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a b s t r a c t

This paper presents an algorithm for approximating arbitrary polygonal meshes with subdivision

surfaces, with the objective of preserving the relevant features of the object while searching the coarsest

possible control mesh. The main idea is to firstly extract the feature lines of the object, and secondly

construct the subdivision surface over this network. Control points are created by approximating these

lines while the connectivity is built with respect to the anisotropy of the object. Our algorithm

reinforces the similarity between the subdivision surface and the original shape by affecting an integer

sharpness degree to each control edge in order to accurately reproduce the different curvature radii of

corresponding fillets and blends.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Finding an optimal and concise representation for a 3D model
is particularly crucial in computer graphics and computer-aided
design. Indeed, obtaining a synthetic representation of a shape,
usually defined as a redundant dense polygonal mesh, is of interest
for many applications: animation, compression, recognition and
reverse engineering. Subdivision surfaces combine a lot of proper-
ties quite relevant for this issue: this model is very compact,
can represent an arbitrary topology, allows a local control and is
intrinsically multi-resolution. For these reasons, subdivision surfaces
are more and more popular in computer graphics and have been
integrated to the MPEG4 standard. In this context, approximating a
dense verbose polygonal mesh with that model becomes even more
pertinent.

Hence, we present an algorithm for subdivision surface fitting
from arbitrary polygonal meshes, and particularly scanned
models; this algorithm follows our previous approach [1] which
was specifically designed for piecewise smooth hand-made CAD
models. Our main objective is not to focus on approximation error
but rather to preserve the relevant features of the object while
searching the coarsest possible control mesh. Our algorithm
involves three main parts: a first step extracts a smooth feature
line network from the object, using segmentation and smoothing
of the patch boundaries. A second process approximates these
feature lines with subdivision curves and creates a coarse base
mesh by linking corresponding control points. Finally, a relaxing
process affects a sharpness degree to each control edge and
ll rights reserved.
optimizes the control point positions in order to fit the target
object. The whole algorithm is summarized in Fig. 1. Our main
contributions are the following:
�
 The global subdivision surface fitting framework based on
feature line extraction and approximation, allowing to obtain a
near optimal vertex number.

�
 The feature line extraction, which extracts smooth feature lines

from arbitrary objects in a very simple way.

�
 The base mesh construction which is (1) independent of the

connectivity of the target surface, (2) correct even for complex
topology and (3) adapted to the anisotropy of the target object.

�
 The sharpness relaxation, which assign to each control edge a

semi-sharpness degree according to the curvature of the target
surface.
2. Previous work

2.1. Subdivision surface fitting

Many authors have investigated subdivision surface fitting,
since this issue is quite interesting for compression, reverse
engineering, etc. Most of the existing algorithms rely on the same
scheme: first a coarse base control mesh is constructed by one
of the following approaches: simplifying the original dense mesh
[2–5], face clustering [6], triangulating an octree partition [7],
shrinking an initial mesh towards the surface [8] or global
parameterization and quad dominant remeshing as considered
by Lévy et al. [9].

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.01.004
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Fig. 1. Overview of our subdivision surface fitting algorithm. Top row: The input

RockerArm mesh (15K vertices) and result of the segmentation (35 regions). Middle

row: Feature line network (left) and control polygon network created from

subdivision curve approximation (right). Bottom row: Subdivision control mesh

(160 vertices) with different sharpness degrees and associated limit surface.
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Once this coarse base mesh has been constructed, a second
step optimizes its geometry in order to fit exactly the target object
using a global [10,2,4,3] or local [8,11] distance minimization.
Since the base mesh does not own a perfect connectivity, several
authors have also investigated connectivity optimization proce-
dures. Hoppe et al. [10] optimize the connectivity by trying to
collapse, split or swap each edge of the control polyhedron. Their
algorithm produces high quality models but need of course an
extensive computing time. Recently, Marinov and Kobbelt [4]
subdivide faces associated with high errors and flip some edges
to regularize vertex valences, similar to [7]. Lavoué et al. [1] also
consider such local enrichment process piloted by the error
distribution. Finally, Lévy et al. [9] optimize the connectivity of the
control mesh by analysing curvature directions of the target
surface.
2.2. Feature preserving remeshing

Very recent remeshing techniques [12–17] are mostly quad-
dominant and outline the importance for the connectivity of
a mesh to follow the salient features of the object and to align
with the geometry (sharp edges, lines of curvature etc.). The main
reason is given by D’Azevedo [18]: the convergence is improved by
such alignment, for both remeshing or fitting. This is linked to the
concept of optimality: for a given number of elements, a mesh
best approximates a smooth surface if its connectivity follows the
lines of curvature. This feature alignment issue is as well relevant
for subdivision surface fitting: the control mesh must respect and
follow the features of the object and especially if the goal is
to provide fewer vertices as possible. Our algorithm considers
segmentation to find feature lines, and then curvature tensor
analysis to complete the connectivity. Our algorithm bears
similarities with the recent remeshing technique from Marinov
and Kobbelt [16] which samples equidistantly feature lines to
remesh the target object. However, our objective is not to produce
a nice control mesh but rather an efficient subdivision surface that
correctly approximates a given shape while containing as less
control points as possible.

2.3. Lofting

This feature line preservation shares some similarities with
another class of algorithms, often referred to as lofting and
of particular interest for designers. These algorithms start from
a network of curves and generate a smooth surface which
interpolates this network. Subdivision surfaces represent a
powerful framework for this task [19–22]. Our algorithm bears
many similarities with a lofting scheme since it considers above
all feature lines to construct the subdivision surface.

A lofting algorithm has to resolve three principal difficulties:
firstly the curve network (usually a set of B-Splines) has to be
compatible with a smooth or piecewise smooth surface, in other
words, is it possible to construct a smooth surface over this
network? Schaefer et al. [22] define the curves with control polygons
associated with a specific subdivision scheme to insure this property.
Since our feature lines directly come from a real object to
approximate, we do not encounter compatibility problems.

The second major issue is the skinning step, which consists is
constructing the connectivity of the base control mesh. Basically
many authors consider that the curve network is defined by a
control polygon network, thus for each cycle of polygons bounding
each patch, they construct the corresponding polyhedron by
linking boundary control points and creating some others in order
to have mostly quadrilateral and regular faces. Our scheme
considers only boundary control points and links them according
to curvature directions in order to obtain the most compact and
optimal base mesh.

Most of the authors consider Catmull–Clark subdivision
surfaces in their lofting algorithm; since this kind of surface is
not theoretically capable of interpolating a net of curves, they
modify the original scheme by considering special rules near the
curve network [19,22], or by introducing portions of surface
that specifically define the curve like the polygonal complexes

from Nasri [20,21]. In our case we consider a simple existing
subdivision scheme [23], since we do not search a perfect
interpolation but rather a quite good approximation.

2.4. Subdivision semi-sharpness

Many subdivision rules exist, some of them are adapted for
triangular control meshes, like Loop [24], and others are adapted
for quadrilateral ones, like Catmull–Clark [25]. We have chosen
the hybrid quad/triangle scheme developed by Stam and Loop
[23], since we want to adapt the control mesh connectivity to the
shape of the input object and thus we may obtain faces from
different degrees. This scheme reproduces Catmull–Clark on quad
regions and Loop on triangle regions. The control mesh is firstly
linearly subdivided and then each point is replaced by a linear
combination of itself and its direct neighbours following a
smoothing mask (see Fig. 2, left).



ARTICLE IN PRESS

Fig. 2. Smoothing masks for Loop [24] subdivision rules. (a) Standard vertex. (b)

Sharp (or boundary) vertex. a and b represent, respectively, the weights associated

with a vertex and its neighbourhood in the smoothing operation.

Fig. 3. Example of semi-sharp edges. The control mesh is the cube drawn in

wireframe. Smooth edges are black and colour edges are semi-sharp. From left to

right: Sharpness degree: 0 (black), 1 (blue), 2 (green) and infinite (red).
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Special rules have been introduced by Hoppe et al. [10] for
handling boundary edges, in such a way that the boundary curve
of the limit surface does not depend on any interior control
vertices. These rules can also be used to introduce sharp creases
(see Fig. 3, right). Fig. 2 (right) illustrates the smoothing
coefficients for vertices shared by two sharp edges.

These infinite sharp edges (see Fig. 3, right), introduced by
Hoppe et al. [10] are quite convenient to represent piecewise
smooth surfaces. However, real-world surfaces are never infinitely
sharp, thus DeRose et al. [26] have introduced semi-sharp edges
whose sharpness is an integer sh which can vary from zero
(meaning smooth) to infinite. This semi-sharp subdivision is then
processed by using sharp rules during the first sh subdivision
steps, followed by the use of smooth rules for subsequent
subdivision steps.

With this semi-sharpness concept, the same control edge can
represent blends or fillets associated with different curvature radii
(see Fig. 3). Our algorithm assigns to each edge of the control
mesh the appropriate sharpness degree; to our knowledge no
other existing algorithm carries out such a process.
3. Overview

Given an input polygonal mesh, we firstly process a decom-
position into several regions Ri, using a modified version of the
segmentation algorithm (VSA) from Cohen-Steiner et al. [27] (see
Fig. 1, top right). We then extract the network of corresponding
boundaries and apply a smoothing mask to obtain a smooth
feature line network (see Section 4, see Fig. 1, middle left).
The feature lines are then approximated with subdivision
curves, near optimal in terms of control points number, using the
algorithm from Lavoué et al. [28]. We thus obtain a control
polygon network (see Fig. 1, middle right). Each region Ri is then
treated separately: from the control polygon surrounding the
region, we create edges and facets by linking control points
with respect to its lines of curvature. We obtain a set of control
meshes Mi which are then assembled together; boundary edges
between them are marked as sharp in order to fit correctly the
input object after subdivisions. We obtain the sharp control mesh

(see Section 5).
At this point, we have created a piecewise smooth subdivision

surface with sharp edges at the emplacement of extracted feature
lines (boundaries between regions Ri). Since this sharpness does
not necessarily correspond to the object aspect, a process relaxes
the sharpness by associating to each control edge an integer
sharpness degree instead of a Boolean value (sharp or not). For this
task we analyse the curvature of the input surface around feature
lines. Finally, since changing the sharpness of the control mesh
induces a shrinking of the limit surface, we perform a geometric
optimization by iteratively relocating control points in order
to minimize a global quadratic distance to the input surface
(see Section 6, see Fig. 1, bottom left).

This algorithm improves over previous work [1] with the
following improvements:
�
 Previous algorithm was limited to carefully designed CAD
mechanical objects with optimized triangulation, whereas our
new algorithm can approximate arbitrary models and particu-
larly scanned objects.

�
 The feature line extraction of our previous algorithm was only

suited to CAD models: it was based on a specific CAD
segmentation step [29]. Our new algorithm produces smooth
feature lines for arbitrary models.

�
 The creation of the base control mesh, in particular the edge

score (see Section 5.2), was improved regarding to robustness
and quality of the connectivity.

�
 Previous algorithm was creating sharp edges along feature

lines. While this is well suited to some specific objects, it is not
for all. Our new algorithm introduces sharpness relaxation
which assigns to each control edge the appropriate integer
sharpness degree.

�
 A geometric optimization was processed for every region

separately and thus with few degrees of freedom. We introduce
a global optimization process which allows minimizing a
global asymmetric error between the target object and the
approximating subdivision surface.
4. Feature line extraction

Feature lines of a surface carry the visually most salient
characteristics. They are usually described as local extrema of
principal curvatures along corresponding principal directions.
Several algorithms exist to extract smooth feature lines from an
input mesh [30,31], they are mostly based on computation of high
order derivatives of principal curvatures, then thresholding and
smoothing processes.

Existing algorithms are quite complex and provide a set of
smooth lines which are not especially connected and thus do not
always form a partition of the mesh; however, our algorithm
needs a partition into regions to construct the topology and
connectivity of the base control mesh. Hence, we define our



ARTICLE IN PRESS
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feature lines as the boundaries of a set of regions Ri issued from an
appropriate segmentation of the mesh.

4.1. Segmentation

The goal is to obtain a partition of the mesh, such as the
corresponding boundaries represent a coherent set of feature lines
which aligns to geometric salient parts and does not contain too
many unnecessary lines. Hence, the segmentation has to create a
partition such as each region Ri bears a geometrical meaning.

The VSA algorithm from Cohen-Steiner et al. [27] complies well
with our requirements: it is fully automatic and decomposes
the mesh into a set of regions, as flat as possible, aligning with
the geometric structure of the input mesh and capturing its
anisotropy. The VSA is a global optimization method, starting from
initial seeds and updating the shape of the regions at each
iteration. Of course, according to the initial seed positions the
algorithm can fall to a local minimum. Hence we adopt an
incremental technique, quite similar to the farthest-point initiali-

zation proposed by the authors: we add one region at a time,
perform a partitioning (with a fixed number of iterations), and
then add a new region at the maximum error position. Fig. 4 (left)
illustrates the segmentation of the RockerArm model into 45
regions.

Regarding to our feature line extraction objective, the standard
VSA algorithm is not completely satisfactory, since it produces
only approximately flat regions. For instance the cylindrical part
at the centre of the object in Fig. 4 (left) is cut into several regions
whereas we would rather require one single region, according to
our feature line definition (local extrema of principal curvatures
along corresponding principal directions). Moreover, each region
is further approximated with a subdivision surface constructed by
linking its boundary control points; this kind of subdivision
Fig. 5. A part of the segmented Blade mesh (15K vertices, 45 regions) (left), jag

Fig. 4. Segmentation of the RockerArm model. Results of the VSA (45 regions) (left).

Results after merging (35 regions) (right).
surface is able to represent not only flat regions but also
anisotropic parts (i.e. surfaces with clearly notable curvature
direction, like elliptic or parabolic parts for instance).

These reasons have led us to process a region merging after the
VSA, according to anisotropy similarity: we merge two regions Ri

and Rj if they share the same curvature value and the same
minimum curvature direction. We simply process an anisotropy
similarity score (ASC) between two regions Ri and Rj:

ASCðRi;RjÞ ¼ kd
i
min � dj

mink � jc
i
max � cj

maxj (1)

di
min and ci

max are, respectively, the minimum curvature direction
and maximum curvature value of the ith region. These values are
calculated by averaging vertex values over the region. For each
vertex, the curvature tensor has been calculated using the normal
cycle algorithm [32] and the principal curvature values and
directions have been extracted; they correspond, respectively, to
the eigenvalues and eigenvectors of the curvature tensor.

We then construct a region adjacency graph, and merge
iteratively pairs of regions associated with smallest scores. The
merging operation stops when a fixed number of regions (chosen
by the user) is obtained or when a minimum score threshold is
reached; in practice such threshold is hard to find a priori but can
be learned from training data for instance. Fig. 4 (right) illustrates
the partition after 10 merging operations processed on the
segmented model on the left. Regions associated with a similar
anisotropy have been correctly merged.

4.2. Feature line smoothing

Our feature line network is represented by the network of
boundaries between regions of the partition. This network is
composed with sets of connected pieces of boundary (polygonal
curves) separated by anchor vertices (vertices adjacent to at least
three regions). These paths between regions are quite jagged since
the connectivity of a scanned model, for instance, does not exactly
follow the natural features of the object, on the contrary to hand-
designed CAD parts. Our further process needs smooth feature
lines, particularly for the curve approximation step. Thus we
process a Laplace smoothing of the polygonal curves representing
each piece of boundary (anchor vertices do not move). The main
disadvantage of Laplace curve smoothing is the shrinkage effect
that deviates the boundary polyline from the surface; fortunately
it is not a problem if the curves do not lie precisely on the
mesh since our goal is not to produce a perfect fitting but rather
to have a correct approximation associated with a very coarse
control mesh. Moreover, the further global optimization process
ged feature line network (middle), smoothed feature line network (right).
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(see Section 6.2) will reduce this shrinkage resilient error. Fig. 5
shows the segmented Blade object (left), the jagged boundary
network (centre) and the feature line network after smoothing
(right).
Fig. 7. Local control mesh construction. Top row: A region from the RockerArm

object and its directions of minimum curvature. Bottom left: The closed cycle of

control polygons corresponding to its boundaries and the created edges (dotted

segments). Bottom right: The corresponding local control mesh.
5. Sharp control mesh construction

Our goal is to create the coarsest possible base control mesh,
while respecting the shape and the main features of the input
object. We consider that a correct approximating subdivision
surface should respect/approximate the main feature lines of the
object, and thus has to contain at least the number of control
vertices necessary to approximate these feature lines. Hence our
process is the following: we first approximate the feature line
network with subdivision curves and then edges and facets of the
base control mesh are created by linking only their feature control

points. With this process we create a near optimal control mesh
since only necessary vertices are created, moreover, we link them
with respect to the lines of curvature of the object.

5.1. Feature line approximation

To create the set of feature control points, we approximate the
network of feature lines with subdivision curves. Each smooth
line between two anchor points is approximated separately (see
Fig. 6), then we obtain a control polygon network.

We use the approximation algorithm from Lavoué et al. [28]:
given a smooth polyline and a maximum error value, this
algorithm creates an approximating subdivision curve with a
minimal number of control points.

5.2. Local control mesh construction

At this point, we process each region separately: for each
segmented region (see Fig. 7, top left), the closed cycle B of control
polygons corresponding to its boundary is extracted from the
network (see plain lines in Fig. 7, bottom left). Our task is to form
a local control mesh P whose boundary is exactly B and without
any additional control points (see Fig. 7, bottom right), thus we
construct P by creating control edges (and thus facets) linking
vertices of B (see dotted lines in Fig. 7, bottom left).

Each region has been extracted due to planarity or anisotropy
similarity criteria, thus there exist basically two classes of regions:
Fig. 6. Construction of the control polygon network. From left to right: results of the segm

subdivision curve approximation (five control points), the complete control polygon ne
planar or parabolic (i.e. anisotropic). For the planar case our
objective is to create facets with correct proportions; thus we
chose control edges associated with the smallest lengths similarly
to the lofting algorithms from Nasri [20,21]. For the parabolic case
we create edges with respect to the anisotropy and therefore
edges coherent with the minimum curvature directions of the
region (see Fig. 7, top right). In order to take into account these
two cases, a score S is processed for each potential control edge E.

Edge score definition: The mechanism is illustrated by Fig. 8: for
each potential edge E, we consider its vertices Pi, Pj and the
projections P̃i, P̃j of their respective limit positions on the patch
boundary. Then the pseudo geodesic path between these limit
entation, the jagged boundary between two anchor points, result after smoothing,

twork.



ARTICLE IN PRESS
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positions is calculated by applying the Dijkstra algorithm on the
vertices of the target region (see Fig. 8, right); this greedy
algorithm [33] computes the shortest path between two points of
a graph. Finally, the curvature tensors of the n vertices Vi of this
path are extracted, and particularly the minimum curvature
directions. The score SðEÞ is then defined as follows:

SðEÞ ¼

Pn
i¼1ymini

n
�
Xn�1

i¼1

kViþ1 � Vik (2)

with ymini the angle between the minimum curvature direction
of the vertex Vi and the segment P̃iP̃j. The first term favours edges
coherent with minimum curvature lines and the second term
prevents incoherent edges while favouring short ones.

Connectivity construction: Once scores S have been associated
to every potential edges between all the pairs of boundary control
points from B, the algorithm constructs the potential edge
Fig. 8. Mechanism for edge score definition.

Fig. 9. Sharp control mesh examples. Top row: The RockerArm model (15K vertices),

surface. Bottom row: The Blade model (15K vertices), the associated control mesh (187
associated with the smallest score (dotted segment associated
with number 1 in Fig. 7), and the contour is cut along this
edge, creating two sub-contours. This algorithm is repeated
recursively on sub-contours until it remains only plane contours
(the corresponding control points all lie in the same plane). The
planarity is determined by a threshold on the dot products of the
contour segments with its average normal. Then for each plane
contour, we check its convexity, if it is convex, we create a facet,
and if not, we decompose it into convex parts, using the algorithm
from Hertel and Mehlhorn [34]. Our algorithm is also applicable to
regions with holes and thus associated with several cycles of
control polygons. The solution for such cases was proposed and
detailed in our previous algorithm [1]: a single oriented contour
including every boundary control polygons is constructed, linking
them by creating edges and doubling some control points.
5.3. Local control mesh assembly

Once local control meshes corresponding to every regions
have been constructed, they are glued together to form a global
control mesh. Boundary edges are tagged as sharp, to insure that
boundary constrains are respected between patches. Moreover,
this insures that boundary edges match the feature lines after
subdivision.

The obtained subdivision surface is piecewise smooth and
gives a quite good approximation of the object (see Fig. 9),
without any global optimization process. At this point the main
drawback is that we introduce sharp edges in the resulting
subdivision surface (at the boundaries between patches) which
can produce unpleasant discontinuities for smooth objects.
However, such piecewise smooth reconstruction of scanned
mechanical parts can be required for CAD applications.
the associated control mesh (160 vertices) with sharp edges in red and the limit

vertices) and the limit surface.
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We have to notice that this framework focuses on obtaining the
coarsest possible control mesh and thus our objective is not to
obtain nice shaped quadrangles or regular connectivity (in terms
of vertex valence). Hence the created control mesh can possibly
have high degree facets or high valence vertices. However, in our
experiments, this has not perturbed the results nor induced
visible artefact.
Fig. 11. Evolution of the root mean square error EL2, along with the number of

optimization iterations, for the RockerArm approximating surface.
6. Semi-sharp control mesh construction

The first part of our algorithm (see previous section) produces
a piecewise smooth approximating subdivision surface, associated
with a quite coarse control polyhedron. We now have to optimize
this surface: firstly the sharpness of control edges is relaxed in
order to reproduce the curved aspect of the target object and then
a global geometry optimization displaces the control points to
minimize an asymmetric quadratic error.

6.1. Sharpness relaxation

Since most of the natural 3D objects, especially scanned
datasets, are rather smooth, the sharp creases introduced by the
first step of our process have to be relaxed. In order to reproduce
more precisely the shape aspect of the target mesh while keeping
the same control point number, we associate to each sharp
edge, an integer sharpness degree from 0 (smooth) to 3 (sharp)
according to the rules introduced by DeRose et al. [26] (see
Section 2.4). We have considered an integer sharpness degree
instead of a real value by reason of simplicity, indeed this
mechanism has thus easily been integrated to the further
geometric optimization (see next section). Moreover, the max-
imum sharpness degree has been limited to 3 in order to speed-up
the process, knowing that this value is sufficient to represent a
visually sharp feature.

For each infinite sharp edge, introduced by the previous
process, we determine the appropriate degree so as to reproduce
the curvature radius of the corresponding fillet or blend on
the target mesh. Fig. 10 illustrates this process: In order to
Fig. 10. Mechanism for sharpn
automatically determine the sharpness degree ShðEiÞ of the
control edge Ei, we associate this edge with different values from
0 to 3. We then compare the curvature radii of the different
resulting surfaces (the three pictures at bottom right) with the
target object (the picture at bottom left). Finally, we choose the
degree that produces the most similar curvature radius (ShðEiÞ ¼ 2
for the example).

Practically, starting from the control polyhedron P1 containing
infinite sharp edges, we create four copies P0, P1, P2 and P3 where
sharp edges are all associated with a degree, respectively, equal to
0,1, 2 and 3. These control meshes are then subdivided (three
iterations) to produce dense meshes Ps

0, Ps
1, Ps

2 and Ps
3. For each

sharp control edge Ei, we choose the appropriate degree by the
following process:
�

ess
For each mesh Ps
j , we extract the vertices issued from

subdivisions of Ei and we compute the mean CjðEiÞ of their
maximum curvature values.

�
 Ei is associated with a boundary between two regions issued

from the segmentation process (see Section 4.1); thus we
extract from the original mesh the vertices from this boundary
degree determination.
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and compute the mean COrigðEiÞ of their maximum curvature
values.

�
 We choose the sharpness degree j such as CjðEiÞ is the most

similar to COrigðEiÞ.

ShðEiÞ ¼ argminjðjCjðEiÞ � COrigðEiÞjÞ (3)
. 12. Left column: The Hand model. Middle column: Control mesh before

metry optimization (top) and the limit surface (bottom). Right column: The

put control mesh after geometry optimization (three iterations) and the limit

face.

Fig. 14. The RockerArm model, output control mesh, limi

Fig. 13. Segmentation, output control mesh
6.2. Geometry optimization

Relaxing the sharpness of the control edges induces a shrinking
of the limit surface, and thus the control points have to be moved
in order to match correctly the target object. For this task, a global
geometry optimization is conducted, which relocates iteratively
the control points by minimizing a sum of quadratic distances to
the target surface.
(1)
t sur

and
Several sample points Sk are chosen on the subdivision
surface, they correspond to vertices of the subdivided
polyhedron at a finer level l0. The associated footpoints
(projections of the sample points on the target surface)
are extracted. Sample points Sk can be computed as linear
combinations of the initial control points P0

i (see the
subdivision rules presented in Section 2.4 and Fig. 2); they
correspond to control points Pl0

i at the finer level l0.

Sk ¼ CkðP
0
1; P

0
2; . . . ; P

0
nÞ (4)
(2)
 The functions Ck are determined using iterative multiplica-
tions of the subdivision matrices associated with our
subdivision rules including semi-sharpness processing (see
Section 2.4 and Fig. 2 for the sharp subdivision rules).
(3)
 For all Sk, we express the squared distance Fk
d to the target

surface using the quadratic distance approximants defined by
Pottmann and Leopoldseder [35]. The minimization of their
sum F gives the new positions of the control points P0

i .

F ¼
X

k

Fk
dðSkÞ ¼

X

k

Fk
dðCkðP

0
1; P

0
2; . . . ; P

0
nÞÞ (5)

The minimization of this quadratic function leads to the
solution of a linear squared system.
The point to surface quadratic distance approximants from
Pottmann and Leopoldseder [35] (recently used for subdivision
surface fitting by Marinov and Kobbelt [4] and Cheng et al. [7])
face and its distance map to the original shape.

limit surface for the Blade model.
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leads to a much faster convergence than traditional point to point
distance (used by Ma et al. [3], for instance).

Steps (1)–(3) are repeated for three iterations since it has
proven to be sufficient to obtain good visual results and a good
trade-off between processing time and quality. Fig. 11 illustrates,
for the RockerArm model, the evolution of the root mean square
error EL2 of the approximating surface, along with the number
of iterations; the convergence is very fast and the precision gain is
marginal after three iterations. Depending on the case, the
convergence may be not completely reached, but our objective
is not to focus on a very punctilious approximation. Concerning
the choice of the number of sample points Sk, we have chosen
l0 ¼ 2 refinements for all examples in this article. As for each
refinement, the number of vertices increases by a factor of at least
four, the number of equations is about sixteen times the number
of unknowns. That ensures a stable solution when solving Eq. (5)
in the least squares sense. Fig. 12 illustrates a result of the
optimization algorithm (three iterations).
7. Experiments and results

We have tested our algorithm on several models from different
natures: scanned mechanical models (see Figs. 13 and 14),
scanned organic data (see Fig. 12) and hand-designed model with
sharp edges (see Fig. 15). Table 1 presents some statistics about
our algorithm.

Properties of the approximating subdivision surfaces: The algo-
rithm provides extremely coarse subdivision control meshes
(less than 200 vertices for the presented examples) even for
complex shapes. Moreover, corresponding limit surfaces present a
very satisfying visual similarity with original objects. Thank to
the semi-sharpness optimization, limit surfaces well reproduce
the curved aspect of the original shapes. This is particularly visible
on the scanned mechanical pieces which present rolling ball
blends with a large variety of curvature radii.

The approximation errors: Mean (EL1) and root mean squared
(EL2) approximation errors are quite small, while maximal errors
(EL1) are larger. This is due to our approximation mechanism:
since we want to obtain very coarse control meshes, it sometimes
lacks degrees of freedom to well approximate some parts of the
object, particularly tiny details. The distance map from the limit
Table 1
Statistics of our subdivision surface fitting algorithm for various 3D models.

NbReg F=V Orig F=V Ctrl EL1

Blade 45 30K/15K 260/187 1:25

RockerArm 45 30.2K/15.1K 253/160 1:19

Hand 20 5K/2.5K 200/119 2:13

Cup 25 11.3K/5.7K 215/123 1:93

Number of regions from the segmentation, face/vertex number from original surface and

Processing times (min:s) of sharp control mesh construction, sharpness relaxation and

Fig. 15. The Cup model, output control mesh and limit surface.
surface to the original shape presented in Fig. 14 well illustrates
this repartition of the error in some localized areas (red parts).
A solution to this drawback could be to conduct a local
enrichment of the mesh in such high error parts, or to consider
a finer segmentation. However, our objective is not to focus on
approximation error but rather to preserve the main features of
the object.

Processing time: Processing times are illustrated in the last
three columns of Table 1. The whole first part of the algorithm
(feature line extraction and sharp control mesh construction,
see Sections 4 and 5) takes about 30 s for a mesh with 30K faces
(on a 2 GHz XEON bi-processor). The sharpness relaxation is also
quite fast (less than 10 s for the examples); however, the geometry
optimization (see Section 6.2) can take several minutes, particu-
larly because of the multiplications of the large subdivision
matrices. We could consider a local process to optimize the
positions of vertices after the sharpness relaxation, in particular
some rules could be found that calculate the shrinking due to the
sharpness change.

Applications: Applications of our fitting process are numerous:
even if the approximation is not highly precise, such coarse
control meshes may represent a good start point for reverse
engineering of scanned mechanical parts. In particular such
control polyhedron may facilitate B-Spline surface retrieval;
indeed several methods build a network of B-Spline patches
starting from a subdivision control polyhedron [36,37]. The semi-
sharp subdivision representation is particularly used for character
animation, in the context of 3D movies [26]. Our algorithm can
retrieve the semi-sharp control mesh from a scanned humanoid
or other organic model. Applying animation parameters to this
coarse control mesh is far easier than animating the original dense
mesh. Finally, the approximating subdivision surface can be
considered for compression, indeed the control mesh is extremely
compact in terms of amount of data and leads to a quite satisfying
approximation after subdivisions. For instance the encoding of the
RockerArm object with the compression algorithm from Touma
and Gotsman [38] (12 bits precision) gives a 35 kbytes binary
stream; the encoding of the associated control mesh (see Fig. 14)
with 12 bits quantization associated with prediction for geometry,
the Facefixer algorithm [39] for connectivity and 2 bits per edge
for the sharpness degrees gives about 900 bytes. This kind of lossy
high rate compression is particularly adapted for transmission on
low bandwidth channel, moreover, the properties of subdivision
surface allow to display the object to the desired resolution
according to the terminal capacity for instance.

Comparison with other algorithms: We have compared our
results with two algorithms: (1) simplification then geometric
optimization, a basic scheme followed by many authors [2–4] and
(2) the approach from Kanai [5]. Table 2 and Fig. 16 illustrate the
results. For both algorithms (1) and (2), we have created
subdivision surfaces associated with 200 control points against
only 160 for our method; thus the three models are associated
with approximatively the same data size (our model contains less
vertices but the supplementary sharpness information to encode).
EL2 EL1 Ctrl (4–5) Relax (6.1) Optim (6.2)

2:45 25:4 00:32 00:09 04:36

1:60 8:0 00:25 00:08 02:59

3:71 23:3 00:07 00:06 00:45

2:64 26:1 00:19 00:06 02:05

control mesh. Approximation error (�10�3), objects are normalized in a unit cube.

geometry optimization.
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In terms of geometric approximation errors, our method
provides better results than both others, for EL1, EL2 and EL1. For
instance, the root mean square error (EL2) is 1:60� 10�3 for our
algorithm against 2:20� 10�3 for the simplification-based ap-
proach and 5:63� 10�3 for the Kanai algorithm [5]. The Hausdorff
Fig. 16. Comparison of the approximation results o

Fig. 17. Comparison of the control meshes corresponding to the ap

Table 2
Face/vertex numbers from control mesh (F=V Ctrl) and approximation error

(�10�3
Þ for different algorithms, for the RockerArm model.

F=V Ctrl EL1 EL2 EL1

Simplif-optim 400/200 1:39 2:20 14:7

Kanai [5] 400/200 4:07 5:63 31:1

Our method 253/160 1:19 1:60 8:0
distance (EL1) is also much better with our approximation
(8:0� 10�3 against respectively 14:7� 10�3 and 31:1� 10�3).

Regarding the visual quality of the approximating shape (see
Fig. 16), the subdivision surface associated with our semi-sharp
control mesh appears once again much better than others. In
particular, the centre cylindrical part is very similar to the original
one in comparison with both other algorithms; the extremities
of the model are also very nicely approximated and present no
visible artifact, contrarily to both other methods. Some tiny details
are nevertheless missing at the bottom of the model presented in
the second row, by reason of the high coarseness of the control
mesh.

Fig. 17 illustrates the control meshes corresponding to the
approximation; compared with the other methods, the control
edges produced by our algorithm well follow the main lines of the
f the RockerArm object for different algorithms.

proximation of the RockerArm object for different algorithms.
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G. Lavoué, F. Dupont / Computers & Graphics 33 (2009) 151–161 161
shape. Moreover, for both other algorithms, the control meshes
present thin and elongated triangles, and also some degenerated
cases like faces crossing themselves, or flipping. These phenom-
ena are mainly caused by the geometric optimization steps which
can produce unstable results. In our case, the base mesh (before
optimization) is constrained by the feature lines of the object and
is very close to the final result, hence the geometry optimization
does not introduce such artifacts.
8. Conclusion

We have presented an original subdivision surface fitting
algorithm based on feature line approximation, anisotropy
analysis for connectivity construction and edge sharpness relaxa-
tion. These mechanisms yield to a subdivision surface associated
with a very coarse control polyhedron and respecting the visual
aspect and the relevant features of the object. This approximating
surface is quite pertinent regarding to many applications: reverse
engineering, animation or compression.

In the case of noised 3D objects we obtain of course a
smoothed approximation, indeed our objective is not to represent
accurately each detail because the size of the control mesh will
blow up. However, it could be interesting to associate this smooth
approximation to a multi-resolution bump map or vector field. We
also plan to drastically reduce the computing time by suppressing
the global geometry optimization; a solution could be to evaluate
quantitatively the shrinking (direction and strength) induced by
the sharpness relaxation and to displace the vertices accordingly.
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