movements, but also of
failed skills, making this classification task quite difficult to
solve.

We built an instance of the LeGo framework [29]: a set
of interesting patterns is mined by MonteCloP1i and then
used as features to build a global model (a random forest
classifier of 100 trees). With this strategy, we reached a
classification accuracy of 80.1%, with 5-fold stratified cross-
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validation, a training time of 1 hour, and nearly immediate (a
few milliseconds) classification during test time.

c) Pattern Interpretability: Let us dis-
cuss two computed patterns: the top-1 pattern
({accelerate}, {down jump}, {goal}) (WRAcc = 0.0863)
corresponds to a “Musty Flick”, and ({accelerate, jump,
DistanceCeil = [1.52,1233.51]}) denotes a “Ceiling Shot”
(WRAce = 0.0755). For the “Musty Flick”, discriminating
parts are purely based on player’s inputs. Note that this
sequence of actions cannot be directly used to reproduce

a “Musty Flick”, but it is indeed discriminating this skill:
there is a sequence of inputs to perform before this sequence,
but it is common to every “Flick”, so it is ignored by the
algorithm. For the second pattern, the distance to the ceiling
is important. Indeed, the “Ceiling Shot” consists in jumping
from the ceiling and then hitting the ball in the air. This
experiment emphasizes that MonteCloPi gives interesting
and interpretable patterns.



VIII. CONCLUSION

We presented MonteCloPi, an efficient solution for sub-
group discovery in numerical data. It is generic and can be
easily adapted to other types of data. To do so, only two mod-
ifications are required: the redefinition of the MEET operator
and the adaptation of the ROLLOUT step. For instance, we
can study the application of MonteCloP1i to graphs.

We showed that MonteCloPi can also deal with multi-
variate time series of different lengths. Though we reported
results on a video game skill classification use case, many
real-life mining processes may benefit from our findings.

The property of exhaustiveness on COTP gives the guar-
antee of finding the best elements and automatically stopping
the algorithm, if given enough time. However, this property
does not remain valid for the case of time series of different
lengths. To overcome this limitation, one may compute all
possible maximal common patterns between two elements in
the EXPAND step. More investigations are needed, as the
number of these patterns could be unreasonably large for some
pattern languages.
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