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This supplementary material is organized as follows. In section 1,

we provide visual examples of distorted stimuli from our dataset of

textured meshes, along with their distortion parameters. Section 2

describes our large-scale subjective experiment in crowdsourcing as

well as the pilot study we relied on. Section 3 provides the parame-

ters of the image quality metrics that we compared to our proposed

metric. Section 4 shows the results of our mesh characterization

measure applied on several viewpoints. Section 5 provides additional

results of Graphics-LPIPS when using different pooling strategies

and results on each individual fold. Finally, Section 6 shows the

distribution of the predicted quality scores of all the stimuli of our

dataset, and provides additional analysis on the impact of distortion

interactions and content characteristics on the perceived quality of

textured meshes, along with the complete ANOVA table.

1 DATASET GENERATION

We produced a large-scale textured meshes quality assessment

dataset composed of over 343k distorted meshes derived from 55

source models each associated with 6250 distorted versions gener-

ated from combinations of 5 real-world compression-based distor-

tions applied with different strengths.

1.1 Source preparation

Our source models were collected from sketchFab, an open source

online repository for publishing and sharing 3D content. For some

models, we had to modify the object files to restore the correct

material library files and texture images. For models that were non-

manifold and contained zero-area triangles, we fixed this manually

using meshLab (https://www.meshlab.net), thus ensuring that all

models in the dataset have the same properties.

A few models had multiple texture images. We manually baked

these images into a single texture (JPEG image of size 2048x2048)

using Blender. We made sure that we got the same visual rendering.

This operation facilitates the application of the texture distortions

(texture compression and sub-sampling) in the following (distortions

applied on 1 image instead of several). Thus all the models in the

dataset are represented similarly: by an OBJ file, a material file and

a texture image (JPEG image of size 2048x2048).

1.2 Distorsions

The distortions represent (1) the level of detail simplification applied

with 10 strengths obtained by uniformly reducing the number of

mesh faces (𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 ∈ [𝐿1, 𝐿10], where 𝐿10 is the most degraded

level), (2) the model position quantization (𝑞𝑝 ∈ [7, 11]), (3) the
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texture coordinates quantization (𝑞𝑡 ∈ [6, 10]), (4) the texture sub-

sampling (𝑇𝑆 ∈ {512× 512, 712× 712, 1024× 1024, 1440× 1440, 2048×

2048}), and (5) the texture compression (𝑇𝑄 ∈ {10, 25, 50, 75, 90}).

Figures 1 to 10 show visual examples of the generated distorted

stimuli along with their distortion parameters.
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L6 | 11 | 6 | 512×512 | 50 L6 | 10 | 8 | 1024×1024 | 25 L1 | 9 | 6 | 1024×1024 | 25 L9 | 7 | 6 | 712×712 | 10

MOS = 3.89, predicted = 4.38 MOS = 3.38, predicted = 4.26 MOS = 2.41, predicted = 2.44 MOS = 1.16, predicted = 0.73

L8 | 11 | 10 | 512×512 | 90 L6 | 9 | 7 | 2048×2048 | 90 L10 | 10 | 8 | 1024×1024 | 25 L5 | 7 | 9 | 2048×2048 | 75

MOS = 4.39, predicted = 4.46 MOS = 3.27, predicted = 3.55 MOS = 2.21, predicted = 3.11 MOS = 1.07, predicted = 0.36

L4 | 11 | 8 | 712×712 | 90 L1 | 8 | 8 | 512×512 | 75 L7 | 9 | 7 | 1024×1024 | 10 L1 | 7 | 9 | 1024×1024 | 25

MOS = 3.89, predicted = 3.55 MOS = 3.07, predicted = 1.15 MOS = 2.70, predicted = 1.79 MOS = 1.39, predicted = -0.24

L10 | 9 | 6 | 2048×2048 | 75 L10 | 8 | 6 | 712×712 | 10 L6 | 8 | 7 | 1440×1440 | 50 L4 | 7 | 6 | 2048×2048 | 75

MOS = 3.93, predicted = 3.42 MOS = 3.22, predicted = 3.03 MOS = 2.23, predicted = 2.22 MOS = 1.10, predicted = -0.44

L1 | 11 | 9 | 712×712 | 75 L1 | 10 | 8 | 2048×2048 | 10 L1 | 9 | 9 | 1440×1440 | 10 L7 | 9 | 6 | 1440×1440 | 10

MOS = 3.98, predicted = 4.44 MOS = 2.83, predicted = 3.13 MOS = 1.85, predicted = 2.21 MOS = 1.48, predicted = 2.09

L8 | 11 | 8 | 1024×1024 | 10 L1 | 11 | 7 | 712×712 | 75 L7 | 11 | 7 | 2048×2048 | 25 L3 | 11 | 6 | 2048×2048 | 25

MOS = 3.49, predicted = 3.54 MOS = 3.09, predicted = 2.98 MOS = 2.57, predicted = 2.75 MOS = 2.07, predicted = 1.55

Fig. 1. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L10 | 8 | 7 | 1440×1440 | 90 L10 | 11 | 6 | 512×512 | 90 L5 | 8 | 9 | 712×712 | 10 L3 | 9 | 6 | 2048×2048 | 75

MOS = 3.61, predicted = 3.15 MOS = 3.05, predicted = 2.69 MOS = 2.31, predicted = 2.77 MOS = 1.34, predicted = 1.33

L10 | 9 | 7 | 1440×1440 | 75 L6 | 9 | 10 | 512×512 | 25 L10 | 8 | 6 | 512×512 | 75 L10 | 8 | 6 | 2048×2048 | 50

MOS = 4.37, predicted = 3.59 MOS = 3.95, predicted = 4.10 MOS = 3.84, predicted = 2.92 MOS = 3.52, predicted = 2.97

L3 | 11 | 10 | 1024×1024 | 75 L4 | 10 | 9 | 712×712 | 75 L10 | 9 | 10 | 2048×2048 | 75 L10 | 8 | 6 | 712×712 | 25

MOS = 4.33, predicted = 3.91 MOS = 3.38, predicted = 2.75 MOS = 2.55, predicted = 1.88 MOS = 1.77, predicted = 0.70

L2 | 11 | 7 | 712×712 | 75 L6 | 11 | 7 | 2048×2048 | 50 L9 | 10 | 7 | 1440×1440 | 50 L9 | 9 | 6 | 2048×2048 | 75

MOS = 4.47, predicted = 4.11 MOS = 4.05, predicted = 4.13 MOS = 3.67, predicted = 3.73 MOS = 3.00, predicted = 3.39

L1 | 10 | 10 | 1024×1024 | 75 L9 | 11 | 7 | 1024×1024 | 75 L10 | 9 | 9 | 2048×2048 | 25 L3 | 8 | 7 | 1440×1440 | 75

MOS = 4.49, predicted = 3.81 MOS = 3.48, predicted = 3.48 MOS = 2.79, predicted = 2.82 MOS = 1.50, predicted = -0.11

L3 | 11 | 7 | 512×512 | 90 L2 | 10 | 6 | 512×512 | 10 L9 | 10 | 6 | 712×712 | 50 L10 | 9 | 8 | 1024×1024 | 50

MOS = 3.42, predicted = 4.41 MOS = 2.26, predicted = 3.54 MOS = 1.98, predicted = 3.54 MOS = 1.27, predicted = 2.45

Fig. 2. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L3 | 11 | 10 | 512×512 | 25 L3 | 9 | 8 | 512×512 | 25 L8 | 8 | 8 | 2048×2048 | 50 L10 | 7 | 7 | 2048×2048 | 75

MOS = 3.93, predicted = 3.90 MOS = 2.90, predicted = 3.15 MOS = 2.49, predicted = 3.44 MOS = 2.23, predicted = 2.18

L6 | 9 | 10 | 2048×2048 | 50 L6 | 9 | 10 | 712×712 | 75 L4 | 10 | 7 | 1440×1440 | 10 L8 | 8 | 8 | 1440×1440 | 90

MOS = 4.07, predicted = 4.20 MOS = 3.78, predicted = 4.17 MOS = 3.05, predicted = 3.48 MOS = 2.62, predicted = 3.51

L1 | 9 | 8 | 2048×2048 | 10 L2 | 9 | 8 | 512×512 | 25 L10 | 7 | 6 | 1024×1024 | 10 L1 | 7 | 6 | 2048×2048 | 25

MOS = 3.85, predicted = 2.99 MOS = 3.59, predicted = 3.30 MOS = 2.36, predicted = 2.08 MOS = 1.10, predicted = -0.57

L7 | 11 | 10 | 512×512 | 75 L1 | 9 | 7 | 1440×1440 | 10 L9 | 8 | 7 | 2048×2048 | 90 L9 | 10 | 6 | 512×512 | 10

MOS = 3.56, predicted = 3.89 MOS = 3.02, predicted = 3.66 MOS = 2.07, predicted = 2.98 MOS = 1.47, predicted = 2.39

L1 | 11 | 10 | 512×512 | 50 L10 | 10 | 10 | 2048×2048 | 50 L10 | 9 | 7 | 2048×2048 | 90 L10 | 11 | 6 | 1024×1024 | 25

MOS = 4.42, predicted = 4.42 MOS = 3.81, predicted = 4.35 MOS = 3.46, predicted = 4.04 MOS = 3.27, predicted = 3.23

L3 | 10 | 10 | 1024×1024 | 50 L1 | 10 | 7 | 2048×2048 | 90 L1 | 9 | 6 | 712×712 | 90 L3 | 7 | 6 | 1024×1024 | 10

MOS = 4.17, predicted = 4.40 MOS = 3.36, predicted = 3.65 MOS = 2.26, predicted = 2.45 MOS = 1.02, predicted = 0.63

Fig. 3. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L6 | 10 | 8 | 712×712 | 75 L5 | 9 | 10 | 512×512 | 10 L9 | 9 | 6 | 2048×2048 | 50 L7 | 8 | 6 | 2048×2048 | 10

MOS = 4.12, predicted = 4.34 MOS = 3.26, predicted = 3.51 MOS = 2.09, predicted = 2.97 MOS = 1.92, predicted = 2.69

L4 | 10 | 7 | 1440×1440 | 10 L1 | 11 | 6 | 512×512 | 75 L9 | 7 | 10 | 1024×1024 | 50 L4 | 8 | 6 | 1024×1024 | 10

MOS = 4.45, predicted = 3.90 MOS = 3.82, predicted = 3.37 MOS = 2.73, predicted = 2.72 MOS = 2.00, predicted = 2.55

L1 | 11 | 9 | 1024×1024 | 75 L6 | 11 | 7 | 512×512 | 50 L5 | 8 | 10 | 1440×1440 | 90 L6 | 9 | 6 | 2048×2048 | 25

MOS = 4.70, predicted = 4.42 MOS = 3.63, predicted = 3.43 MOS = 2.59, predicted = 3.13 MOS = 2.37, predicted = 2.27

L8 | 10 | 9 | 512×512 | 90 L5 | 9 | 8 | 1440×1440 | 50 L2 | 11 | 6 | 1440×1440 | 10 L10 | 8 | 7 | 712×712 | 50

MOS = 4.14, predicted = 4.48 MOS = 3.07, predicted = 3.78 MOS = 2.93, predicted = 3.83 MOS = 2.02, predicted = 3.16

L5 | 10 | 9 | 2048×2048 | 10 L4 | 9 | 8 | 1440×1440 | 75 L9 | 8 | 10 | 1440×1440 | 50 L3 | 11 | 6 | 2048×2048 | 10

MOS = 4.30, predicted = 4.03 MOS = 3.29, predicted = 2.86 MOS = 2.44, predicted = 2.97 MOS = 1.45, predicted = 2.07

L9 | 10 | 9 | 2048×2048 | 75 L9 | 8 | 9 | 1024×1024 | 25 L8 | 8 | 10 | 1024×1024 | 25 L9 | 7 | 10 | 2048×2048 | 10

MOS = 3.50, predicted = 4.15 MOS = 2.50, predicted = 3.39 MOS = 1.87, predicted = 3.66 MOS = 1.21, predicted = 2.55

Fig. 4. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄



0:6 • Yana Nehmé, Johanna Delanoy, Florent Dupont, Jean-Philippe Farrugia, Patrick Le Callet, and Guillaume Lavoué

Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L6 | 10 | 10 | 512×512 | 25 L10 | 7 | 6 | 712×712 | 50 L3 | 8 | 10 | 512×512 | 50 L1 | 9 | 7 | 2048×2048 | 10

MOS = 4.11, predicted = 4.23 MOS = 2.93, predicted = 2.84 MOS = 2.27, predicted = 2.65 MOS = 1.72, predicted = 2.23

L3 | 8 | 10 | 1024×1024 | 50 L9 | 8 | 7 | 2048×2048 | 90 L9 | 8 | 8 | 512×512 | 25 L8 | 10 | 6 | 512×512 | 10

MOS = 4.39, predicted = 4.54 MOS = 4.07, predicted = 4.04 MOS = 3.74, predicted = 4.00 MOS = 3.09, predicted = 4.24

L7 | 10 | 8 | 2048×2048 | 25 L7 | 9 | 6 | 1024×1024 | 90 L9 | 8 | 6 | 1440×1440 | 50 L10 | 7 | 7 | 2048×2048 | 75

MOS = 4.43, predicted = 4.00 MOS = 3.05, predicted = 3.63 MOS = 2.51, predicted = 3.32 MOS = 1.19, predicted = -1.22

L5 | 9 | 8 | 1024×1024 | 90 L8 | 10 | 10 | 712×712 | 90 L9 | 11 | 7 | 1440×1440 | 50 L9 | 8 | 6 | 2048×2048 | 75

MOS = 4.44, predicted = 4.26 MOS = 4.14, predicted = 3.88 MOS = 3.86, predicted = 3.12 MOS = 3.43, predicted = 2.69

L6 | 11 | 7 | 1440×1440 | 25 L8 | 8 | 8 | 2048×2048 | 25 L1 | 9 | 6 | 712×712 | 25 L10 | 9 | 10 | 1440×1440 | 90

MOS = 3.75, predicted = 3.56 MOS = 3.19, predicted = 3.16 MOS = 2.42, predicted = 2.73 MOS = 1.48, predicted = 1.47

L1 | 11 | 8 | 2048×2048 | 10 L1 | 10 | 7 | 1024×1024 | 25 L10 | 7 | 6 | 1440×1440 | 10 L4 | 7 | 6 | 512×512 | 75

MOS = 4.03, predicted = 3.93 MOS = 3.11, predicted = 3.27 MOS = 2.34, predicted = 2.77 MOS = 1.40, predicted = 1.41

Fig. 5. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L5 | 8 | 9 | 712×712 | 25 L5 | 9 | 8 | 512×512 | 75 L7 | 9 | 7 | 1440×1440 | 90 L5 | 8 | 6 | 2048×2048 | 50

MOS = 3.60, predicted = 3.15 MOS = 3.27, predicted = 3.18 MOS = 2.88, predicted = 2.52 MOS = 2.05, predicted = 1.25

L6 | 11 | 10 | 512×512 | 90 L9 | 11 | 7 | 1440×1440 | 90 L8 | 9 | 6 | 512×512 | 25 L8 | 11 | 6 | 2048×2048 | 75

MOS = 3.98, predicted = 3.96 MOS = 3.16, predicted = 3.12 MOS = 2.02, predicted = 2.04 MOS = 1.74, predicted = 2.25

L8 | 10 | 10 | 512×512 | 50 L7 | 11 | 9 | 1024×1024 | 10 L1 | 8 | 10 | 512×512 | 90 L9 | 8 | 6 | 1440×1440 | 50

MOS = 3.48, predicted = 3.83 MOS = 2.98, predicted = 3.29 MOS = 2.36, predicted = 3.08 MOS = 1.40, predicted = 1.01

L4 | 11 | 9 | 2048×2048 | 90 L1 | 11 | 7 | 1440×1440 | 90 L2 | 10 | 6 | 1440×1440 | 90 L5 | 8 | 6 | 512×512 | 75

MOS = 4.36, predicted = 4.31 MOS = 3.74, predicted = 3.72 MOS = 3.02, predicted = 2.53 MOS = 1.91, predicted = 2.09

L7 | 11 | 10 | 712×712 | 25 L3 | 8 | 9 | 1440×1440 | 25 L10 | 10 | 7 | 1440×1440 | 75 L10 | 10 | 6 | 1440×1440 | 90

MOS = 4.00, predicted = 3.95 MOS = 3.27, predicted = 3.23 MOS = 2.14, predicted = 2.80 MOS = 1.57, predicted = 1.85

L9 | 10 | 7 | 2048×2048 | 75 L9 | 11 | 6 | 2048×2048 | 10 L10 | 7 | 10 | 1440×1440 | 75 L10 | 7 | 10 | 1440×1440 | 10

MOS = 3.77, predicted = 3.74 MOS = 3.05, predicted = 2.66 MOS = 2.02, predicted = 2.21 MOS = 1.86, predicted = 1.85

Fig. 6. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L9 | 9 | 9 | 2048×2048 | 90 L3 | 9 | 10 | 1440×1440 | 90 L9 | 8 | 9 | 1440×1440 | 75 L9 | 11 | 7 | 1024×1024 | 90

MOS = 4.31, predicted = 3.92 MOS = 3.63, predicted = 3.30 MOS = 2.81, predicted = 3.16 MOS = 2.12, predicted = 2.54

L8 | 11 | 10 | 2048×2048 | 25 L1 | 9 | 10 | 2048×2048 | 90 L1 | 9 | 7 | 1440×1440 | 50 L10 | 10 | 6 | 1024×1024 | 50

MOS = 4.31, predicted = 4.62 MOS = 2.90, predicted = 2.52 MOS = 2.56, predicted = 1.76 MOS = 1.40, predicted = 1.90

L6 | 10 | 10 | 1440×1440 | 25 L5 | 9 | 10 | 512×512 | 50 L2 | 11 | 7 | 1024×1024 | 50 L2 | 10 | 6 | 512×512 | 10

MOS = 4.32, predicted = 4.37 MOS = 3.67, predicted = 3.57 MOS = 2.39, predicted = 2.37 MOS = 1.86, predicted = 1.27

L9 | 11 | 7 | 712×712 | 50 L3 | 8 | 10 | 712×712 | 10 L9 | 10 | 6 | 512×512 | 50 L9 | 8 | 6 | 1440×1440 | 10

MOS = 3.85, predicted = 3.42 MOS = 3.50, predicted = 3.86 MOS = 2.69, predicted = 2.48 MOS = 2.26, predicted = 2.39

L10 | 9 | 6 | 512×512 | 25 L9 | 11 | 6 | 2048×2048 | 75 L3 | 8 | 10 | 2048×2048 | 75 L9 | 7 | 6 | 1440×1440 | 10

MOS = 4.05, predicted = 2.69 MOS = 3.45, predicted = 3.67 MOS = 2.77, predicted = 3.36 MOS = 1.92, predicted = 2.62

L5 | 9 | 9 | 712×712 | 10 L5 | 10 | 8 | 712×712 | 10 L8 | 11 | 7 | 1440×1440 | 25 L1 | 8 | 7 | 712×712 | 50

MOS = 3.76, predicted = 3.37 MOS = 3.17, predicted = 3.19 MOS = 2.10, predicted = 2.72 MOS = 1.77, predicted = 1.57

Fig. 7. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L1 | 11 | 8 | 512×512 | 50 L5 | 11 | 8 | 512×512 | 10 L3 | 8 | 9 | 712×712 | 10 L5 | 7 | 6 | 2048×2048 | 10

MOS = 3.81, predicted = 3.38 MOS = 3.05, predicted = 2.66 MOS = 2.17, predicted = 1.01 MOS = 1.21, predicted = -0.75

L4 | 11 | 10 | 512×512 | 50 L8 | 11 | 10 | 1024×1024 | 75 L1 | 10 | 8 | 512×512 | 75 L9 | 11 | 6 | 1440×1440 | 90

MOS = 3.58, predicted = 3.90 MOS = 2.95, predicted = 3.87 MOS = 2.61, predicted = 3.55 MOS = 1.26, predicted = 1.31

L8 | 10 | 9 | 712×712 | 25 L9 | 9 | 9 | 512×512 | 90 L7 | 9 | 7 | 2048×2048 | 25 L8 | 8 | 10 | 512×512 | 25

MOS = 3.71, predicted = 3.86 MOS = 3.42, predicted = 3.55 MOS = 1.89, predicted = 2.77 MOS = 1.57, predicted = 2.65

L9 | 9 | 6 | 2048×2048 | 90 L1 | 9 | 6 | 1440×1440 | 25 L7 | 8 | 9 | 2048×2048 | 10 L5 | 8 | 6 | 2048×2048 | 25

MOS = 3.50, predicted = 3.78 MOS = 2.67, predicted = 2.09 MOS = 2.30, predicted = 1.76 MOS = 1.81, predicted = 1.02

L3 | 10 | 6 | 512×512 | 25 L7 | 9 | 6 | 2048×2048 | 75 L10 | 7 | 7 | 1024×1024 | 25 L3 | 8 | 10 | 1440×1440 | 75

MOS = 3.36, predicted = 3.61 MOS = 3.28, predicted = 3.32 MOS = 3.00, predicted = 2.62 MOS = 2.50, predicted = 3.43

L8 | 11 | 10 | 512×512 | 75 L1 | 10 | 8 | 2048×2048 | 10 L9 | 8 | 10 | 2048×2048 | 10 L10 | 8 | 7 | 1024×1024 | 50

MOS = 4.75, predicted = 4.24 MOS = 3.69, predicted = 3.20 MOS = 2.91, predicted = 2.85 MOS = 2.04, predicted = 2.10

Fig. 8. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L7 | 10 | 9 | 512×512 | 25 L6 | 9 | 9 | 1440×1440 | 75 L7 | 11 | 6 | 712×712 | 90 L8 | 11 | 6 | 2048×2048 | 75

MOS = 3.11, predicted = 3.85 MOS = 2.60, predicted = 4.06 MOS = 1.77, predicted = 2.09 MOS = 1.49, predicted = 2.22

L2 | 9 | 7 | 1440×1440 | 10 L5 | 9 | 7 | 712×712 | 10 L4 | 8 | 8 | 1024×1024 | 25 L7 | 9 | 6 | 512×512 | 10

MOS = 3.19, predicted = 3.37 MOS = 2.90, predicted = 3.49 MOS = 2.20, predicted = 2.52 MOS = 1.86, predicted = 2.68

L9 | 10 | 8 | 712×712 | 75 L6 | 8 | 10 | 1024×1024 | 50 L2 | 8 | 10 | 1024×1024 | 25 L1 | 10 | 6 | 2048×2048 | 75

MOS = 3.40, predicted = 3.80 MOS = 2.71, predicted = 3.08 MOS = 2.44, predicted = 2.48 MOS = 1.45, predicted = 0.57

L5 | 11 | 9 | 1024×1024 | 10 L8 | 8 | 9 | 512×512 | 50 L3 | 10 | 6 | 512×512 | 50 L9 | 7 | 6 | 512×512 | 10

MOS = 4.10, predicted = 3.77 MOS = 2.98, predicted = 3.44 MOS = 2.60, predicted = 3.35 MOS = 1.41, predicted = 1.71

L6 | 10 | 10 | 1024×1024 | 90 L8 | 10 | 8 | 512×512 | 75 L1 | 10 | 6 | 1024×1024 | 75 L1 | 8 | 6 | 1440×1440 | 25

MOS = 4.49, predicted = 4.64 MOS = 2.95, predicted = 3.51 MOS = 2.00, predicted = 2.12 MOS = 1.28, predicted = 1.29

L7 | 11 | 9 | 712×712 | 10 L9 | 10 | 7 | 1024×1024 | 75 L9 | 10 | 6 | 1024×1024 | 50 L9 | 8 | 6 | 712×712 | 25

MOS = 3.95, predicted = 3.72 MOS = 2.91, predicted = 3.35 MOS = 2.24, predicted = 2.73 MOS = 1.51, predicted = 1.86

Fig. 9. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄
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Source model Distorsion 1 Distorsion 2 Distorsion 3 Distorsion 4

L7 | 10 | 10 | 2048×2048 | 75 L3 | 9 | 10 | 512×512 | 10 L9 | 8 | 10 | 1440×1440 | 50 L10 | 11 | 8 | 512×512 | 90

MOS = 3.64, predicted = 4.15 MOS = 2.92, predicted = 3.07 MOS = 2.67, predicted = 3.38 MOS = 1.57, predicted = 2.12

Fig. 10. Examples of stimuli: left-most column is the reference object, the remaining images are randomly sampled distorsions, from the least annoying one
(according to MOS) up to the most annoying one. Acronyms refer to 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 | 𝑞𝑝 | 𝑞𝑡 | 𝑇𝑆 | 𝑇𝑄

2 SUBJECTIVE EXPERIMENT

We developed our own web platform to conduct the large-scale sub-

jective experiment in crowdsourcing, based on the DSISmethod. The

crowdsourcing service was used only to recruit participants using

Prolific1, an internet marketplace that provides tens of thousands

of trusted participants. We illustrate in the following the successive

stages/steps of our experiment. To run the experiment, only a web

browser with an MPEG-4 decoder is required (no other software

needs to be installed). The platform first checks the compatibility

of the participant’s device, as shown in Figure 11: the browser and

OS used, the screen resolution (minimum required resolution of

1920 × 1080), and the page zoom level.

Fig. 11. Step 1: Verification of the compatibility of the participant’s device.

Next, we ask for the participant’s consent to collect and use their

data (see Figure 12).

The test instructions, shown in Figure 13, are then displayed

to the participant with a progress bar, at the bottom of this page,

showing the status of the loading process of all the video pairs

that will be used in the test. This way, the videos of the source

and distorted models are played simultaneously during the test,

without any latency or unintended interruptions. When the loading

is completed a start button appears leading to the training.

For the training, we selected 5 stimuli not included in the exper-

iment and all referring to the same source model. Each stimulus

represents one level of the five-level scale of the DSIS method. After

1https://www.prolific.co/

Fig. 12. Step 2: Participant’s consent.

Fig. 13. Step 3: Experiment instructions.

displaying each pair of training videos for 8 sec, the rating inter-

face is displayed for 5 sec and the proposed score assigned to this

distortion is highlighted, as illustrated in Figure 14.

Once the training is completed the actual test began, see Figure 15.

The pairs of videos (reference and distorted stimuli) are displayed

side by side, in a random order to each participant. Participants

cannot replay the videos or provide their score until the videos have

been played completely. There is no time limit for voting and videos

of the stimuli are not shown during that time.
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Fig. 14. Step 4: Training.

Fig. 15. Step 5: The experiment.

At the end of the experiment, participants will receive unique

codes allowing them to get their remuneration, as shown in Figure

16.

Fig. 16. Step 6: End of the experiment.

2.1 Pilot subjective experiment

Before conducting our large-scale subjective quality assessment

experiment in crowdsourcing, we wanted to validate the experi-

mental setup we implemented and study the number of participants

needed in crowdsourcing to achieve the same accuracy (confidence

intervals) as in a laboratory experiment. Thus, we conducted a pilot

experiment with 30 stimuli selected from our dataset, using the

rendering and experimental environment described in Section 4 of

the paper. The stimuli were rated by 60 participants (i.e. 60 ratings

collected per stimulus).

We computed the 95% Confidence Intervals (CIs) of the Mean

Opinion Scores (MOSs) of the stimuli and assessed their evolution

according to the number of ratings collected per stimulus (which

is related to the number of participants involved in the test). Thus

for each stimulus, we considered all possible combinations (without

repetition) of 𝑁 ratings and averaged the width of the CIs over

all these ratings combinations. We compared the results to those

obtained previously in a laboratory experiment conducted in Virtual

Reality (VR) where 30 stimuli were evaluated by 30 participants.

Results are shown in Figure 17.

Fig. 17. Variation of Confidence Intervals (CIs) width according to the
number of participants in the crowdsourcing and laboratory experiments.

The results show that almost 40 participants are required in the

crowdourcing test to obtain the same accuracy (CIs) as the laboratory

test. Keeping a margin for outliers, we considered having 45 scores

per stimulus (i.e. each stimulus rated by at least 45 participants) in

our large-scale crowdsourced experiment.

3 SETTINGS FOR IMAGE QUALITY METRICS

We compared our proposed metric Graphics-LPIPS to 3 state-of-

the-art full-reference Image Quality Metrics (IQMs): SSIM, HDR-

VDP2, iCID. For SSIM, we considered a local window of size 11 × 11

pixels. For the resolution used for HDR-VDP2, we considered 33.5

pixels per degree, which corresponds to the following experimental

setting: stimuli presented on a calibrated 24ž LCD display (resolution

1920 × 1200 pixel) at a constant viewing distance of 0.5m. The

peak sensitivity parameter of HDR-VDP2 was set to 2.4 and the

selected output from this metric was the quality prediction Q. For

the iCID metric, we considered the default parameters: equal weight

of lightness, chroma, and hue. We computed the IQMs on 650 x 550

resolution snapshots taken from the main viewpoint of the stimuli.
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Fig. 18. a) We compute the geometric and semantic characterization on 4 different viewpoints regularly sampled around the bounding box of the object, the
first viewpoint (circled in green) is the main viewpoint used in the paper. b) we pool the measures taken from the different views by using average (top) or max
(bottom) pooling. The blue shade of the dot represents the id number of the object.

4 MESHES CHARACTERIZATION ON MULTIPLE VIEWS

We run our geometric and semantic characterization on 4 different

viewpoints regularly sampled around the bounding box. The first

viewpoint (VP1) corresponds to the main viewpoint of the model.

The measures, normalized between 0 and 1, for each viewpoint are

shown in Figure 18.a. In order to obtain a single score per mesh,

we pooled the measures across the viewpoints by using either an

average pooling or max-pooling (shown in Figure 18.b). Because

the main viewpoint was chosen to be the most informative one, i.e.

containing the maximum of information, using max-pooling on the

4 views leads to very similar results than using only this view. The

proposed characterization strategy can thus be applied in both cases

(automatic viewpoint sampling + max-pooling or manual viewpoint

selection) with similar results.
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5 ADDITIONAL EXPERIMENTS OF GRAPHICS-LPIPS

5.1 Evaluation on each individual fold

We evalute in Figure 19 the performance of Graphics-LPIPS and

compares it to state-of-the-art Image Quality Metrics (IQMs), includ-

ing the original LPIPS, on the test set of each of our five folds (each

fold containing around 600 stimuli obtained from 11 source models).

Similar to the aggregated results presented in the main paper, we

show the performance of the metrics in terms of correlations and

classification abilities.

We keep the first fold (#0) as our representative fold.

5.2 Patches pooling function

Our network first computes a similarity score for each patch. In

order to produce a score for an entire image, we pool the scores

for each patch of the image. We report in Table 1 the results using

different pooling strategies: 𝐿1 (simple average), 𝐿2, 𝐿3 and max-

pooling. The best results are obtained with the average pooling (L1),

that we use in our final method.

(Johanna: give the formulas of Lp pooling?)

Table 1. Performance comparison of different pooling strategies

L1 (average) L2 L3 max

𝑃𝐿𝐶𝐶 0.856 0.838 0.812 0.819

𝑆𝑅𝑂𝐶𝐶 0.845 0.829 0.800 0.805
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Fig. 19. Performances of our metric (Graphics-LPIPS) vs other ImageQuality Metrics for each fold of our dataset.
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6 APPLICATION

We used our metric Graphics-LPIPS to annotate the whole dataset

of textured meshes and study the influence of several factors such

as distortions and content characteristics on visual quality.

Indeed, we conducted a large-scale subjective experiment in

crowdsourcing to evaluate the quality of a subset of 3000 stimuli

carefully selected from over 343k. This subset of stimuli is associated

with subjective scores and MOS values. To annotate the remaining

stimuli of the dataset (over 340k), we applied Graphics-LPIPS to

predict their MOSs. We referred to the predicted MOSs as pseudo-

MOSs. Figure 20 illustrates the distribution of pseudo-MOSs for all

stimuli in our dataset.

Pseudo−MOS
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Fig. 20. Pseudo-MOSs distribution of all stimuli in the dataset.

6.1 ANOVA Table

The full ANOVA table about the influence of each distortion on

perceived quality and their interactions (up to interactions between

two factors) is reported in Table 2. All interactions are statistically

significant.

6.2 Influence of distortion interactions on perceived
quality

The impact of the combinations of the different distortions on the

perceived quality differ from the cumulative impact of each distor-

tion applied alone. The most visible and significant interactions are

presented in Section 6.2 of the paper. In this section, we present

other interesting distortion interactions impacting the perceived

quality of textured meshes.

6.2.1 Interaction of geometry and texture coordinate quantization.

It is interesting to observe that the perception of the distortion in-

duced by the UV map quantization 𝑞𝑡 is affected by the quantization

of the vertex positions 𝑞𝑝 . Figure 21a shows the interaction between

these 2 factors. We can observe that for low 𝑞𝑝 values the improve-

ment brought by increasing 𝑞𝑡 did not compensate the degradations

generated by the strong geometric quantization and thus did not

improve the MOSs much. Figure 21b shows 2 distorted versions

of the bird (Model #33), both geometrically quantized with 𝑞𝑝 = 6.

However, one stimulus has a higher 𝑞𝑡 (𝑞𝑡 = 10) than the other

(𝑞𝑡 = 6). Both stimuli scored 𝑀𝑂𝑆 = 1 (the lowest possible score);

yet, the stimulus with less quantized texture coordinates (𝑞𝑡 = 10 )

Table 2. ANOVA table showing the influence of each distortion on perceived
quality, and their interactions.

Df Sum Sq Mean Sq F value Pr(>F)

𝐿𝑜𝐷𝑠𝑖𝑚𝑝 9 1548 172.1 6577.178 < 2e-16 ***

𝑞𝑝 4 8414 2103.5 80411.662 < 2e-16 ***

𝑞𝑡 4 3242 810.5 30983.272 < 2e-16 ***

𝑇𝑆 4 54 13.5 512.307 < 2e-16 ***

𝑇𝑄 4 200 50.1 1913.374 < 2e-16 ***

𝑇𝑆 :𝑇𝑄 16 26 1.6 62.824 < 2e-16 ***

𝑇𝑆 :𝑞𝑝 16 2 0.1 5.683 1.70e-12 ***

𝑇𝑄 :𝑞𝑝 16 16 1.0 37.162 < 2e-16 ***

𝑇𝑆 :𝐿𝑜𝐷𝑠𝑖𝑚𝑝 36 4 0.1 4.225 3.25e-16 ***

𝑇𝑄 :𝐿𝑜𝐷𝑠𝑖𝑚𝑝 36 4 0.1 4.493 < 2e-16 ***

𝑞𝑝:𝐿𝑜𝐷𝑠𝑖𝑚𝑝 36 1052 29.2 1117.201 < 2e-16 ***

𝑇𝑆 :𝑞𝑡 16 31 2.0 75.003 < 2e-16 ***

𝑇𝑄 :𝑞𝑡 16 24 1.5 57.179 < 2e-16 ***

𝑞𝑝:𝑞𝑡 16 469 29.3 1120.438 < 2e-16 ***

𝐿𝑜𝐷𝑠𝑖𝑚𝑝 :𝑞𝑡 36 182 5.0 192.871 < 2e-16 ***

shows less degradation (see bird’s eye and beak). This may be due

to the five-level discrete categorical scale used in the DSIS method

that does not allow for possible variations around best and worst

qualities. We call this the łscale saturation effect".

Furthermore, looking at Figure 21a, it seems that the quantization

of the model positions (𝑞𝑝) has more impact on the visual quality

than the quantization of the UV map (𝑞𝑡 ): for low values of 𝑞𝑝 ,

we obtain a low MOS whatever the value of 𝑞𝑡 . Hence, we believe

that for a given level of 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 , 𝑇𝑆 and 𝑇𝑄 , the quality 𝑄 of

a textured mesh can be represented by a multiplicative model as

follows: 𝑄 = 𝑄𝛼
𝑞𝑝 .𝑄

𝛽
𝑞𝑡 , where potentially 𝛼 > 𝛽 .

6.2.2 Interaction of texture coordinate quantization and texture sub-

sampling. The impact of the texture sub-sampling is strongly related

to the mapping of the texture on the model surface. In fact, quantiz-

ing the texture coordinates with few bits (𝑞𝑡 ∈ {6, 7, 8}) generates a

łtiling effect", as illustrated in Figure 22. This effect is less visible on

small textures. For instance, for 𝑞𝑡 = 6, stimuli with a texture size

512 × 512 scored better than those with a texture size 2048 × 2048.

This is because sub-sampling the texture (reducing its size) reduces

the high frequency information within the texture (which is like

resampling using a low pass filter). Thus, the texture is smoothed,

which decreases the tiling effect and therefore increases the MOS. 𝑞𝑡

and𝑇𝑆 are thus linked. These 2 parameters must be set with respect

to each other: e.g., for low 𝑞𝑡 values (UV map strongly quantized),

the texture size 𝑇𝑆 must be decreased.
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Fig. 21. (a) Boxplots of MOSs and (b) visual example illustrating the in-
teraction between the geometry 𝑞𝑝 and texture coordinate 𝑞𝑡 quantiza-
tion. Acronyms refer to the following combination of distortion parameters:
𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 |𝑞𝑝 |𝑞𝑡 |𝑇𝑆 |𝑇𝑄 . The impairments are less visible on the bird with
the less quantified UV map (the one on the right 𝑞𝑡 = 10), yet both birds
obtained the lowest possible score.

6.3 Influence of content characteristics on perceived
quality

We evaluated in our study the impact of model geometry and color

complexity on the perception of distortions and thus on quality,

using the content characterization measures (𝑆𝐼𝐺𝑒𝑜 and 𝑆𝐼𝐶𝑜𝑙 ) de-

scribed in Section 3.2 of the paper. The models were grouped into

5 clusters based on their geometric and color complexity: ł𝑆𝐼𝐺𝑒𝑜1"

contains the first 11 models with the least complex geometry, while

ł𝑆𝐼𝐺𝑒𝑜5" designates the 11 models with the most geometric details.

Similarly, ł𝑆𝐼𝐶𝑜𝑙1" denotes the first 11 source models with the least

color details, while ł𝑆𝐼𝐶𝑜𝑙5" refers to the models with the richest

texture. Our clusters are well dispersed in the 𝑆𝐼𝐺𝑒𝑜/𝑆𝐼𝐶𝑜𝑙 plane

(cover a large range) as illustrated in Figure 23 which is an histogram

representation of Figure 3.a. in the paper.
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Fig. 22. (a) Boxplots of MOSs and (b) visual example illustrating the in-
teraction between the texture coordinate quantization 𝑞𝑡 and the texture
sub-sampling𝑇𝑆 . Acronyms refer to the following combination of distortion
parameters: 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 |𝑞𝑝 |𝑞𝑡 |𝑇𝑆 |𝑇𝑄 . The UV map quantization artifacts
(𝑞𝑡 = 6) are less visible on the model with a small texture image (the one on
the right) than on the one with a larger texture.
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Fig. 23. Clusters of source models grouped by their geometric 𝑆𝐼𝐺𝑒𝑜 and
color 𝑆𝐼𝐶𝑜𝑙 characteristics.

Figure 24 shows that for the same distortion parameters, the

perceived quality is not the same: we obtained different ranges of

MOS depending on the source models and their color and geometric

characteristics.
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(a) Model #48
SIGeo1, SICol5

𝐿1 |7 |10 |2048 × 2048 |90

Pseudo-MOS = 2.76

(b) Model #22
SIGeo1, SICol3

𝐿1 |7 |10 |2048 × 2048 |90

Pseudo-MOS = 1.68

(c) Model #4
SIGeo1, SICol1

𝐿1 |7 |10 |2048 × 2048 |90

Pseudo-MOS = 1

(d) Model #23
SIGeo4, SICol1

𝐿1 |7 |10 |2048 × 2048 |90

Pseudo-MOS = 3.9

Fig. 24. MOSs of different models with different geometric 𝑆𝐼𝐺𝑒𝑜 and
color 𝑆𝐼𝐶𝑜𝑙 characteristics and having undergone the same distortions
(𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 |𝑞𝑝 |𝑞𝑡 |𝑇𝑆 |𝑇𝑄 ). For the same distortion parameters, the per-
ceived quality was not the same: different ranges of MOS were obtained
depending on the models’ characteristics.

6.3.1 Influence of geometric complexity on the perception of tex-

ture coordinates quantization. To evaluate the influence of the color

characteristics on the perception of degradations generated by the

quantization of the texture coordinates (UV map) 𝑞𝑡 , we consid-

ered the subset of stimuli having a strongly quantized UV map

(𝑞𝑡 ∈ {6, 7, 8}) and the levels of all other distortions set at their best

levels (𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 ∈ {𝐿1, 𝐿2, 𝐿3} & 𝑞𝑝 ∈ {10, 11} & 𝑇𝑄 ∈ {75, 90}

& 𝑇𝑆 ∈ {1440 × 1440, 2048 × 2048})

Looking at Figure 25, we realize that the interaction between

the geometry of the model and the quantization of the UV map

is complex to evaluate, yet this interaction is significant (p-value

<< 0.0001 according to ANOVA). Indeed, for low values of 𝑞𝑡 , the

MOS decreases slightly from 𝑆𝐼𝐺𝑒𝑜1 to 𝑆𝐼𝐺𝑒𝑜3, then increases for

𝑆𝐼𝐺𝑒𝑜4 and 𝑆𝐼𝐺𝑒𝑜5. To better understand this behavior, we reported

in Figure 26 visual examples of models ∈ {𝑆𝐼𝐺𝑒𝑜4, 𝑆𝐼𝐺𝑒𝑜5}. We no-

ticed that the MOS values are not systematically high for all these

models. It depends on the models, specifically the texture seams and

the quality of the surface parameterization: i.e., the fragmentation

of the texture atlas and the quality of the atlas packing. Quanti-

zation artifacts are clearly more visible on models whose texture

atlas is highly fragmented (high number of texture seams) and/or

not efficiently packed (see Model #1 in Figure 26). In contrast, UV

quantization artifacts are less visible for models having homoge-

neous/uniform texture colors and/or less fragmented textures (low

number of texture seams), as can be seen for Model #31 in Figure

26.
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Fig. 25. Boxplots of the MOSs illustrating the influence of the geometric
complexity 𝑆𝐼𝐺𝑒𝑜 of the models on the perceived degradation of texture
coordinates quantization 𝑞𝑡 .
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Model #1

SIGeo5, 𝑆𝐼𝐶𝑜𝑙5

𝐿1|11|6|2048 × 2048|90

Pseudo-MOS = 1.6

Model #31

SIGeo5, 𝑆𝐼𝐶𝑜𝑙5

𝐿1|11|6|2048 × 2048|90

Pseudo-MOS = 3.97

Fig. 26. Visual examples illustrating the impact of texture coordinates quantization on the perceived quality of textured meshes. Models are presented with
their texture seams highlighted and their texture map. Acronyms refer to the following combination of distortion parameters: 𝐿𝑜𝐷𝑠𝑖𝑚𝑝𝐿 |𝑞𝑝 |𝑞𝑡 |𝑇𝑆 |𝑇𝑄 . The
UV map quantization artifacts (𝑞𝑡 = 6) are more visible on Model #1 which has a larger number of texture seams than Model #31.
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