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Abstract The discovery of patterns that accurately discriminate one class label from
another remains a challenging data mining task. Subgroup discovery (SD) is one of
the frameworks that enables to elicit such interesting patterns from labeled data. A
question remains fairly open: How to select an accurate heuristic search technique
when exhaustive enumeration of the pattern space is infeasible? Existing approaches
make use of beam-search, sampling, and genetic algorithms for discovering a pattern
set that is non-redundant and of high quality w.r.t. a pattern quality measure. We argue
that such approaches produce pattern sets that lack of diversity: Only few patterns of
high quality, and different enough, are discovered. Our main contribution is then to
formally define pattern mining as a game and to solve it with Monte Carlo tree search
(MCTS). It can be seen as an exhaustive search guided by random simulations which
can be stopped early (limited budget) by virtue of its best-first search property. We
show through a comprehensive set of experiments how MCTS enables the anytime
discovery of a diverse pattern set of high quality. It outperforms other approaches when
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dealing with a large pattern search space and for different quality measures. Thanks to
its genericity, our MCTS approach can be used for SD but also for many other pattern
mining tasks.

Keywords Supervised pattern mining - Subgroup discovery - Exceptional model
mining - Heuristic search - Monte Carlo tree search - Diversity

1 Introduction

The discovery of patterns, or descriptions, which discriminate a group of objects given
a target (class label) has been widely studied as overviewed by Novak et al. (2009).
Discovering such descriptive rules can be formalized as the so-called subgroup dis-
covery task [SD introduced by Wrobel (1997)]. Given a set of objects, each being
associated to a description and a class label, a subgroup is a description generalization
whose discriminating ability is evaluated by a quality measure (F1-score, accuracy,
etc). In the last two decades, different aspects of SD have been studied: The descrip-
tion and target languages (itemset, sequences, graphs on one side, quantitative and
qualitative targets on the other), the algorithms that enable the discovery of the best
subgroups, and the definition of measures that express pattern interestingness. These
directions of work are closely related and many of the pioneer approaches were ad
hoc solutions lacking from easy implementable generalizations [see for examples the
surveys of Novak et al. (2009) and Duivesteijn et al. (2016)]. SD still faces two impor-
tant challenges: First, how to characterize the interest of a pattern? Secondly, how
to design an accurate heuristic search technique when exhaustive enumeration of the
pattern space is unfeasible?

Leman et al. (2008) introduced a more general framework than SD called excep-
tional model mining (EMM). It tackles the first issue. EMM aims to find patterns that
cover tuples that locally induce a model that substantially differs from the model of
the whole dataset, this difference being measured with a quality measure. This rich
framework extends the classical SD settings to multi-labeled data and it leads to a
large class of models, quality measures, and applications (van Leeuwen and Knobbe
2012; Duivesteijn et al. 2016; Kaytoue et al. 2017). In a similar fashion to other pattern
mining approaches, SD and EMM have to perform a heuristic search when exhaustive
search fails. The most widely used techniques are beam search (van Leeuwen and
Knobbe 2012; Meeng et al. 2014), genetic algorithms (del Jesus et al. 2007; Lucas
et al. 2017), and pattern sampling (Moens and Boley 2014; Bendimerad et al. 2016).

The main goal of these heuristics is to drive the search towards the most interesting
parts, i.e., the regions of the search space where patterns maximize a given quality
measure. However, it often happens that the best patterns are redundant: They tend
to represent the same description, almost the same set of objects, and consequently
slightly differ on their pattern quality measures. Several solutions have been proposed
to filter out redundant subgroups, e.g. as did Bringmann and Zimmermann (2009),
van Leeuwen and Knobbe (2012), Meeng et al. (2014) and Bosc et al. (2016). Basically,
a neighboring function enables to keep only local optima. However, one may end up
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Fig. 1 Illustration of different SD search algorithms. a Redundancy problem. b Beam search. ¢ Sampling
exploration. d MCTS-based exploration

with a pattern set of small cardinality: This is the problem of diversity, that is, many
local optima have been missed.

Let us illustrate this problem on Fig. 1. The search space of patterns, which can
be represented as a lattice, hides several local optima (patterns maximizing a pattern
quality measure in a neighborhood). Figure la presents such optima with red dots,
surrounded with redundant patterns in their neighborhood. Given the minimal num-
ber of objects a pattern must cover, exhaustive search algorithms, such as SD-Map
(Atzmiiller and Puppe 2006; Atzmiiller and Lemmerich 2009), are able to traverse
this search space efficiently: The monotonocity of the minimum support and upper
bounds on some quality measures such as the weighted relative accuracy (W RAcc)
enable efficient and safe pruning of the search space. However, when the search space
of patterns becomes tremendously large, either the number of patterns explodes or
the search is intractable. Figure 1b presents beam-search, probably the most popular
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technique within the SD and EMM recent literature. It operates a top-down level-wise
greedy exploration of the patterns with a controlled level width that penalizes diversity
[although several enhancements to favor diversity have been devised (van Leeuwen
and Knobbe 2012; van Leeuwen and Ukkonen 2013; Meeng et al. 2014)]. Genetic
algorithms have been proposed as well (Rodriguez et al. 2012; Pachén et al. 2011;
Carmona et al. 2010). They give however no guarantees that all local optima will be
found and they have been designed for specific pattern languages and quality mea-
sures (Lucas et al. 2017). Finally, pattern sampling is attractive as it enables direct
interactions with the user for using his/her preferences to drive the search (Boley et al.
2011; Moens and Boley 2014). Besides, with sampling methods, a result is available
anytime. However, traditional sampling methods used for pattern mining need a given
probability distribution over the pattern space which depends on both the data and the
measure and may be costly to compute (Boley et al. 2011; Moens and Boley 2014).
Each iteration is independent and draws a pattern given this probability distribution
(Fig. 1c).

In this article, we propose to support subgroup discovery with a novel search
method, Monte Carlo tree search (MCTS). It has been mainly used in Al for domains
such as games and planning problems, that can be represented as trees of sequential
decisions (Browne et al. 2012). It has been popularized as definitively successful for
the game of Go in Silver et al. (2016). MCTS explores a search space by building a
game tree in an incremental and asymmetric manner: The tree construction is driven
by random simulations and an exploration/exploitation trade-off provided by the so
called upper confidence bounds (UCB) (Kocsis and Szepesvari 2006). The construc-
tion can be stopped anytime, e.g., when a maximal budget is reached. As illustrated on
Fig. 1d, our intuition for pattern mining is that MCTS searches for some local optima,
and once found, the search can be redirected towards other local optima. This princi-
ple enables per se a diversity of the result set: Several high quality patterns covering
different parts of the data set can be extracted. More importantly, the power of random
search leads to anytime mining: A solution is always available, it improves with time
and it converges to the optimal one if given enough time and memory budget. This
is a best-first search. Given a reasonable time and memory budget, MCTS quickly
drives the search towards a diverse pattern set of high quality. Interestingly, it can
consider, in theory, any pattern quality measure and pattern language [in contrast to
current sampling techniques as developed by Boley et al. (2011) and Moens and Boley
(2014)].

Our main contribution is to a complete characterization of MCTS for subgroup dis-
covery and pattern mining in general. Revisiting MCTS in such a setting is not simple
and the definition of it requires smart new policies. We show through an extensive set
of experiments that MCTS is a compelling solution for a pattern mining task and that it
outperforms the state-of-the-art approaches (exhaustive search, beam search, genetic
algorithm, pattern sampling) when dealing with large search space of numerical and
nominal attributes and for different quality measures.

The rest of this article is organized as follows. Section 2 formally introduces the
pattern set discovery problem. Section 3 then recalls the basic definitions of MCTS. We
present our MCTS method, called MCTS4DM, in Sect. 4. After discussing the related
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work in Sect. 5, we report on experiments for understanding how to configure a MCTS
for pattern mining (Sect. 6) and how does MCTS compare to competitors (Sect. 7).

2 Pattern set discovery

There exists several formal pattern mining frameworks and we choose here subgroup
discovery to illustrate our purpose. We provide some basic definitions and then for-
mally define pattern set discovery.

Definition 1 (Dataset D(O, A, C, class)) Let O, A and C be respectively a set of
objects, a set of attributes, and a set of class labels. The domain of an attribute a € A
is Dom(a) where a is either nominal or numerical. The mapping class : O +— C
associates each object to a unique class label.

A subgroup can be represented either by a description (the pattern) or by its coverage,
also called its extent.

Definition 2 (Subgroup) The description of a subgroup, also called pattern, is given
by d = (f1,..., fi4]) where each f; is a restriction on the value domain of the
attribute a; € A. A restriction for a nominal attribute a; is a symbol ¢; = v with
v € Dom(a;). A restriction for a numerical! attribute @; is an interval [/, r] with
l,r € Dom(a;). The description d covers a set of objects called the extent of the
subgroup, denoted ext(d) < O. The support of a subgroup is the cardinality of its
extent: supp(d) = |ext(d)].

The subgroup search space is structured as a lattice.

Definition 3 (Subgroup search space) The set of all subgroups forms a lattice, denoted
as the poset (S, <). The top is the most general pattern, without restriction. Given any
51,52 € S, we note 51 < s> to denote that sy is strictly more specific, i.e. it contains
more stringent restrictions.

If follows that exz(s;) C ext(sp) when 51 < 5.

The ability of a subgroup to discriminate a class label is evaluated by means of
a quality measure. The weighted relative accuracy (WRAcc), intoduced by Lavrac
et al. (1999), is among the most popular measures for rule learning and subgroup
discovery. Basically, WRAcc considers the precision of the subgroup w.r.t. to a class
label relatively to the appearance probability of the label in the whole dataset. This
difference is weighted with the support of the subgroup to avoid to consider small
ones as interesting.

Definition 4 (WRAcc) Given a dataset D(O, A, C, class), the WRAcc of a subgroup
d for alabel I € Dom(C) is given by:

d
WRAce(d, 1) = % x (pﬁ, - pl>

1 We consider the finite set of all intervals from the data, without greedy discretization. As shown later,
better patterns can be found in that case, when using only MCTS on large datasets.
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Table 1 Toy dataset

ID a b c class(-)
1 150 21 11 I
2 128 29 9 153
3 136 24 10 153
4 152 23 11 I3
5 151 27 12 153
6 142 27 10 I

128.24 <a=<152.16
21<b=<29

9<c <12

136.16 <a <152.16 128.24<a<151.28 128.24 <a<152.16 128.24 <a<152.16 128.24 <a<152.16 128.24 <a<152.16
21<b=<29 21<b=<29 23<b<29 21<b=27 21<b=<29 21<b=<29

9<c <12 9<c =12 9<c <12 9<c <12 10< ¢ <12 9<c =11

136.16 <a <152.16 128.24<a<151.28 128.24 <a<152.16 128.24 <a<152.16 128.24 <a<152.16 128.24 <a<152.16
23=b=<29 23=b=<29 24=b=<29 23<b<=27

23=b=<29 23=b=<29
9<c <12 9<c <12 9<c <12 9<c =12 10< ¢ <12 9< c =11

v v v‘ V v v

Fig. 2 The upper part of the search space for Table 1

|{()E€XT((1)|L16{AS(0) 1}

[ _
supp(d) and p' =

where p

[{o€O|class(0)=l}|

- Jor

WRACcc returns values in [— 0.25, 0, 25], the higher and positive, the better the pat-
tern discriminates the class label. Many quality measures other than WRAcc have
been introduced in the literature of rule learning and subgroup discovery [Gini index,
entropy, F score, Jaccard coefficient, etc. (Abudawood and Flach 2009)]. Excep-
tional model mining (EMM) considers multiple labels (label distribution difference
in van Leeuwen and Knobbe (2012), Bayesian model difference in Duivesteijn et al.
(2010), etc.). The choice of a pattern quality measure, denoted ¢ in what follows, is
generally application dependent as explained by Fiirnkranz et al. (2012).

Example 1 Consider the dataset in Table 1 with objectsin O = {1, ..., 6} and attributes
in A = {a, b, c}. Each objectis labeled with a class label fromC = {I1, [», [3}. Consider
an arbitrary subgroup with description d = ([128 < a < 151],[23 < b < 29]). Note
that, for readability, we omit restrictions satisfied by all objects, e.g., [9 < ¢ < 12],
and thus we denote that ext({)) = O. The extent of d is composed of the objects in
ext(d) = {2,3,5, 6} and we have W RAcc(d, 1) = (3 — 1) = L. The upper part of
the search space (most general subgroups) is given in Fig. 2. The direct specializations
of a subgroup are given, for each attribute, by adding a restriction: Either by shrinking
the interval of values to the left (take the right next value in its domain) or to the right
(take the left next value). In this way, the finite set of all intervals taking borders in the
attributes domain will be explored [see Kaytoue et al. (2011)].

Pattern set discovery consists in searching for a set of patterns R € S of high quality
on the quality measure ¢ and whose patterns are not redundant. As similar patterns
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generally have similar values on ¢, we design the pattern set discovery problem as
the identification of the local optima w.r.t. ¢. As explained below, this has two main
advantages: Redundant patterns of lower quality on ¢ are pruned and the extracted
local optima are diverse and potentially interesting patterns.

Definition 5 (Local optimum as a non redundant pattern) Let sim : S x S — [0, 1]
be a similarity measure on S that, given a real value & > 0, defines neighborhoods
onRCS:Nrkx)={s € R|sim(x,s) > O}. r*isalocal optimum of R on ¢ iff
Vr € Nr(@*), o(r*) > ¢(r). We denote by filter(R) the set of local optima of R
and by redundancy(R) =1 — %7&(73)\ the measure of redundancy of R.

In this paper, the similarity measure on S will be the Jaccard measure defined by

. . ext(r) Next(r')
sim(r,r') = —————
ext(r) Uext(r')

We propose to evaluate the diversity of a pattern set R € S by the sum of the
quality of its patterns. Indeed, the objective is to obtain the largest set of high quality
patterns:

Definition 6 (Pattern set diversity) The diversity of a pattern set R is evaluated by:
diversity(R) = Zrefilter(R) o(r).

The function filter() is generally defined in a greedy or heuristic way in the
literature. van Leeuwen and Knobbe (2012) called it pattern set selection and we use
their implementation in this article. First all extracted patterns are sorted according
to the quality measure and the best one is kept. The next patterns in the order are
discarded if they are too similar with the best pattern (Jaccard similarity between
pattern supports is used). Once a non similar pattern is found, it is kept for the final
result and the process is reiterated: Following patterns will be compared to it.

Problem 1 (Pattern set discovery) Compute a set of patterns R* < S such that
Vr € R*, r is a local optimum on ¢ and

R* = argmaxpgdiversity(R).

By construction, R* maximizes diversity and it minimizes redundancy. Naturally, R*
is not unique. Existing approaches sometimes search for a pattern set of size k (Lucas
etal. 2017), with a minimum support threshold minSupp (Atzmiiller and Puppe 2006).

3 Monte Carlo tree search

MCTS is a search method used in several domains to find an optimal decision [see
the survey by Browne et al. (2012)]. It merges theoretical results from decision theory
(Russell and Norvig 2010), game theory, Monte Carlo (Abramson 1990) and bandit-
based methods (Auer et al. 2002). MCTS is a powerful search method because it
enables the use of random simulations for characterizing a trade-off between the
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Select Ex;and Roll-out Update

Fig. 3 One MCTS iteration. Taken from Browne et al. (2012)

exploration of the search tree and the exploitation of an interesting solution, based on
past observations. Considering a two-players game (e.g., Go): The goal of MCTS is
to find the best action to play given a current game state. MCTS proceeds in several
(limited) iterations that build a partial game tree (called the search tree) depending on
the results of previous iterations. The nodes represent game states. The root node is
the current game state. The children of a node are the game states accessible from this
node by playing an available action. The leaves are the terminal game states (game
win/loss/tie). Each iteration, consisting of 4 steps (see Fig. 3), leads to the generation
of a new node in the search tree (depending on the exploration/exploitation trade-
off due to the past iterations) followed by a simulation (sequence of actions up to a
terminal node). Any node s in the search tree is provided with two values: The number
N (s) of times it has been visited, and a value Q(s) that corresponds to the aggregation
of rewards of all simulations walked through s so far (e.g., the proportion of wins
obtained for all simulations walked through s). The aggregated reward of each node
is updated through the iterations such that it becomes more and more accurate. Once
the computation budget is reached, MCTS returns the best move that leads to the child
of the root node with the best aggregated reward Q(-).

In the following, we detail the 4 steps of a MCTS iteration applied to a game.
Algorithm 1 gives the pseudo code of the most popular algorithm in the MCTS family,
namely UCT (upper confidence bound for trees), as given in Kocsis and Szepesvari
(2006).

The Select policy Starting from the root node, the SELECT method recursively selects
an action (an edge) until the selected node is either a terminal game state or is not fully
expanded (i.e., some children of this node are not yet expanded in the search tree).
The selection of a child of a node s is based on the exploration/exploitation trade-off.
For that, upper confidence bounds (UCB) are used. They bound the regret of choosing
a non-optimal child. The original UCBs used in MCTS are the UCB1 from Auer et al.
(2002) and the UCT from Kocsis and Szepesvari (2006):

/ / [210 N (s)
UCT(S,S):Q(S)+2Cp W

where s” is a child of anode s and C), > 01is a constant (generally, C), = Lz). This step
selects the most urgent node to be expanded, called sy, in the following, considering
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Algorithm 1 UCT: The popular MCTS algorithm.

1: function MCTS(budget)

2:

Voedrnhw

—_
(=]

16:
17:
18:

19:
20:

22:
23:

24
25:
26:

28:
29:
30:
31:

32:

34:
35:
36:
37:
38:

39:
40:

41:

create root node sq for current state
while within computational budget budget do
Ssel < SELECT(s()
Sexp < EXPAND(sge7)
A < ROLLOUT(s¢xp)
UPDATE(Sexp, A)
end while
return the action that reaches the child s of s with the highest Q(s)

: end function

: function SELECT(s)
12:
13:
14:

while s is non-terminal do
if 5 is not fully expanded then return s
else s < BESTCHILD(s)
end if
end while
return s
end function

function EXPAND(sge;)
randomly choose sexp from non expanded children of s,
add new child sexp t0 507
return sex,

end function

function ROLLOUT(s)
A<«—0
while s is non-terminal do
choose randomly a child s” of s
s <«
end while
return the reward of the terminal state s
end function

function UPDATE(s, A)

while s is no]tvr(uill (Ql(() "
5)X S
2) < =N+
N(s) < N(s) + 1
s < parent of s
end while

end function

function BESTCHILD(s)
return arg max UCB(s,s")
s'€ children of s
end function

both the exploitation of interesting actions (given by the first term in UCT) and the
exploration of lightly explored areas of the search space (given by the second term in
UCT) based on the result of past iterations. The constant C), can be adjusted to lower
or increase the exploration weight in the exploration/exploitation trade-off . Note that
when C), = % the UCT is called UCBI1.
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The Expand policy A new child, denoted sy, of the selected node s, is added to
the tree according to the available actions. The child sy, is randomly picked among
all available children of s;.; not yet expanded in the search tree.

The RollOut policy From this expanded node s..p, a simulation is played based
on a specific policy. This simulation consists of exploring the search tree (playing a
sequence of actions) from s.,, until a terminal state is reached. It returns the reward
A of this terminal state: A = 1 if the terminal state is a win, A = 0 otherwise.

The Update policy The reward A is back-propagated to the root, updating for each
parent the number of visits N(-) (incremented by 1) and the aggregation reward Q(-)
(the new proportion of wins).

Example Figure 3 depicts a MCTS iteration. Each node has no more than 2 children. In
this scenario, the search tree is already expanded: We consider the 9th iteration since 8
nodes of the tree have been already added. The first step consists in running the SELECT
method starting from the root node. Based on a UCB, the selection policy chooses the
left child of the root. As this node is fully expanded, the algorithm randomly selects
a new node among the children of this node: Its right child. This selected node s;.; is
not fully expanded since its left hand side child is not in the search tree yet. From this
not fully expanded node s/, the EXPAND method adds the left hand side child s, of
the selected node sy, to expand the search tree. From this added node s, a random
simulation is rolled out until reaching a terminal state. The reward A of the terminal
node is back-propagated with UPDATE.

4 Pattern set discovery with MCTS

Designing a MCTS approach for a pattern mining problem is different than for a com-
binatorial game: The goal is not to decide, at each turn, what is the best action to play,
but to explore the search space: The pattern mining problem can thus be considered
as a single-turn single-player game. Most importantly, MCTS offers a natural way to
explore the search space of patterns with the benefit of the exploitation/exploration
trade-off to improve diversity while limiting redundancy. For example, an exhaustive
search will maximize diversity, but it will return a very large and redundant collection
(but an exhaustive search is usually impossible). In contrast, a beam search can extract
a limited number of patterns but it will certainly lack diversity (empirical evidences
are given later in Sect. 7).

Before going into the formalization, let us illustrate how MCTS is applied to the
pattern set discovery problem with Fig. 4. We consider here itemset patterns for the
sake of simplicity, that is, subgroups whose descriptions are sets of items. We present
an iteration of a MCTS for a transaction database with items 7 = {a, b, c¢}. The
pattern search space is given by the lattice S = (2%, ). The MCTS tree is built
in a top-down fashion on this theoretical search space: The initial pattern, or root of
the tree, is the empty set . Assume that pattern s;,; = {a} has been chosen by the
select policy. During the expand, one of its direct specializations in {{a, b}, {a, c}}
is randomly chosen and added to the tree, e.g., Sexp = {a, c}. During the roll out,
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Select Expand RollOut: Update

NO
000 006 0]0]0,
A
® & ) 1)
p(ssel, sn)
Select ssel, the most urgent node Randomly choose one of the direct ~ Create a path p(ssel, sn) of refinements, Update the parents of ssel in
according to the chosen UCB, specializations of ssel, noted sexp keep the best pattern(s) and its the tree, N(.) is incremented by 1
e.g. the UCT (here a superset of {a} of cardinality 2) quality measure A (or an aggregation) and Q(.) is updated with
[2In N (s)
N(s)

A =aggr({e(q)Vg € € C p(seer-sn)}) € [0:1] /

\UC"/( 5') = Q(s )<ZC\r

Fig. 4 A simple instanciation of MCTS for pattern mining

a simulation is run from this node: it generates a chain of specializations of sey)
called a path p(sser, Sn) (a chain is a set of comparable patterns w.r.t. <, or < in the
general case). The quality measure ¢ is computed for each pattern of the path, and
an aggregated value (max, mean, etc.) is returned and called A. Finally, all parents
of seyp are updated: Their visit count N (-) is incremented by one, while their quality
estimation Q(-) is recomputed with A (back propagation). The new values of N(-)
and Q(-) will directly impact the selection of the next iteration when computing the
chosen UCB, and thus the desired exploration/exploitation trade off. When the budget
is exceeded (or if the tree is fully expanded), all patterns are filtered with a chosen
pattern set selection strategy (filter(-)).

The expected shape of the MCTS tree after a high number of iterations is illustrated
in Fig. 1d. It suggests a high diversity of the final pattern set if given enough budget
(i.e., enough iterations). However, how to properly define each policy (select, expand,
roll out and update), is not obvious. Table 2 sums up the different policies that we use
or develop specifically for a pattern mining problem.

4.1 The SELECT method

The SELECT method has to select the most promising node s; in terms of the explo-
ration vs. exploitation trade-off. For that, the well-known bounds like UCT or UCB1
can be used. However, more sophisticated bounds have been designed for single player
games. The single-player MCTS (SP-MCTS), introduced by Schadd et al. (2008), adds
a third term to the UCB to take into account the variance o> of the rewards obtained
by the child so far. SP-MCTS of a child s” of a node s is:

/ , \/ZInN(s) \/
SP-MCTS(s,s') = Q(s) + C,| =2 4 [2(s") +
NG

N(s")

where the constant C is used to weight the exploration term (it is fixed to 0.5 in its
original definition) and the term % inflates the standard deviation for infrequently
visited children (D is also a constant). In this way, the reward of a node rarely visited is
considered as less certain: It is still required to explore it to get a more precise estimate

@ Springer



Anytime discovery of a diverse set of patterns 615

Table 2 The different policies

Select
Choose one of the following UCB:
UCB1 or UCB1-Tuned or SP-MCTS or UCT
Expand
direct-expand: Randomly choose the next direct expansion
gen-expand: Randomly choose the next direct expansion until it changes the extent
label-expand: Randomly choose the next direct expansion until it changes the true positives
Activate LO: Generate each pattern only once (lectic enumeration)
Activate PU: Patterns with the same support/true positive set point to the same node
RollOut
naive-roll-out: Generate a random path of direct specializations of random length.
direct-freq-roll-out: Generate a random path of frequent direct specializations.
large-freq-roll-out: Generate a random paths of undirect specializations (random jumps).
Memory
no-memory: No pattern found during the simulation is kept for the final result.
top-k-memory: Top-k patterns of a simulation are considered in memory.
all-memory: All patterns generated during the simulation are kept.
Update
max-update: Only the maximum ¢ found in a simulation is back propagated
mean-update: The average of all ¢ is back-propagated
top-k-mean-update: The average of the best k ¢ is back-propagated

of its variance. If the variance is still high, it means that the subspace from this node
is not homogeneous w.r.t. the quality measure and further exploration is needed.

Also, Auer et al. (2002) designed UCBI-Tuned to reduce the impact of the explo-
ration term of the original UCB1 by weighting it with either an approximation of the
variance of the rewards obtained so far or the factor 1/4. UCB1-Tuned of a child s’ of
s is:

In N (s) Lo+ [2NG)

UCBI-Tuned(s,s") = Q(s") + W min y) W

The only requirement the pattern quality measure ¢ must satisfy is, in case of UCT
only, to take values in [0, 1]: ¢ can be normalized in this case.

4.2 The EXPAND method
The EXPAND step consists in adding a pattern specialization as a new node in the

search tree. In the following, we present different refinement operators, and how to
avoid duplicate nodes in the search tree.
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4.2.1 The refinement operators

A simple way to expand the selected node s;; is to choose uniformly an available
attribute W.I.t. S5¢/, that is to specialize Sse; INtO Seyp such that Sexp < Sger: Sexp 15 a
refinement of sg.;. It follows that ext (sexp) € ext(sser), and obviously supp (Sexp) <
supp(sser), known as the monotonocity property of the support.

Definition 7 (Refinement operator) A refinement operator is a function ref : S — 28
that derives from a pattern s a set of more specific patterns ref (s) such that:

(1) Vs’ € ref(s),s' <s
(ii) ‘v’s;,s} €ref(s),i # j,s! A s},s;. £ s!

In other words, a refinement operator gives to any pattern s a set of its special-
izations, that are pairwise incomparable (an anti-chain). The refine operation can be
implemented in various ways given the kind of patterns we are dealing with. Most
importantly, it can return all the direct specializations only to ensure that the exploration
will, if given enough budget, explore the whole search space of patterns. Furthermore,
it is unnecessary to generate infrequent patterns.

Definition 8 (Direct-refinement operator) A direct refinement operator is a refinement
operator directRef : S — 25 that derives from a pattern s the set of direct more specific
patterns s’ such that:

(1) Vs’ € directRef (s), s’ < s
(i) s € Sst.s' <s” <s
(iii) For any s’ € directRef (s), s’ is frequent, that is supp(s’) > minSupp

The notion of direct refinement is well known in pattern mining. For instance, the
only way to refine a nominal (resp. Boolean) attribute is to assign it a value of its
domain (resp. the true value). Refining an itemset consists in adding a item, while
refining a numerical attribute can be done in two ways: Applying the minimal left
change (resp. right change), that is, increasing the lower bound of the interval to the
next higher value in its domain (resp. decreasing the upper bound to the next lower)
as explained by Kaytoue et al. (2011). We still use the term restriction to denote the
operations that create a direct refinement of pattern.

Definition 9 (The direct-expand strategy) We define the direct-expand strategy as
follows: From the selected node s;.;, we randomly pick a—not yet expanded—node
Sexp from direct Ref (ss0;) and add it in the search tree.

As most quality measures ¢ used in SD and EMM are solely based on the extent of
the patterns, considering only one pattern among all those having the same extent is
enough. However, with the direct-refinement operator, a large number of tree nodes
may have the same extent as their parent. This redundancy may bias the exploration
and more iterations will be required. For that, we propose to use the notion of closed
patterns and their generators.
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Definition 10 (Closed descriptions and their generators) The equivalence class of a
pattern s is given by [s] = {s’ € S | ext(s) = ext(s’)}. Each equivalence class has a
unique smallest element w.r.t. < that is called the closed pattern: s is said to be closed
iff s’ such that s’ < s and exz(s) = ext(s’). The non-closed patterns are called
generators.

Definition 11 (Generator-refinement operator) A generator refinement operator is a
refinement operator genRef : S — 25 that derives from a pattern s the set of more
specific patterns s’ such that, Vs’ € genRef (s):

(1) s’ ¢ [s] (different support)
(i) As” € S\genRef(s) s.t.s” ¢ [s],s” ¢ [s'], s’ < 5" < s (direct next equivalence
class)
(iii) s’ is frequent, that is supp(s’) > minSupp (frequent)

Definition 12 (The gen-expand strategy) To avoid the exploration of patterns with the
same extent in a branch of the tree, we define the min-gen-expand strategy as follows:
From the selected node ss,;, we randomly pick a—not yet expanded—refined pattern
from genRef (sse1), called seyp, and add it to the search tree.

Finally, when facing a SD problem whose aim is to characterize a label / € C we
can adapt the previous refinement operator based on generators on the extents of both
the subgroup and the label. As many other measures, the WRAcc seeks to optimize
the (weighted relative) precision or accuracy of the subgroup. The accuracy is the ratio
of true positives in the extent. We propose thus, for this kind of measures only, the
label-expand strategy: Basically, the pattern is refined until the set of true positives
in the extent changes. This minor improvement performs very well in practice (see
Sect. 6).

4.2.2 Avoiding duplicates in the search tree

We define several refinement operators to avoid the redundancy within a branch of the
tree, i.e., do not expand s;.; with a pattern whose extent is the same because the quality
measure ¢ will be equal. However, another redundancy issue remains at the tree scale.
Indeed, since the pattern search space is a lattice, a pattern can be generated in nodes
from different branches of the Monte Carlo tree, that is, with different sequences of
refinements, or simply permutations of refinements. As such, it will happen that a part
of the search space is sampled several times in different branches of the tree. However,
the visit count N (s) of a node s will not count visits of other nodes that denote exactly
the same pattern: The UCB is clearly biased. To tackle this aspect, we implement two
methods: (i) Using a lectic order or (ii) detecting and unifying the duplicates within the
tree. These two solutions can be used for any refinement operator. Note that enabling
both these solutions at the same tame is useless since each of them ensures to avoid
duplicates within the tree.

Avoiding duplicates in the tree using a lectic order (LO)
Pattern enumeration without duplicates is at the core of constraint-based pattern-
mining (Boulicaut and Jeudy 2010). Avoiding to generate patterns with the same extent
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ofoloJo(Ole
olojosololo
-

Fig.5 Search space as alattice (left), DFS of the search space (middle), and the principles of the normalized
exploration rate
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is usually based on a total order on the set of attribute restrictions. This poset is written
by (R, <).

Example 2 For instance, considering itemset patterns, R = Z and a lectic order,
usually the lexicographic order, is chosenon Z: a < b < ¢ <d for I = {a, b, c,d}
and bc < ad. Consider that a node s has been generated with a restriction r;: we can
expand the node only with restrictions r; such that r; < r;. This total order also holds
for numerical attributes by considering the minimal changes [see the work of Kaytoue
et al. (2011) for further details].

We can use this technique to enumerate the lattice with a depth-first search (DFS),
which ensures that each element of the search space is visited exactly once. An example
is given in Fig. 5. However, it induces a strong bias: An MCTS algorithm would
sample this tree instead of sampling the pattern search space. In other words, a small
restriction w.r.t. << has much less chances to be picked than a largest one. Going back to
the example in Fig. 5 (middle), the item a can be drawn only once through a complete
DFS; b twice; while ¢ four times (in bold). It follows that patterns on the left hand
side of the tree have less chances to be generated, e.g., prob({a, b}) = 1/6 while
prob({b, c}) = 1/3. These two itemsets should however have the same chance to be
picked as they have the same size. This variability is corrected by weighting the visit
counts in the UCT with the normalized exploration rate [see Fig. 5 (right)].

Definition 13 (Normalized exploration rate) Let S be the set of all possible patterns.

The normalized exploration rate of a pattern s is,

Viotal (s) I{s'|s" < s, Vs" € S}
Viectic(s) |{s/|(s <s'As' <s)Vs=s Vs € 8}|

Prorm(8) =

Given this normalized exploration rate, we can adapt the UCBs when enabling the
lectic order. For example, we can define the DFS-UCT of a child s’ of a pattern s
derived from the UCT as follows:

210 (N(S) - Pnorm(s))
N(') - prorm(s")

DFS-UCT(s, s") = Q(s") + 2C,,\/
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Proposition 1 (Normalized exploration rate for itemsets) For itemsets, let s; be the

child of s obtained by playing action r; and i is the rank of ri in (R, <): Pnorm(8i) =
H(ZI-Is{ 1)

Proof Let Viectic(si) be the size of the search space sampled under s; using a lectic
enumeration, and V;.4(s;) be the size of the search space without using a lectic
enumeration. Noting Va1 (si) = 2(Z1=IsiD and Viectic(8i) = 20Z1=i=D for itemsets,

— Vierat(s) __ 2UZI=IsiD
we have p,0rm (5i) = Vl:)g:-r(;i) — 2(Z-i-T)* =

Proposition 2 (Normalized exploration rate for a numerical attribute) For a single
numerical attribute a, Pnorm(-) is defined as follows :

— Let s' = (a; < a < «;) obtained after a left change: pporm(s') = 1.
— Let s’ = (a; < a < «j) obtained after a right change. Let n be the number of
values from Dom(a) in [a;, &1 Pnorm (s) = ”TH

Proof As explained in the proof of (Proposition 1), p,orm (s) = % For a numer-
ical attribute, V;prq1(s) = n(n + 1)/2, i.e. the number of all sub intervals. If s was
obtained after a left change, Vjecric(s) = n(n + 1)/2 as both left and right changes
can be applied. If s was obtained after a right change, Vjcric(s) = n, as only n right
changes can be applied. It follows that ;o (s) = ZEZE;% = 1 if s was obtained

"("J}zﬁ = % otherwise. o

from a left change and pyorm (s) =

Avoiding duplicates in the tree using permutation unification (PU)

The permutation unification is a solution that enables to keep a unique node for all
duplicates of a pattern that can be expanded within several branches of the tree. This
is inspired from Permutation AMAF of Helmbold and Parker-Wood (2009), a method
used in traditional MCTS algorithms to update all the nodes that can be concerned by
a play-out. A unified node no longer has a single parent but a list of all duplicates’
parent. This list will be used when back-propagating a reward.

This method is detailed in Algorithm 2. Consider that the node s, has been chosen
as an expansion of the selected node sg.;. The tree generated so far is explored for
finding s, elsewhere in the tree: If 5., is not found, we proceed as usual; otherwise
Sexp becomes a pointer to the duplicate node in the tree. In our MCTS implementation,
we will simply use a hash map to store each pattern and the node in which is has been
firstly encountered.

4.3 The ROLLOUT method

From the expanded node s, a simulation is run (ROLLOUT). With standard MCTS,
a simulation is a random sequence of actions that leads to a terminal node: A game
state from which a reward can be computed (win/loss). In our settings, it is not only
the leaves that can be evaluated, but any pattern s encountered during the simulation.
Thus, we propose to define the notion of path (the simulation) and reward computation
(which nodes are evaluated and how these different rewards are aggregated) separately.
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Algorithm 2 The permutation unification principle.

1 H < new Hashmap()

2 function EXPAND(sg.;)

3 randomly choose sexp from non expanded children of s,/

4 if (node <— H.get(sexp)) # null then

5: node.parents.add(sge))

6: Sexp < node

7 else

8: Sexp-parents < new List()

9: Sexp-parents.add(sge)

10: H.put(sexp, Sexp) > A pointer on the unique occurrence of sexp
11: end if

12: add new child sexp to 55 in the tree > Expand s, with sexp
13: return sexp

14: end function

Definition 14 (Path policy) Let s the node from which a simulation has to be run
(i.e., S| = Sexp). Letn > 1 € N, we define a path p(s1, s,) = {51, ..., s,} as a chain
in the lattice (S, <), i.e., an ordered list of patterns starting from s; and ending with
sp suchthatVi € {1,...,n— 1}, s;4+1 is a (not necessarily direct) refined pattern of s;.

— naive-roll-out: a path of direct refinements is randomly created with length
pathLength € NT a user-defined parameter.

— direct-freq-roll-out: The path is extended with a randomly chosen restriction until
it meets an infrequent pattern s,41 using the direct refinement operator. Pattern s,
is a leaf of the tree in our settings.

— large-freq-roll-out: overrides the direct-freq-roll-out: policy by using special-
izations that are not necessarily direct. Several actions are added instead of
one to create a new element of the path. The number of added actions is ran-
domly picked in (1, ..., jumpLength) where jumpLength is given by the user
(jumpLength = 1 gives the previous policy). This techniques allows to visit deep
parts of the search space with shorter paths.

Definition 15 (Reward aggregation policy) Let s be the node from which a simulation
has been run and p(sy, s,) the associated random path. Let £ € p(sy, s,) be the
subset of nodes to be evaluated. The aggregated reward of the simulation is given by:
A =aggr({p(s)Vs € £}) € [0; 1] where aggr is an aggregation function. We define
several reward aggregation policies:

terminal-reward: £ = {s,,} and aggr is the identity function.

— random-reward: £ = {s;} with a random 1 < i < n and aggr is the identity
function.

— max-reward: £ = p(sy, s,) and aggr is the max (-) function

— mean-reward: £ = p(sy, s,) and aggr is the mean(-) function.

— top-k-mean-reward: £ = top-k(p(si, s,)), aggr is the mean(-) function and top-

k(-) returns the k elements with the highest ¢.

A basic MCTS forgets any state encountered during a simulation. This is not optimal
for single player games as relate Bjornsson and Finnsson (2009): A pattern with a

@ Springer



Anytime discovery of a diverse set of patterns 621

high ¢ should not be forgotten as we might not expand the tree enough to reach it. We
propose to consider several memory strategies.

Definition 16 (Roll-out memory policy) A roll-out memory policy specifies which of
the nodes of the path p = (s1, s,,) shall be kept in an auxiliary data structure M.

— no-memory: Any pattern in & is forgotten.
— all-memory: All evaluated patterns in & are kept.
— top-k-memory: A list M stores the best k patterns in €& w.r.t. ¢(-).

This structure M will be used to produce the final pattern set.

4.4 The UPDATE method

The backpropagation method updates the tree according to a simulation. Let sg; be
the selected node and s, its expansion from which the simulation is run: This step
aims at updating the estimation Q(-) and the number of visits N (-) of each parent of
Sexp Tecursively. Note that 5., may have several parents when we enable permutation
unification (PU). The number of visits is always incremented by one. We consider
three ways of updating Q(-):

— mean-update: Q(-) is the average of the rewards A back-propagated through the
node so far (basic MCTS).

— max-update: Q(-) is the maximum reward A back-propagated through the node
so far. This strategy enables to identify a local optimum within a part of the search
space that contains mostly of uninteresting patterns. Thus, it gives more chance
for this area to be exploited in the next iterations.

— top-k-mean-update: Q(-) average of the k best rewards A back-propagated through
the node so far. It gives a stronger impact for the parts of the search space containing
several local optima.

mean-update is a standard in MCTS techniques. We introduce the max-update and
top-k-mean-update policies as it may often happen that high-quality patterns are rare
and scattered in the search space. The mean value of rewards from simulations would
converge towards O (there are too many low quality subgroups), whereas the maximum
value (and top-k average) of rewards enables to identify the promising parts of the
search space.

4.5 Search end and result output

There are two ways a MCTS ends: Either the computational budget is reached (number
of iterations) or the tree is fully expanded (an exhaustive search has been possible,
basically when the size of the search space is smaller than the number of iterations).
Indeed, the number of tree nodes equals the number of iterations that have been
performed. It remains now to explore this tree and the data structure M built by the
memory policy to output the list of diverse and non-redundant patterns.

Let P = T U M be a pool of patterns, where T is the set of patterns stored in the
nodes of the tree. The set P is totally sorted w.r.t. ¢ in a list A. Thus, we have to
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pick the k-best diverse and non-redundant subgroups within this large pool of nodes
A to return the result set of subgroups R < P. For that, we choose to implement
filter(-) in a greedy manner as done by van Leeuwen and Knobbe (2012) and Bosc
etal. (2016). R = filter(P) as follows: A post-processing that filters out redundant
subgroups from the diverse pool of patterns A based on the similarity measure sim
and the maximum similarity threshold ®. Recursively, we poll (and remove) the best
subgroup s* from A, and we add s* to R if it is not redundant with any subgroup in
R. It can be shown easily that redundancy(R) = 0.

Applying filter(-) at the end of the search requires however that the pool of
patterns P has a reasonable cardinality which may be problematic with MCTS in
term of memory. The allowed budget always enables such post-processing in our
experiments (up to one million iterations).

5 Related work

SD aims at extracting subgroups of individuals for which the distribution on the target
variable is statistically different from the whole (or the rest of the) population (Klosgen
1996; Wrobel 1997). Two similar notions have been formalized independently and then
unified by Novak et al. (2009): Contrast set mining and emerging patterns. Close to SD,
redescription mining aims to discover redescriptions of the same group of objects in
different views (van Leeuwen and Galbrun 2015). Exceptional model mining (EMM)
was firstintroduced by Leman et al. (2008) [see a comprehensive survey by Duivesteijn
etal. (2016)]. EMM generalizes SD dealing with more complex target concepts: There
are not necessarily one but several target variables to discriminate. EMM seeks to elicit
patterns whose extents induce a model that substantially deviates from the one induced
by the whole dataset.

First exploration methods that have been proposed for SD/EMM are exhaustive
search ensuring that the best subgroups are found, e.g. Klosgen (1996), Wrobel (1997),
Kavsek and Lavrac (2006) and Atzmiiller and Lemmerich (2009). Several pruning
strategies have been used to avoid the exploration of uninteresting parts of the search
space. These pruning strategies are usually based on the monotonic (or anti-monotonic)
property of the support or upper bounds on the quality measure (Grosskreutz et al.
2008; Kaytoue et al. 2017). To the best of our knowledge, the most efficient algorithms
are (1) SD-MAP * by Atzmiiller and Lemmerich (2009) which is based on the FP-growth
paradigm (Han et al. 2000) and (ii) an exhaustive exploration with optimistic estimates
on different quality measures (Lemmerich et al. 2016). When an exhaustive search is
not possible, heuristic search can be used. The most widely used techniques in SD
and EMM are beam search, evolutionary algorithms and sampling methods. Beam
search performs a level-wise exploration of the search space: A beam of a given size
(or dynamic size for recent work) is built from the root of the search space. This beam
only keeps the most promising subgroups to extend at each level (Lavrac et al. 2004;
Mueller et al. 2009; van Leeuwen and Knobbe 2012). The redundancy issue due to
the beam search is tackled with the pattern skyline paradigm by van Leeuwen and
Ukkonen (2013), and with a ROC-based beam search variant for SD by Meeng et al.
(2014). Another family of SD algorithms relies on evolutionary approaches. They use
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a fitness function to select which individuals to keep at the next generated population.
SDIGA (del Jesus et al. 2007) is based on a fuzzy rule induction system where arule is a
pattern in disjunctive normal form (DNF). Other approaches have been then proposed,
generally ad-hoc solutions suited for specific pattern languages and selected quality
measures (Rodriguez et al. 2012; Pachén et al. 2011; Carmona et al. 2010).

Finally, pattern sampling techniques are gaining interest. Moens and Boley (2014)
employ controlled direct pattern sampling (CDPS). It enables to create random pat-
terns with the help of a procedure based on a controlled distribution as did Boley
et al. (2011). This idea was extended by Bendimerad et al. (2016) for a particular
EMM problem to discover exceptional models induced by attributed graphs. Pattern
sampling is attractive as it supports direct interactions with the user for using his/her
preferences to drive the search. Besides, with sampling methods, a result is available
anytime. However, traditional sampling methods used in pattern mining need a given
probability distribution over the pattern space: This distribution depends on both the
data and the measures (Boley et al. 2011; Moens and Boley 2014). Each iteration
is independent and consists of drawing a pattern given this probability distribution.
Moreover, these probability distributions exhibit the problem of the long tail: There are
many more uninteresting patterns than interesting ones. Thus, the probability to draw
an uninteresting pattern is still high, and not all local optima may be drawn: There
are no guaranties on the diversity of the result set. Recently, the sampling algorithm
MISERE has been proposed by Gay and Boullé (2012) and Egho et al. (2015, 2017) .
Contrary to the sampling method of Moens and Boley, MISERE does not require any
probability distribution. It is agnostic of the quality measure but it still employs a dis-
cretization of numerical attribute in a pre-processing task. To draw a pattern, MISERE
randomly picks an object in the data, and thus it randomly generalizes it into a pattern
that is evaluated with the quality measure. Each draw is independent and thus the same
pattern can be drawn several times. Finally, MCTS samples the search space without
any assumption about the data and the measure. Contrary to sampling methods, it
stores the result of the simulations of the previous iterations and it uses this knowl-
edge for the next iterations: The probability distribution is learned incrementally. If
given enough computation budget, the exploration/exploitation trade-off guides the
exploration to all local optima (an exhaustive search). To the best of our knowledge,
MCTS has never been used in pattern mining, however, Gaudel and Sebag (2010)
designed the algorithm FUSE (Feature UCT Selection) which extends MCTS to a fea-
ture selection problem. This work aims at selecting the features from a feature space
that are the more relevant w.r.t. the classification problem. For that, Gaudel and Sebag
explore the powerset of the features (i.e., itemsets where the items are the features)
with a MCTS method to find the sets of features that minimize the generalization error.
Each node of the tree is a subset of feature, and each action consists of adding a new
feature in the subset of features. The authors focus on reducing the high branching
factor by using UCBI-Tuned and RAVE introduced by Gelly and Silver (2007). The
latter enables to select a node even if it remains children to expand. The aim of FUSE
is thus to return the best subset of features (the most visited path of the tree), or to
rank the features with the RAVE score.
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Table 3 Benchmark datasets experimented on in the SD and EMM literature

Name # Objects # Attributes Type of attributes Target attribute
Bibtex 7395 1836 Binary TAG_statphys23
BreastCancer 699 9 Numeric Benign

Cal500 502 68 Numeric Angry-Agressive
Emotions 594 72 Numeric Amazed-suprised
lonosphere 352 35 Numeric Good

Iris 150 4 Numeric Iris-setosa
Mushroom 8124 22 Nominal Poisonous
Nursery 12,961 8 Nominal class=priority
Olfaction 1689 82 Numeric Musk

TicTacToe 958 9 Nominal Positive

Yeast 2417 103 Numeric Classl

6 Empirical evaluation on how to parameterize MCTS4DM

Our MCTS implementation for pattern mining, called MCTS4DM is publicly available.”
As there are many ways to configure MCTS4DM, we propose first to study the influence
of the parameters on runtime, pattern quality and diversity. We both consider bench-
mark and artificial data. The experiments were carried out on an Intel Core i7 CPU 4
Ghz machine with 16 GB RAM running under Windows 10.

6.1 Data

Firstly, we gathered benchmark datasets used in the recent literature of SD and EMM,
that is, from van Leeuwen and Knobbe (2012), Downar and Duivesteijn (2017),
van Leeuwen and Galbrun (2015), van Leeuwen and Knobbe (2011) and Duivesteijn
and Knobbe (2011). Table 3 lists them, mainly taken from the UCI repository, and we
provide some of their properties.

Secondly, we used a real world dataset from neuroscience. It concerns olfaction (see
Table 3).This data provides a very large search space of numerical attributes [more
details on the application are presented by Bosc et al. (2016)].

Finally, to be able to specifically evaluate diversity, a ground-truth is required.
Therefore, we create an artificial data generator to produce datasets where patterns
with a controlled WRAcc are hidden. The generator takes the parameters given in
Table 4 and it works as follow. A data table with nominal attributes is generated with a
binary target. The number of objects, attributes and attributes values are controlled with
the parameters nb_obj, nb_attr and domain_size. Our goal is to hide nb_patterns
patterns in noise: We generate random descriptions of random lengths Ground =
{di | i € [1,nb_patterns]}. For each pattern, we generate pattern_sup objects

2 https://github.com/guillaume-bosc/MCTS4DM.
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Table 4 Parameters of the artificial data generator

Name Description Psmall Pmedium Plarge
nb_obj Number of objects 2000 20,000 50,000
nb_attr Number of attributes 5 5 25
domain_size Domain size per attribute 10 20 50
nb_patterns Number of hidden patterns 3 5 25
pattern_sup Support of each hidden pattern 100 100 100
out_factor Proba. of a pattern labeled — 0.1 0.1 0.1
noise_rate Proba. of a object to be noisy 0.1 0.1 0.1

positively labeled with a probability of 1 —noise_rate to be covered by the description
d;, and noise_rate for not being covered. We also add pattern_sup x out_factor
negative examples for the pattern d;: It will allow patterns with different WRAcc.
Finally, we add random objects until we reach a maximum number of transactions
nb_obj.

6.2 Experimental framework

We perform a large pool of experiments to assess this new exploration method for
pattern mining. For that, we have designed an experimental framework that enables to
test the different combinations of factors for all the strategies we introduced in previous
sections. Each experiment are run on the benchmark datasets. An experiment consists
in varying a unique strategy parameter while the others are fixed. Since MCTS4DM uses
random choices, each experiment is run five times and only the mean of the results is
discussed.

Default parameters For each benchmark dataset, we provide a set of default param-
eters (Table 5). Indeed, due to the specific characteristics of each dataset, a common
set of default parameters is unsuitable. Nevertheless, all datasets share a subset of
common parameters:

— The maximum size of the result set is set to max Output = 50.

— The maximum redundancy threshold is set to ® = 0.5.

— The maximum description length is set to max Length = 5. This is a widely used
constraint in SD that enables to restrict the length of the description, i.e., it limits
the number of effective restrictions in the description.

— The quality measure used is ¢ = W R Acc for the first label only.

The SP-MCTS is used as the default UCB.

— The permutation unification (PU) strategy is used by default.

The refinement operator for EXPAND is set to funed-min-gen-expand.

The direct-freq-roll-out strategy is used for the ROLL- OUT

— The reward aggregation policy is set to max-reward.

The memory policy is set to top-1-memory.
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Table 5 The default parameters for each dataset

Dataset minSupp # iterations Path policy

Bibtex 50 50k direct-freq-roll-out

BreastCancer 10 50k large-freq-roll-out (jumpLength = 30)
Cal500 10 100k large-freq-roll-out (jumpLength = 30)
Emotions 10 100k large-freq-roll-out (jumpLength = 30)
lonosphere 10 50k large-freq-roll-out (jumpLength = 30)
Iris 10 50k large-freq-roll-out (jumpLength = 30)
Mushroom 30 50k direct-freq-roll-out

Nursery 50 100k direct-freq-roll-out

Olfaction 10 100k large-freq-roll-out (jumpLength = 30)
TicTacToe 10 100k direct-freq-roll-out

Yeast 20 100k large-freq-roll-out (jumpLength = 30)

— The update policy is set to max-udpate.

List of experiments Evaluating MCTS4DM is performed with six different batches of
experiments:

Section 6.3 is about the choice of the UCB.

Section 6.4 deals with the several strategies for the EXPAND method.
Section 6.5 presents the leverage of all the possibilities for the ROLLOUT.
Section 6.6 shows out the impact of the MEMORY strategy.

Section 6.7 compares the behaviors of all the strategies for the UPDATE.
Section 6.8 performs the experiments by varying the computational budget.
Section 6.9 studies if MCTS4DM is able to retrieved a diverse pattern set.

For simplicity and convenience, for each experiment we display the same batch of
figures. For each dataset we show (i) the boxplots of the quality measure ¢ of the
subgroups in the result set, (ii) the histograms of the runtime and (iii) the boxplots of
the description length of the subgroups in the result set depending on the strategies
that are used. In this way, the impacts of the strategies are easy to understand.

We do not evaluate memory consumption in this section, as it increases linearly
with the number of iterations (to which should be added the number of patterns kept
by the memory policy).

6.3 The SELECT method

The choice of the UCB is decisive, because it is the base of the exploration/exploitation
trade off. Indeed, the UCB chooses which part of the search tree will be expanded and
explored. We presented four existing UCBs and an adaptation with a normalized
exploration rate to take into account an enumeration based on a lectic order (LO). As
such, we need to consider also the expand methods (standard, lectic order LO and
permutation unification PU) at the same time.
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Fig. 6 Impact of the SELECT strategy. a Runtime: BreastCancer. b Avg. quality: Emotions. ¢ Descr length:
Mushroom

Figure 6 presents the results. Comparing the runtime for all the strategies leads
to conclude that there is no difference in the computation of the several UCBs (see
Fig. 6a). Indeed, the impact of the UCBs lies in its computation, and there is no UCB
that is more time-consuming than others. The difference we can notice, is that when
LO is used, the runtime is lower. This result is expected because with LO, the search
space is less large since each subgroup is unique in the search space (this is not due to
the chosen UCB). PU has also a smaller search space, but it requires call to updates
pointers towards subgroups with the same extent, and requires thus more time.

Figure 6b depicts the boxplots of the quality measure of the result set when varying
the UCB. The results suggest that the UCBI-Tuned and DFS-UCT lead to weaker
quality result for several datasets: On the Cal550, Emotions and Yeast datasets, the
quality measures of the result set are worse than the results of other UCBs (see, e.g.,
Fig. 6b). This is due to the fact that the search space of these datasets is larger than
the other with many local optima, and the UCBI-Tuned is designed to explore less,
thus less local optima are found. Besides, the SP-MCTS seems to be more suitable for
SD problems: The quality is slightly better than other UCBs for the BreastCancer and
Emotions datasets. LO leads to a worse quality in the result set, whereas PU seems to
be more efficient.

The use of these different UCBs also do not impact the description length of the
subgroups within the result set. For some datasets, the permutation unification leads
to longer descriptions (see for instance Fig. 6¢).

6.4 The EXPAND method
Considering the EXPAND policy, we introduced three different refinement operators,

namely direct-expand, gen-expand and label-expand, and we presented two methods,
namely LO and PU, to take into account that several nodes in the search tree are exactly
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Fig.7 Impact of the EXPAND strategy. a Runtime: Nursery. b Avg. quality: Iris. ¢ Descr length: Mushroom

the same. The several strategies we experiment with are given in Fig. 7 (bottom). Let
us consider the leverage on the runtime of these strategies in Fig. 7a. Once again,
using LO implies a decrease of the runtime. Conversely, PU requires more time to
run. There is very little difference in the runtime when varing the refinement operator:
direct-expand is the faster one, and label-expand is more time consuming.

Considering the quality of the result set varying the expand strategies, we can
assume that the impact differs w.r.t. the dataset (see Fig. 7b). Surprisingly, LO improves
the quality of the result set for some datasets (e.g. the Iris dataset in Fig. 7b). This
contradicts what we observe in the Emotions dataset of the previous experiment in
Sect. 6.3. Most importantly, the results using label-expand are better than other ones
in most of the datasets. Actually, this is due that this expand favors pattern with a better
accuracy which is part of the WRAcc.

The description length of the extracted subgroups are quite constant when varying
the expand strategies (see Fig. 7c). With LO, the description lengths are slightly smaller
than with other strategies.

6.5 The ROLLOUT method

For the ROLLOUT step we derived several strategies that combine both the path policy
and the reward aggregation policy in Table 6. Clearly, the experiments show that the
runs using the direct refinement operator (naive-roll-out and direct-freq-roll-out) are
time consuming (see Fig. 8a). In the BreastCancer data, the runtime are twice longer
with the direct refinement operator than with the large-freq-roll-out path policy. In
other datasets (e.g., lonosphere or Yeast), the runtime is even more than 3 min (if the
run lasts more than 3min to perform the number of iterations, the run is ignored).
Besides, it is clear that the random-reward aggregation policy is less time consuming
than other strategies. Indeed, with random-reward, the measure of only one subgroup
within the path is computed, thus it is faster.

Figure 8b is about the quality of the result set. The naive-roll-out and direct-freq-
roll-out path policies lead to the worst results. Besides, the quality of the result set
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Table 6 The list of strategies used to experiment with the ROLLOUT method

Strategy Path policy Reward aggregation policy
[€))] naive-roll-out (pathLength = 20) terminal-reward

2) direct-freq-roll-out max-reward

3) direct-freq-roll-out mean-reward

“4) direct-freq-roll-out top-2-mean-reward
5) direct-freq-roll-out top-5-mean-reward
(6) direct-freq-roll-out top-10-mean-reward
(7) direct-freq-roll-out random-reward

(8) large-freq-roll-out (jumpLength = 10) max-reward

9) large-freq-roll-out (jumpLength = 10) mean-reward

(10) large-freq-roll-out (jumpLength = 10) top-2-mean-reward
(11) large-freq-roll-out (jumpLength = 10) top-5-mean-reward
(12) large-freg-roll-out (jumpLength = 10) top-10-mean-reward
(13) large-freg-roll-out (jumpLength = 10) random-reward

(14) large-freq-roll-out (jumpLength = 20) max-reward

(15) large-freq-roll-out (jumpLength = 20) mean-reward

(16) large-freq-roll-out (jumpLength = 20) top-2-mean-reward
(17) large-freq-roll-out (jumpLength = 20) top-5-mean-reward
(18) large-freq-roll-out (jumpLength = 20) top-10-mean-reward
(19) large-freq-roll-out (jumpLength = 20) random-reward

(20) large-freq-roll-out (jumpLength = 50) max-reward

21 large-freq-roll-out (jumpLength = 50) mean-reward

(22) large-freg-roll-out (jumpLength = 50) top-2-mean-reward
(23) large-freq-roll-out (jumpLength = 50) top-5-mean-reward
(24) large-freq-roll-out (jumpLength = 50) top-10-mean-reward
(25) large-freq-roll-out (jumpLength = 50) random-reward

(26) large-freq-roll-out (jumpLength = 100) max-reward

27 large-freq-roll-out (jumpLength = 100) mean-reward

(28) large-freq-roll-out (jumpLength = 100) top-2-mean-reward
(29) large-freq-roll-out (jumpLength = 100) top-5-mean-reward
(30) large-freg-roll-out (jumpLength = 100) top-10-mean-reward
(€20 large-freg-roll-out (jumpLength = 100) random-reward

decreases with the random-reward reward aggregation policy in other datasets (e.g.,
Emotions). Basically, these strategies evaluate only random nodes and thus they are
not able to identify the promising parts of the search space. Finally, there are not large
differences between other strategies.

As can be seen in Fig. 8c, the description length of the subgroups is not very
impacted by the strategies of the ROLL- OUT step. The results of the random-reward
reward aggregation policy are still different from other strategies: The descrip-
tion length is smaller for the Mushroom dataset. Using large-freq-roll-out with
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Fig. 8 Impact of the ROLL- OUT strategy. a Runtime: BreastCancer. b Avg. quality: Mushroom. ¢ Descr
length: Mushroom

jumpLength = 100 leads to smaller descriptions for the Mushroom dataset. Finally,
the description length is not or almost not influenced by the ROLL- OUT strategies.

6.6 The MEMORY method

We derived six strategies for the MEMORY step given in Fig. 9 (bottom). Obviously, the
all-memory policy is slower than other strategies because all the nodes within the path
of the simulation have to be stored (see Fig. 9a). Conversely, the no-memory policy is
the fastest strategy. The runtimes of the top-k-memory policies is comparable.

Figure 9b shows that the quality of the result set is impacted by the choice of the
memory policies. We can observe that the no-memory is clearly worse than other
strategies. Indeed, in the Emotion dataset, the best subgroups are located more deeper
in the search space, thus, if the solutions encountered during the simulation are not
stored it would be difficult to find them just be considering the subgroups that are
expanded in the search tree. Surprisingly, the all-memory policy does not lead to
better result. In fact the path generated during a simulation contains a lot of redundant
subgroups: Storing all these nodes is not required to improve the quality of the result
set. Only few subgroups within the path are related to different local optima.

As expected in Fig. 9c, the descriptions of the subgroups obtained with the no-
memory policy are smaller than those of other strategies. Indeed, with the no-memory
policy, the result sets contains only subgroups that are expanded in the search tree, in
other words, the subgroups obtained with the EXPAND step.

6.7 The UPDATE method

Figure 10 (bottom) presents the different strategies we use to implement the UPDATE
step. The goal of this step is to back-propagate the reward obtained by the simulation
to the parent nodes. The runtime of these strategies are comparable (see Fig. 10a).
However, we notice that the fop-k-mean-update policy is a little more time consuming.
Indeed, we have to maintain a list for each node within the built tree that stores the
top-k best rewards obtained so far.

Figure 10b shows the quality of the result set when varying the UPDATE policies.
For most of the datasets, since the proportion of local optima is very low within the
search space, the max-update is more efficient than the mean-update. Indeed, using
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the max-update enables to keep in mind that there is an interesting pattern that is
reachable from a node. However, Fig. 10b presents the opposite phenomena: The
mean-update policy leads to a better result. In fact, since there are a lot of local optima
in the lonosphere dataset, the mean-update can find the areas with lots of interesting
solutions. Moreover, using the fop-k-mean-update leads to the mean-update when k
increases.

The description of the subgroups in the result set is comparable when varying the
policies of the UPDATE method (see Fig. 10c). Indeed, the aim of the UPDATE step is
just to back-propagate the reward obtained during the simulation to the nodes of the
built tree to guide the exploration for the following iterations. This step does not have
a large influence on the length of the description of the subgroups.

6.8 The number of iterations

We study the impact of different computational budgets allocated to MCTS4DM, that is,
the maximum number of iterations the algorithm can perform. As depicted in Fig. 11a,
the runtime is linear with the number of iterations. The x-axis is not linear w.r.t. the
number of iterations, please refer to the bottom of Fig. 11 to know the different values
of the number of iterations.
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Moreover, as expected, the more iterations, the better the quality of the result set.
Figure 11b shows that a larger computational budget leads to a better quality of the
result set, but, obviously, it requires more time. Thus, with this exploration method,
the user can have some results anytime. For the BreastCancer dataset, the quality
decreases from 10 to 100 iterations: This is due to the fact that with 10 iterations there
are less subgroups extracted (12 subgroups) than with 100 iterations (40 subgroups),
and the mean quality of the result set with 100 iterations contains also subgroups with
lower quality measures.

6.9 Evaluating pattern set diversity when a ground truth is known

Artificial datasets are generated according to default parameters given in Table 4. Then,
we study separately the impact of each parameter on the ability to retrieve the hidden
patterns with our MCTS algorithm. After a few trials, we use the following default
MCTS parameters: The single player UCB (SP-MCTS) for the select policy; the label-
expand policy with PU activated; the direct-freq-roll-out policy for the simulations,
the max-update policy as aggregation function of the rewards of a simulation, the
top-10-memory policy and finally the max-update policy for the back-propagation.

The ability toretrieve hidden patterns is measured with a Jaccard coefficient between
the support of the hidden patterns and the one discovered by the algorithm:

Definition 17 (Evaluation measure) Let H be the set of hidden patterns, and F the set
of patterns found by an MCTS mining algorithm, the quality, of the found collection
is given by:

qual(H, F) = avgyper(maxyger(Jaccard(ext(h), ext(f))))

that is, the average of the quality of each hidden pattern, which is the best Jaccard
coefficient with a found pattern. We thus measure here the diversity. It is a pessimistic
measure in the sense that it takes its maximum value 1 iff all patterns have been
completely retrieved.
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Fig. 12 Ability to retrieve hidden patterns (qual(H, F) in Y-axis) when introducing noise and mining
with different minimum supports minSup

It can be noticed that we do not use the Definition 6 for diversity: As a ground truth is
available, we opt for a measure that quantifies its recovering.

Varying the noise parameter We start with the set of parameters Psq17. The results
are given in Fig. 12 with different minimal support values (used during the expand
step and the simulations). Recall that a hidden pattern is random set of symbols
attribute = value when dealing with nominal attributes, repeated in pattern_sup
object descriptions: The noise makes that each generated object description may not
support the pattern. Thus, the noise directly reduces the support of a hidden pattern:
increasing the noise requires to decrease the minimal support of the algorithm. This
is clearly observable on the different figures. When the minimum support is set to the
same value as the support of the hidden patterns (minSupp = 100), the noise has a
strong impact and it is difficult to retrieve the hidden patterns, even when the whole
tree (of frequent patterns) has been expanded. Reducing the minimal support to 1
makes the search very resistant to noise. Note that when two lines exactly overlaps, it
means that the search space of frequent patterns was fully explored: MCTS performed
an exhaustive search.

Varying the out factor parameter Each pattern is inserted in pattern_sup trans-
actions (or less when there is noise) as positive examples (class label +). We
also add pattern_sup X out_factor negative examples (class label —). When
out_factor = 1, each pattern appears as much in positive and negative examples.
This allows to hide patterns with different quality measure, and especially different
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W R Acc measures. The Fig. 13 [row (1)] shows that this parameter has no impact:
patterns of small quality are retrieved easily in a small number of iterations. The UCB
hence drives the search towards promising parts that have the best rewards.

Varying the number of hidden patterns We claim that the UCB will guide the search
towards interesting parts (exploitation) but also unvisited parts (exploration) of the
search space. It follows that all hidden patterns should be retrieved and well retrieved.
We thus vary the number of random patterns between 1 and 20 and observe that they
are all retrieved [Fig. 13 (row (2))]. When increasing the number of hidden more
patterns, retrieving all of them requires more iterations in the general case.

Varying the support size of the hidden patterns Patterns with a high support (relative to
the total number of objects) should be easier to be retrieved as a simulation has more
chance to discover them, even partially. We observe that patterns with small support
can still be retrieved but it requires more iterations to retrieve them in larger datasets
[Fig. 13 (row (3))].

Varying the number of objects The number of objects directly influences the computa-
tion of the support of each node: Each node stores a projected database that lists which
objects belong to the current pattern. The memory required for our MCTS implemen-
tation follows a linear complexity w.r.t. the number of iterations. This complexity can
be higher depending on the chosen memory policy (e.g. in these experiments, the top-
10 memory policy was chosen). The time needed to compute the support of a pattern
is higher for larger dataset, but it does not change the number of iterations required to
find a good result. This is reported in [Fig. 13 (row (4))]. Run times will be discussed
later.

Varying the number of attributes and the size of attributes domains These two param-
eters directly determine the branching factor of the exploration tree. It takes thus more
iterations to fully expand a node and to discover all local optima. Here again, all pat-
terns are well discovered but larger datasets require more iterations [Fig. 13 (row (5)
and (6))].

7 Comparisons with existing algorithms

We compare MCTS4DM to other SD approaches (exhaustive search, beam search,
genetic algorithms and sampling) in terms of computational time, diversity and redun-
dancy of the pattern set, and memory usage. In addition to the benchmark data we
used in the previous section, we generate 5 new artificial datasets for which parameters
are given in Table 7. In this empirical study, we consider a timeout of 5min that is
enough to capture the behavior of the algorithms that are not based on a computational
budget, such as SD- MAP or beam search approaches. Indeed, MCTS4DM and sampling
methods use a computational budget.

@ Springer



Anytime discovery of a diverse set of patterns

635

P’VYLedi’LL"L

1

§ 08 ° V] %)
é 0.6 - &
T o4t ¢ i
S o2f
R = - N
NI LT LLR R NI LT LPLR LR D
1
w
N 0.8
=~
% 0.6
g 04
~
2 02
S 0
S o8
A I
E 0.6 ¢
S o4r g
=02
-~ 0 EEVERVES =
= PR L PR L PRSSLDPE LS
1 %
0.8
S 0.6
N 0.4
~
g 0.2
= ) e
= NI N N NN N I RS
LCEELLLLL LSS LSELELLELSL LSS
SESSESSSSS SESSESSS S
~
-
+
N
~
N
5
L
IS
-3
A
g
B
3
5
P = = e S S 0
e O PEIRLECR RS R I S
Pmedium Plarge
1iteration —- 1K iterations —&-

10 iterations —¢

Legend: 100 iterations

10K iterations —=-
100K iterations —¥-

Fig. 13 Evaluation of the ability to retrieve hidden patterns in artificial data generated according to different
parameters (average of 5 runs for each point). qual (H, F) in Y-axis, parameters given in the first columns

as X-axis

@ Springer



636 G. Bosc et al.

Table 7 Parameters of the artificial data generator. The format of name of the data is given by their
parameters by [nb_obj]_[nb_attr]_[domain_size]

Name 5000_10_200  5000_50_50  5000_50_200  20000_10_200  20000_50_200
nb_obj 5000 5000 5000 20,000 20,000
nb_attr 10 50 50 10 50
domain_size 200 50 200 200 200
nb_patterns 5 5 5 5 5
pattern_sup 200 200 200 200 200
out_factor 0.05 0.05 0.05 0.05 0.05
noise_rate 0.05 0.05 0.05 0.05 0.05
Runtime (ms) Runtime (ms)
100000 1x108
SDMAP —— 100000 f A SDMAP —+—
[ MCTS4DM-1000 —— 4 —° ¢ NCTSIDM-1000 —*—
10000 MCTS4DM-5000 10000 L MCTS4DM-5000
MCTS4DM-10000 y MCTS4DM-10000
MCTS4DM-50000 MCTS4DM-50000
1000 2 MCTS4DM-100000 —6— 1000 / MCTS4DM-100000 —&—
L MCTS4DM-500000 —— MCTS4DM-500000 ——
% MCTS4DM-1000000 —&— 100 W MCTS4DM-1000000 —&—
100 : i 10 . , .
2822 564 282 56 28 175 35 17 3 1
minSupp minSupp
(@) (b)

Fig. 14 Runtime of SD- MAP and MCTS4DM when varying minSupp. a Mushroom. b lonosphere

7.1 SD-MAP

SD- MAP*, an improvement of SD- MAP, is considered as the most efficient exhaustive
method for subgroup discovery (Atzmiiller and Puppe 2006; Atzmiiller and Lem-
merich 2009). It employs the FP-Growth principle to enumerate the search space
(Han et al. 2004). It operates a greedy discretization as a pre-processing step to handle
numerical data. It can consider several quality measures to evaluate the interestingness
of a subgroup (WRAcc, F1 score, etc.). The source code is available at http://www.
vikamine.org.

Runtime SD- MAP* is very efficient when dealing with dataset of reasonable search
space size. We empirically study the scalability of this algorithm compared to those of
MCTS4DM for several numbers of iterations. Figure 14a displays the runtime of SD-

MAP* on the Mushroom dataset when varying the minimum support threshold. Clearly,
for high minimum support thresholds, SD- MAP* is able to provide the results quickly.
However, the runtime is exponential w.r.t. this threshold, and thus this algorithm cannot
be applied to extract small subgroups. Conversely, MCTS4DM is tractable for very low
minimum support thresholds: Many iterations can be performed. Figure 14b displays
the runtimes for the lonosphere data and once again MCTS4DM is able to perform lots
of iteration in a linear time w.r.t. the minimum support threshold whereas SD- MAP*
fails.
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Fig. 15 The redundancy in the result set for the Mushroom data varying ®. a minSupp = 564. b minSupp
=282

Redundancy and diversity in the result set SD- MAP* is an exhaustive search, thus
the diversity of the result set is either perfect if the run can finish or null: Table 8 gives
the diversity using the formula of Definition 17 on artificial data since the ground
truth is known. However when dealing with numerical attributes, SD- MAP* does not
ensure a perfect diversity anymore. Indeed, since it handles numerical attributes by
performing a discretization in a pre-processing step, there is no guarantee to extract
the best patterns. For example, in the BreastCancer dataset, the quality measure of
the best subgroup extracted by SD- MAP* is 0.18 whereas MCTS4DM has found a
subgroup whose quality measure is 0.21 with 50,000 iterations in only 0.213 ms.
Figure 15a , b show the redundancy of the result set (computed with the formula in
Definiton 5) extracted on the Mushroom dataset respectively with minSupp = 264
and minSupp = 282. Obviously, the lower the maximum similarity threshold ©®,
the more redundant the result set. Compared to SD- MAP*, MCTS4DM produces few
redundancy when performing few iterations, but few iterations are not enough to
provide good results: The more iterations, the more redundancy. Surprisingly, the
result set of MCTS4DM can be more redundant than those of SD- MAP* that represents
our baseline. Indeed, the set of redundant patterns for the main local optima is larger
than for other small local optima, i.e., there are many more patterns that are similar
with the main local optima than with small local optima. Since MCTS4DM generally
finds at first the main local optima, the redundancy measure is higher than those of
SD- MAP* because there are, in proportion, more redundant subgroups in the result
set than local optima. When minSupp decreases, SD- MAP* becomes more redundant
compared to some MCTS4DM runs.

Memory usage Figure 16a displays the memory usage of our algorithm MCTS4DM
on the Mushroom data with different numbers of iterations. As expected, the more
iterations, the higher the memory usage. It grows linearly with the number of iterations
(the creation of the storage structures avoids to see the linear growth of the memory
during the first iterations). Figure 16b displays the memory usage when varying the
minimum support threshold in the Mushroom dataset for all the considered algorithms.
Here, we only discuss the case of SD- MAP* compared to MCTS4DM. Although SD-
MAP* is an exhaustive search, its memory usage is similar to (but slightly lower than)
those of MCTS4DM with 100k iterations. It confirms that the implementation of SD-
MAP* is efficient.
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Fig. 16 The memory usage in the Mushroom dataset. a MCTS4DM. b All algorithms

7.2 Beam search

The beam search strategy is the most popular heuristic method in subgroup discovery.
Cortana is a tool that enables to run SD tasks with beam search approaches and
its source code is available at http://datamining.liacs.nl/cortana.html. Beam search,
originally introduced in Lowerre (1976), is a greedy method that partially explores
the search space with several hill climbings run in parallel. It proceeds in a level-wise
approach considering at each level the best subgroups to extend at the next level. The
number of subgroups that are kept to be extended at the next level is called the beam
width.

Runtime By definition, beam search can only find, yet very quickly, local optima
reachable from the most general pattern with a hill climbing. Figure 17 shows the
runtimes with different beam widths. Obviously, the larger the beam width, the longer
the runtimes. However, even with a beam width of 500, the runtime is lower than those
of MCcTS4DM with 100k iterations. This is due to the greedy nature of beam search that
expands subgroups only if the quality measure increases. However, the local optima
that are located deeper in the search space are often missed since the quality measure
is not monotone. For large data, such as Bibtex, the beam search is not tractable since
it is required to expand all the first level of the search tree to build up the beam. Thus,
in our settings, the timeout of 5min is reached with beam search whereas MCTS4DM
can proceed to 100k iterations in 4 min.

Redundancy and diversity in the result set Due to the greedy approach of the beam
search, the redundancy in the result set is the main problem. Figure 18a compares
the redundancy in the TicTacToe data obtained with several beam searches and with
MCTS4DM. Clearly, the beam search leads to a more redundant result set than MCTS4DM.
This remark holds for all data we experimented with. For example, in the Olfaction
dataset, there is a high difference in the redundancy in the result set obtained with a
beam search as well (Fig. 18b). Besides this high redundancy in the result set with a
beam search, the diversity is not as good as with MCTS4DM. Even if in Table 8, the beam
search extracts the local optima for some datasets, it may require large beam widths
that are time consuming. Figure 19 illustrates the diversity for the BreastCancer data
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Fig. 17 Runtime of the beam search exploration and MCTS4DM when varying minSupp in the tictactoe
dataset
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Fig. 18 The redundancy in the result set for the TicTaucToe and Olfaction data for the beam search strategy.
a TicTacToe (minSupp = 47). b Olfaction (minSupp = 84)
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Fig. 19 The diversity of the result set in BreastCancer data when ® = 0.2

with ® = 0.2. With 100k iterations, MCTS4DM leads to a much more diverse result
set than a beam search.

Memory consumption The size of the set of patterns extracted with a beam search
is generally lower than the size of the set of patterns obtained with tens of thousands
iterations with MCTS4DM. Thus, the memory usage is lower for a beam search. Fig-
ure 16 displays the memory usage of a beam search with a beam width set to 100 in
the Mushroom data. We observe that the memory usage increases similarly to (but it
is lower than) those of MCTS4DM when varying the minimum support thresholds.
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Fig. 20 Runtime of SSDP and MCTS4DM when varying minSupp in BreastCancer

7.3 Evolutionary algorithms

The evolutionary approaches aim at solving problems imitating the process of natural
evolution. Genetic algorithms are a branch of the evolutionary approaches that use
a fitness function to select which individuals to keep at the next generated popula-
tion (Holland 1975). In this empirical study, we evaluate the efficiency of MCTS4DM
from Lucas et al. (2017) against the evolutionary algorithm SSDP.

Runtime SSDP is free from the minimum support constraint: It explores the whole
search space without pruning w.r.t. the support of the patterns. Therefore, the runtimes
of SSDP are the same for all minimum support thresholds (Fig. 20). However, when
varying the population size, it comes with large changes in the runtimes. The runtimes
of SSDP are quite similar to those of MCTS4DM when varying the number of iterations.
However, in general SSDP is not scalable when considering a large population size.

Redundancy and diversity in the result set On one hand, SSDP seems to provide
less redundant pattern sets, due to the mutation and cross-over operations of this
evolutionary algorithm. Figure 22a deals with the Iris data with minSupp = 7: The
redundancy of SSDP is generally better than those of our algorithm MCTS4DM. This
is the same conclusion in Fig. 21b for Mushroom with minSupp = 56. On the other
hand, the diversity in the result set of SSDP is lower than those of MCTS4DM. In
Table 8, SSDP fails to extract all hidden patterns in our artificial data. Figure 22a, b
display the same result for benchmark datasets. Clearly, MCTS4DM is able to extract
much more interesting subgroups than SSDP. Thus, even if the result set of MCTS4DM
can be redundant, it provides a more diverse set of patterns compared to the result
set extracted by SSDP. This is due to the population size that is not enough large to
provide a high diversity (but SSDP is not tractable for large population sizes).

Memory consumption The memory usage of SSDP depends on the size of the popu-
lation. In mushroom, when considering a population of size 1000, the memory usage is
higher than those of MCTS4DM with 100k iterations for high minimum support thresh-
olds but it is lower for low minimum support thresholds (see Fig. 16). Indeed, since
SSDP does not use any minimum support threshold, its memory usage is independent
w.r.t. minSupp.
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Fig.21 The redundancy in the result set for the iris and mushroom data. a Iris (minSupp = 7). b Mushroom
(minSupp = 56)
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Fig. 22 The diversity of the result set when ® = 0.2. a Emotions (minSupp = 5). b BreastCancer
(minSupp = 34)

7.4 Sampling approach

Sampling methods are useful to provide interactive applications. Indeed, they enable a
result anytime. We experiment with the sampling algorithm MISERE (Gay and Boullé
2012; Egho et al. 2015, 2017). Its principle consists in drawing uniformly an object
from the data, and then uniformly pick one of its possible generalizations. Each sample
is independent and thus a pattern can be drawn several times. We chose MISERE as it
can consider any pattern quality measure [in contrast to other sampling approaches
such as Moens and Boley (2014) and Boley et al. (2011)], and it performs very well.

Runtime Since this strategy consists in randomly drawing patterns, the runtime is
linear with the number of draws. Varying the minimum support thresholds does not
really impact the runtime (Fig. 23). An iteration with MCTS4DM is almost only twice
much longer than a draw with MISERE. This is explained by the fact that MISERE
only draws one pattern at once without additional memory (i.e., the Monte Carlo tree).
Conversely, in one iteration, MCTS additionally performs SELECT, EXPAND, MEMORY
and UPDATE steps.

Redundancy and diversity in the result set Since MISERE proceeds in independent
draws of patterns without exploiting the result of the previous draws of patterns, it
leads to a result set that contains little redundancy. Indeed, it can draw an interesting
pattern that is close to its local optimum, but it would not try to find this optimum at the
next draws. Figure 24 illustrates this: The result set is much less redundant than those
of MCTS4DM. For example, considering a result set containing 1000 draws of patterns
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Fig. 23 Runtime of MISERE and MCTS4DM when varying minSupp on the Mushroom dataset
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Fig. 24 The redundancy and the diversity in the result set for the Cal500 and Bibtex data. a Redundancy
in Cal500. b Diversity in Bibtex

and another obtained with 1000 iterations from MCTS4DM. MCTS4DM returns pattern
set 10 times more redundant than MISERE. However, since MISERE does not exploit the
result of the previous draws, it leads to less diversity. In Table 8, MISERE may require
lots of draws to find all local optima. Figure 24b shows for Bibtex that the diversity is
better with MCTS4DM than with MISERE. Contrary to MCTS4DM, there is no guarantee
that MISERE will explore the whole search space, even given a large computational
budget. Nevertheless, in Table 8, we can notice that, in practice, MISERE can extract
all patterns hidden in artificial data, but it might require a lot of draws to find them.

Memory consumption As expected, since this sampling method performs indepen-
dent draws, the memory usage is low. In our settings, only the patterns that are drawn
are stored. Figure 16 illustrates the memory usage of MISERE when it has randomly
picked 100k patterns. It is constant w.r.t. the minimum support thresholds, and this

is the exploration method that requires the less memory for low minimum support
thresholds.

7.5 Considering several measures

MCTS4DM can consider any pattern quality measures. Up to now, we experimented
with the popular WRAcc measure only. We empirically evaluate MCTS4DM with several
quality measures that are also used in SD. We consider some of the quality measures
available in Cortana: The entropy, the F1 score, the Jaccard coefficient and the accuracy

@ Springer



644 G. Bosc et al.

Diversity Diversity
120 16
[ MCTS4DM-1000 —— 44 | MCTS4DM-1000 ——
100 |- L MCTS4DM-5000 —*— MCTS4DM-5000 —%—
MCTS4DM-10000 12 | MCTS4DM-10000
80 £ MCTS4DM-50000 10 K MCTS4DM-50000
60 L [MCTS4DM-100000 s PMCTS4DM-100000
L Misere-1000 —6— Misere-1000 —&—
40 - Misere-5000 —@— 6 Misere-5000 —@—
Misere-10000 —&— 4 Misere-10000 —A—
20 F Misere-50000 —&— Misere-50000 —4&—
Misere-100000 —v— 2 4 Misere-100000 —v—
o | . . . 0
1 5 10 50 100 500 1000 1 5 10 50 100 500 1000
top-K top-K
(a) (b)
Diversity Diversity
50 ——

| MCTS4DM-1000 —— 45
{ MCTS4DM-5000 —*— 40
| MCTS4DM-10000 35
§ MCTS4DM-50000 30
IMCTS4DM-100000 b
Misere-1000 —6—
Misere-5000 —@— 20
Misere-10000 —&— 15
Misere-50000 —A— 10

MCTS4DM-1000 —+—
MCTS4DM-5000 —>*—
MCTS4DM-10000
b MCTS4DM-50000
MCTS4DM-100000
Misere-1000 —6—
Misere-5000 —@—
Misere-10000 —&—
Misere-50000 —A—

O AN WE OO N®O
&

Misere-100000 —%— 5 Misere-100000 —v—
I I I I I 0 | I I I I
1 5 10 50 100 500 1000 1 5 10 50 100 500 1000
top-K top-K
(© (@

Fig. 25 The diversity of the result set for several quality measures in the Mushroom dataset. a Entropy.
b F1. ¢ Jaccard coefficient. d Accuracy

(or precision). The measures we use are not equivalent since they do not sort the
patterns in the same order : Each measure induces a specific profile on the pattern
space.

MCTS4DM is not measure-dependent since it does not use any prior knowledge to
explore the search space. During the first iterations, MCTS4DM randomly samples the
search space, then once it has an estimation—that is usually rather not reliable at the
beginning—of the distribution of the quality measure on the pattern space, it biases
the exploration to focus on the promising areas (exploitation) and the areas that have
been rarely visited (exploration). The strategies we developed are useful to handle the
specific profile induced by a quality measure on the pattern space, e.g., if there are lots
of local optima in the search space the exploration strategy should be different than if
there are few local optima. For instance, the mean-update strategy is the most efficient
strategy when we are facing a pattern space with lots of local optima since it enables
to exploit the areas that are deemed to be interesting in average. Thus, MCTS4DM can
be used with any quality measure. The choice of the strategies only impacts how fast
it will find the interesting patterns.

We compare our approach with the sampling method MISERE which is the most
efficient opponent based on the previous results (see Fig. 25). We experiment on the
Mushroom dataset to reach low minimum support thresholds using the four qual-
ity measures (the entropy, the F1 score, the Jaccard coefficient and the accuracy).
The results suggest that MCTS4DM is able to provide a good diversity regardless the
quality measure that is used. MCTS4DM finds a result set with a better diversity for
all quality measures. The results on the other datasets are similar but not reported
here.
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8 Discussion

Based on the empirical study reported in the two previous sections, we now provide a
summary of the main results. First, we experimented with several strategies we defined
for our algorithm MCTS4DM. Our conclusions are the following:

— SELECT: Concerning the choice of the upper confidence bound, it seems more
suitable to use the SP-MCTS for SD problems, although it has a limited impact.
Activating LO leads to worse results, but with PU we are able to get more interesting
patterns. This is a quite interesting fact as LO is a widely used technique in pattern
mining (enumerate each pattern only once with a lectic order).

— EXPAND: We advise to use the label-gen strategy that enables to reach more quickly
the best patterns, but it can require more computational time.

— ROLLOUT: For nominal attributes, the direct-freq-roll-out is an efficient strategy.
However, when facing numerical attributes, we recommend to employ the large-
freq-roll-out since it may require a lot of time to reach the maximal frequent
patterns.

— MEMORY: Using a memory strategy is essential since it enables to store the patterns
encountered during the ROLLOUT step. The fop-1-memory is enough to avoid to
miss interesting patterns that are located deeper in the search space.

— UPDATE: When there are potentially many local optima in the search space, we
recommend to set the mean-update strategy for the UPDATE step. Indeed it enables
to exploit the areas that are deemed to be interesting in average. However, when
there are few local optima among lots of uninteresting patterns, using mean-update
is not optimal since the mean of the rewards would converge to 0. In place, the
max-update should be used to ensure that an area containing a local optima is well
identified.

Our second batch of experiments compared MCTS4DM with the main existing
approaches for SD. For that, we experimented with one of the most efficient exhaustive
search in SD, namely SD- MAP*, a beam search, the recent evolutionary algorithm
SSDP and a sampling method implemented in the algorithm MISERE. The results sug-
gest that MCTS4DM leads, in general, to a more diverse result set when an exhaustive
search is not tractable. The greedy property of the beam search leads to a low diversity
in the result set, and the lack of memory in sampling methods avoid to exploit inter-
esting patterns to find the local optima (a pattern may be drawn several times). There
is no guarantee that evolutionary algorithms and sampling approaches converge to the
optimal pattern set even with an infinite computational budget.

MCTS comes with several advantages but has some limits:

+ It produces a good pattern set anytime and it converges to an exhaustive search
if given enough time and memory (a best-first search).

+ It is agnostic of the pattern language and the quality measures: It handles numer-
ical patterns without discretization in a pre-processing step and it still provides a
high diversity using several quality measures.

+ MCTS4DM is aheuristic: No hypotheses are required to run the algorithm whereas
with some sampling methods, a probability distribution (based on the quality mea-
sure and the pattern space) has to be given as a parameter.
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— MCTS4DM may require a lot of memory. This memory usage becomes more and
more important with the increase of the number of iterations.

— Despite the use of UCB, it is now well known that MCTS algorithms explore too
much the search space. As MCTS basically requires to expand all the children of
a node before exploiting one of them, this problem is even stronger when dealing
with very high branching factor (number of direct specializations of a pattern).
This problem has been in part tackled by the progressive widening approach that
enables to exploit a child of a node before all of the other children of the node
have been expanded (Gaudel and Sebag 2010; Browne et al. 2012).

9 Conclusion

Heuristic search of supervised patterns becomes mandatory with large datasets. How-
ever, classical heuristics lead to a weak diversity in pattern sets: Only few local optima
are found. We advocate for the use of MCTS for pattern mining: An exploration strat-
egy leading to “any-time” pattern mining that can be adapted with different measures
and policies. The experiments show that MCTS provides a much better diversity in
the result set than existing heuristic approaches. For instance, interesting subgroups
are found by means of a reasonable amount of iterations and the quality of the result
iteratively improves.

MCTS is a powerful exploration strategy that can be applied to several, if not
all, pattern mining problems that need to optimize a quality measure given a subset
of objects. For example, Belfodil et al. (2017) have already tuned MCTS4DM for
mining convex polygon patterns in numerical data. In general, the main difficulties are
to be able to deal with large branching factors, and jointly deal with several quality
measures. This opens new research perspectives for mining more complex patterns
such as sequences and graphs.
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