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Abstract

In this paper we present a new framework, based on subdivision surface approximation,
for efficient compression and coding of 3D models represented by polygonal meshes. Our
algorithm fits the input 3D model with a piecewise smooth subdivision surface represented by
a coarse control polyhedron, near optimal in terms of control points number and connecti-
vity. Our algorithm, which remains independent of the connectivity of the input mesh, is par-
ticularly suited for meshes issued from mechanical or cad parts. The found subdivision
control polyhedron is much more compact than the original mesh and visually represents the
same shape after several subdivision steps, without artifacts or cracks, like traditional lossy
compression schemes. This control polyhedron is then encoded specifically to give the final
compressed stream. Experiments conducted on several cad models have proven the cohe-
rency and the efficiency of our algorithm, compared with existing methods.
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COMPRESSION DE MAILLAGES CAO
BASÉE SUR LA SUBDIVISION INVERSE

Résumé

Nous présentons dans cet article, une approche, basée sur une approximation par sur-
faces de subdivision, pour la compression et le codage de modèles 3D représentés par des
maillages polygonaux. Notre algorithme approxime le modèle 3D par une surface de subdi-
vision lisse par morceaux, représentée par un polyèdre de contrôle grossier optimisé en
termes de nombre de points de contrôle et de connectivité. Notre algorithme, qui est indé-
pendant de la connectivité du maillage d’origine, est particulièrement adapté aux maillages
issus de pièces mécaniques ou CAO. Le polyèdre de contrôle obtenu est beaucoup plus com-
pact que le maillage d’origine et représente visuellement la même forme après plusieurs ité-
rations de subdivision, sans artefacts ou discontinuités comme celles introduites par la
plupart des méthodes de compression avec pertes. Ce polyèdre de contrôle est ensuite codé
spécifiquement pour donner le flux compressé final. Des expériences menées sur plusieurs
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modèles CAO ont prouvé la cohérence et l’efficacité de notre algorithme en comparaison
d’autres méthodes existantes.
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I. INTRODUCTION AND CONTEXT

Advances in computer speed, memory capacity, and hardware graphics acceleration have
highly increased the amount of three-dimensional models being manipulated, visualized and
transmitted over the Internet. In this context, the need for efficient tools to retrieve, protect or
reduce the storage of this 3D content, mostly represented by polygonal meshes, becomes
even more acute. The context of our work is the SEMANTIC-3D project (http://www.semantic-
3D.net), supported by the French Research Ministry and the RNRT (Réseau National de
Recherche en Télécommunications), which is thoroughly within the scope of these problems.
This project, in partnership with the car manufacturer Renault, focuses on the tools and
methods required to implement new operational services for retrieving 3D content through
the Web and communicating objects. It aims at developing an industrial application proto-
type: An information and communication system for remote access and assistance, intercon-
necting originators (mechanical part designers), nomadic users (e.g. automotive industry
technicians) and a central 3D data server. Accordingly, one of the principal issues is the
transmission of 3D mechanical models through low bandwidth channels in a visualization
objective on various terminals. The 3D model database to handle comes from the car manu-
facturer Renault, and contains thousands of quite irregular triangle meshes representing CAD

parts. Thus an efficient compression tool is needed to reduce the amount of data carried by
this 3D content, knowing that the original NURBS information is not available.

Many efficient techniques have been developed for encoding polygonal meshes [1, 2, 3]
but fundamentally, this representation remains very heavy in terms of amount of data (a
large points set, on top of the connectivity has to be encoded). Moreover, lossy compression
schemes like wavelet based ones [4, 5] produce artifacts, visually damaging for piecewise
smooth mechanical objects. Other models exist to represent a 3D shape: NURBS surfaces or
subdivision surfaces. These models are much more compact. A subdivision surface is a
smooth (or piecewise smooth) surface defined as the limit surface generated by an infinite
number of refinement operations using a subdivision rule on an input coarse control mesh.
Hence, it can model a smooth surface of arbitrary topology (contrary to the NURBS model
which needs a parametric domain) while keeping a compact storage and a simple represen-
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tation (a polygonal mesh). Moreover it can be easily displayed to any resolution. Subdivi-
sion surfaces are now widely used for 3D imaging and have been integrated to the MPEG4
standard [6]. 

For all these reasons, we have developed a new algorithm, based on subdivision surface
fitting for efficiently compressing 3D meshes, for low bandwidth transmission and storage.
The 3D object is first approximated by a piecewise smooth subdivision surface, associated
with a control polyhedron which is then encoded specifically to give the compressed bit
stream. Hence the 3D model, once approximated, will be transmitted in the form of an enco-
ded coarse polyhedron and, at the reception, displayed to any resolution, according to the
terminal capacity, by iterative subdivisions. Note that this decompression process is very
simple and therefore adapted for mobile terminals. Figure 1 illustrates this application
scheme. Section II details the related work about mesh compression and subdivision surface
fitting, while subdivision surfaces and the overview of our method are presented in section
III. Sections IV, V and VI detail the three steps of our subdivision surface fitting approach:
the decomposition of the model into surface patches, the patch boundaries approximation
and the local subdivision surface creations. Finally section VII presents the final control
mesh construction and encoding, and the results of our experiments. 
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FIG. 1 – Application of our subdivision based compression scheme.

Application de notre algorithme de compression basé sur la subdivision.
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II. RELATED WORK

II.1. Mesh compression 

A lot of work has been done about polygonal mesh compression. A good review can be
found in [7]. This representation contains two kinds of information: geometryand connecti-
vity, the first describing coordinates of the vertices in the 3D space, and the later describing
how to connect these positions. The connectivity graph is often encoded using a region gro-
wing approach based on faces [2], edges [3] or vertices [1]. Others techniques consider pro-
gressive approaches which encode a base mesh and then vertex insertion operations [8].
Fewer efforts have been done about geometry compression which is often simply performed
by predictive coding and quantization. Other researches have put more efforts on geometry
driven mesh coding, using wavelets [4, 5] or spectral compression [9]. On the whole, better
mesh compression methods give between 1 and 2 bytes per vertex; although this represents
an excellent result, the output bit stream remains large for complex objects because of the
high number of vertices to encode. Moreover lossy compression schemes [4, 5, 8, 9] often
produce artifacts, visually damaging for smooth mechanical objects. That is why we have
chosen to approximate input meshes with subdivision surfaces (see Figure 1), of which
control polyhedrons should contain much lesser faces to store or transmit, knowing that after
several refinement steps, the subdivision surface will visually represents the shape of the ori-
ginal mesh (of which original connectivity will therefore not be kept).

II.2. Subdivision surface approximation

Several methods already exist for subdivision surface fitting, most of them take as input a
dense mesh, simplify it to obtain a base coarse control mesh and then displace the control
points (geometry optimization) to fit the target surface. Lee et al. [10], Ma et al. [11] and
Mongkolnam et al. [12] use the Quadric Error Metrics from Garland and Heckbert [13] for
simplification. Kanai [14] uses a similar decimation algorithm which directly minimizes the
error between the original mesh and the subdivided simplified mesh. These simplification
based approaches allow to easily extract a control mesh with the same topology than the
input object, however, the control mesh connectivity strongly depends on the input mesh and
therefore can give quite bad results if the input mesh is very irregular, which is the case for
our CAD models. Hence, in our algorithm, in order to remain independent of the original
connectivity, we first decompose the object into surface patches, and then we use the boun-
daries of the patches and the curvature information to transmit the topology of the original
object to our control polyhedron. Algorithms from Suzuki [15], or Jeong and Kim [16] also
remain independent of the target mesh, by iteratively subdividing and shrinking an initial
control mesh toward the target surface. Unfortunately these methods fail to capture local cha-
racteristics for complex target surfaces. 
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Once a coarse control mesh has been constructed, then the geometry has to be optimized
by moving control points to match the subdivision surface with the target object. Lee et al.
[10] and Hoppe et al. [17] sample a set of points from the target mesh and minimize a qua-
dratic error to the subdivision surface. Suzuki et al. [15] propose a faster approach, also used
in [16] and [12]: the position of the control points is optimized, only by reducing the distance
between their limit positions and the target surface. Hence only subsets of the surfaces are
involved on the fitting procedure, thus results are not so precise and may produce oscilla-
tions. Ma et al. [11] consider the minimization of the distances from vertices of the subdivi-
sion surface after several refinements, to the target mesh; our algorithm follows this
framework while using not a point to point distance minimization, but a point to surface
minimization, by using the local quadratic approximants introduced by Pottmann and Leo-
poldseder [18]. This algorithm allows a more accurate and rapid convergence.

To our knowledge, the optimality in terms of control point number and connectivity
represents a minor problematic in the existing algorithms but seems particularly relevant for
mechanical or CAD objects. Only Hoppe et al. [17] optimize the connectivity (but not the
number of control points) by trying to collapse, split, or swap each edge of the control poly-
hedron. Their algorithm produces high quality models but need of course an extensive com-
puting time. Our algorithm optimizes the connectivity of the control mesh by analyzing
curvature directions of the target surface, which reflect the natural parameterization of the
object. The number of control points is also optimized by enriching iteratively the control
polyhedron according to the error distribution. Moreover our approach allows to directly
control the approximation error, whereas simplification based methods [10, 11, 12, 14] indi-
rectly control the error by modifying the simplification level. 

III. OVERVIEW OF OUR ALGORITHM AND ORIENTATIONS

III.1.Overview

Our framework for compression of 3D models is the following: firstly the target 3D
objects are segmented into surface patches (see Section IV), of which boundaries are extrac-
ted. Secondly, the network of boundaries is approximated with piecewise smooth subdivision
curves (see Section V), this step provides a network of control polygons. Thirdly, for each
patch a local approximating subdivision surface is created, using the subdivision control
polygons representing its boundaries (see Section VI). Finally, the control mesh defining the
whole surface is created assembling every local control meshes, and encoded specifically to
give the output bit stream (see Section VII). These steps are summarized and illustrated on
Figure 2.
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III.2.Subdivision surface presentation

The basic idea of subdivision is to define a smooth shape from a coarse polyhedron by
repeatedly and infinitely adding new vertices and edges according to certain subdivision
rules. Doo and Sabin [19], and Catmull and Clark [20] first introduced subdivision schemes
based on quadrilateral control meshes. Their schemes respectively generalized bi-quadratic
and bi-cubic tensor product B-splines [21]. Today, many subdivision schemes have been
developed, based on quadrilateral [22] or triangular meshes [23,24]. Moreover special rules
have been introduced by Hoppe et al. [17] to handle sharpedges. Subdivision surfaces offer
many benefits: firstly, they can be generated from arbitrary meshes (arbitrary topology), this
implies no need of trimming curves (which are necessary for NURBSsurfaces). Secondly they
can be generated at any level of detail, according to the terminal capacity for instance. And
thirdly, subdivision surfaces are at least C1 continuous (except around sharp edges of
course).

Within our approximation framework, we have to choose a subdivision scheme among
all these existing rules. For a given surface to approximate, the choice of the appropriate
subdivision scheme is critical. Indeed, even if in theory any triangle can be cut into quads or
any quad can be tessellated into triangles, results are not equivalent. The nature of the
control polyhedron (quads or triangles) strongly influences the shape and the parameteriza-
tion of the resulting subdivision surface. The body of the cylinder, for instance, is much
more naturally parameterized by quads than by triangles. These reasons have led us to
choose the hybrid quad/triangle scheme developed by Stam and Loop [25]. This scheme
reproduces Catmull-Clark on quad regions and Loop on triangle regions. At each subdivi-
sion step, the base mesh is firstly linearly subdivided: each edge is splitted into two, each
triangle into four and each quad into four (see Figure 3). Secondly, each vertex is replaced
by a linear combination of itself and its direct neighbors. When a vertex is entirely surroun-
ded by triangles or quads we use smoothing masks of Figure 4.a and Figure 4.b and other-
wise we use the mask from Figure 4.c, which depends on the numbers of edges ne and
quads nq surrounding the vertex.
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FIG. 2 – Overview of our compression framework.

Les différentes étapes de notre algorithme de compression.
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III.3.The approximate squared distance

The approximation of the boundaries with subdivision curves (see Section V), as the sub-
division surface optimization (see Section VI), requires a convergence process. The purpose,
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FIG. 3 – Example of quad/triangle subdivision. (a) Control mesh, (b,c) One and two subdivision steps, 
(d) Limit surface (with control lines).

Exemple de subdivision quad/triangle. (a) Maillage de contrôle, (b,c) Une et deux itérations 
de subdivision, (d) Surface limite (avec les lignes de contrôle).

FIG. 4 – Smoothing masks for Loop (a), Catmull-Clark (b) and the quad-triangle scheme (c) 
(extracted from [25]).

Masque de lissage pour Loop (a), Catmull-Clark (b) et le schéma quad/triangle (c (extraits de [25]).
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starting from an initial surface (resp. curve) is to fit this surface to the target data by displa-
cing iteratively the control points by minimizing an energy term. This optimization problem
ties up with the smooth parametric curve and surface approximation problems. Several algo-
rithms exist for this purpose concerning curves [26, 27, 28, 29] or surfaces [30, 31]. They are
mostly based on a data parameterization which is very complex to optimize. Other
approaches [32, 33] construct a regular grid on the data to overcome this parameterization
problem, but these techniques are not adapted for subdivision surfaces which are not defined
on a parametric grid. Hence, we have chosen to generalize the Active B-Splineapproach from
Pottmann and Leopoldseder [18] which is based on the minimization of local approximate
squared distances from the target data and thus does not require parameterization. We have
extended this method, which has proven to converge much faster [18, 34] than traditional
ones, for subdivision curves and surfaces. Their principal contribution is the definition of
local approximants of the squared distance from a point to a surface (resp. curve). Thus the
minimization of this point to surface (resp. curve) distance is much faster than traditional
point to point distance. The local approximant of point to surface quadratic distance is defi-
ned as follows: considering a smooth surface Φ, we can define at each point Φ(t0), a Carte-
sian system (e1,e2,e3) whose first two vectors e1, e2 are the principal curvature directions and
e3 is the normal vector. Considering this frame, the local quadratic approximant Fd(p) of the
squared distance of a point p at (0,0,d)to the surface Φ is given by [18]: 

(1) Fd (x1, x2, x3) = x2
1 + x2

2 + x2
3

where x1, x2 and x3 are the coordinates of p with respect to the frame (e1, e2, e3) and ρ1 (resp.
ρ2) is the curvature radius at Φ(t0), corresponding to the curvature direction e1 (resp. e2). 

The local distance approximant from a point to a 3D curve is similar, the reader may refer
to [18] for a detailed derivation and proof of these formula.

IV. SEGMENTATION INTO PATCHES

The problem of subdivision surface fitting is quite complex to resolve, particularly in our
case, since we aim at remaining independent of the target mesh connectivity. Hence we have
chosen to previously decompose the object into simple surface patches (connected sets of
facets). Benefits are numerous: the inverse subdivision problem is simplified whereas boun-
daries of the patches can be used to retrieve the topology. Moreover this decomposition may
bring adaptivity to the fitting process or for the visualization (we can imagine, once we have
the complete control polyhedron, subdivide only a desired part of the object). 

Several algorithms exist to segment a 3D meshes into surface patches, they are mostly
based on the curvature values or on planarity criteria. Our segmentation method, detailed in
[35], is based on the curvature values and on the curvature directions. This algorithm has the
advantage of providing constant curvature patches with clean and smooth boundaries and
presents two distinct complementary steps: a region segmentation and a boundary rectifi-
cation.

d
}
d + ρ2

d
}
d + ρ1
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IV.1. Discrete curvature estimation

The segmentation and the subdivision surface approximation algorithms are based on the
curvature, hence we have to calculate the curvature tensor for each vertex of the input mesh.
A polygonal mesh is a piecewise linear surface, thus the calculation of its curvature is not tri-
vial. Several authors have proposed different evaluation procedures for curvature tensor esti-
mation; we have implemented the work of Cohen-Steiner et al. [16], based on the Normal
Cycle. This estimation procedure has proven to be the most efficient and stable among the
others and gives very satisfying results even for bad tessellated objects. For each vertex, the
curvature tensor is calculated and the principal curvature values kmin, kmaxand directions
dmin, dmax are extracted. They correspond respectively to the eigenvalues and the eigen-
vectors of the curvature tensor, with switched order (the eigenvector associated with kmin is
dmax and vice versa). Figure 5 presents samples of these fields for the “Plane” object. On the
edges of the wings, we have a high maximum curvature, whereas kmin is null, it is a parabo-
lic region. Kmin is positive on elliptic regions, like at the end of the wings, and negative in
hyperbolic regions like at the joints between the wings and the body of the plane. The princi-
pal curvature directions have significance only on anisotropic regions (elliptic, parabolic and
hyperbolic) where they represent lines of curvature of the object. On isotropic regions (sphe-
rical, planar), they do not carry any information.

IV.2. Curvature based region segmentation

Firstly, a pre-processing step identifies sharpedges and vertices. This information is
necessary for the continuation of the algorithm. Secondly the curvature tensor is calculated
for each vertex. Then vertices are classified into clusters in the curvature space, according to
their principal curvature values Kmin andKmax. A region growing algorithm is then proces-
sed, assembling triangles into connected labeled regions according to vertex clusters. Finally
a region adjacency graph is processed and reduced in order to merge similar regions accor-
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FIG. 5 – Curvature fields for the 3D object “Plane”.
(a) Kmax, (b) Kmin  (absolute value), (c) dmax, (d) dmin.

Les différents champs de courbure pour l’objet “avion”.
(a) Kmax, (b) Kmin (valeur absolue), (c) dmax, (d) dmin.
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ding to several criteria (curvature similarity, size and common perimeter). This algorithm
extracts near constant curvature, topologically simple patches from the 3D-objects, and gives
good qualitative results in terms of general shape and disposition of the segmented regions.
Nevertheless, boundaries of the extracted patches are often jagged and present artifacts (see
Figure 6.a). In this context, the objective of the boundary rectification process is to suppress
these artifacts, in order to obtain clean and smooth boundaries corresponding to real natural
boundaries of the object.

IV.3. Boundary rectification

Firstly, boundary edges are extracted from the previous region segmentation step (see
Figure 6.c). Then for each of them, a boundary score is calculated which notifies a degree of
correctness. To define this score, we consider the principal curvature directions dminand dmax
(see dmin in figure 6.b) which define the lines of curvature of the object. Indeed, they represent
pivotal information in the geometry description [37]. The curvature tensors at the natural boun-
daries of an object tend to be anisotropic with a maximum direction following the curvature
transition and therefore orthogonal to the boundaries. Thus the boundaries will tend to be paral-
lel to the minimum curvature directions dmin. Therefore the boundary scoreof each edge
directly depends on its angles with its vertices minimum curvature directions. According to this
score, estimated correct boundary edges are marked (see Figure 6.c) and are used in a contour
tracking algorithm to complete the final correct boundaries of the object (see Figure 6.d). 
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FIG. 6 – The different steps of the Boundary Rectification for the “Fandisk” object with a zoom on an
artifact correction ; (a) Segmented object, (b) Minimum curvature directions, (c) Boundary edge extraction

and marking, (d) Corrected boundaries after the contour tracking.

Les différentes étapes de la rectification de frontières pour l’objet Fandisk avec un zoom sur la correction
d’un artefact ; (a) Objet segmenté, (b) Directions de courbure minimum, (c) Extraction et marquage 

des arêtes frontières, (d) Frontières corrigées après le suivi de contours.

1961-Her/Teleco 60/11-12  9/11/05 11:19  Page 1295



V. BOUNDARIES APPROXIMATION

Once the 3D object has been segmented, our algorithm approximates the network of
patch boundaries with subdivision curves. Each piece of boundary (i.e. a polyline) is
approximated with a subdivision curve associated with a control polygon, then every control
polygons are assembled (junction points are tagged as sharp) to give a control polygon net-
work (see Figure 2). Our purpose is to simplify the subdivision surface fitting algorithm;
indeed, considering a surface patch, its boundary control polygons can then be extracted
from the network; according to subdivision properties, these control polygons will represent
the boundaries of the control polyhedron of the approximating subdivision surface. 

V.1. Subdivision curve presentation

A subdivision curve is created using iterative subdivisions of a control polygon. In this
paper we use the subdivision rules defined for surfaces by Hoppe et al. [17] for the particular
case of sharpor boundary edges: new vertices are inserted at the midpoints of the control
segments and new positions Pi′ for the control points Pi are computed using their old values
and those of their two neighbors using the mask:

(2) Pi′ = }
1
8

} (Pi – 1 + 63Pi + Pi + 1)

With these rules, the subdivision curve corresponds to a uniform cubic B-Spline, except
for its end segments. We also consider specific rules (those defined by Hoppe [17] for corner
vertices) to handle sharpparts and extremities: 

(3) Pi′ = Pi

This subdivision curve will coincide with the boundary generated by commonly used
subdivision surface rules like Catmull-Clark [20], Loop [23] or the quad-triangle scheme
from Stam and Loop [25]. An example of subdivision curve is presented in Figure 7.
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FIG. 7 – Example of subdivision curve with one sharp vertex.
(a) Control polygon, (b,c) 2 iterations of subdivision, (d) Limit curve.

Exemple de courbe de subdivision avec un sommet vif.
(a) Polygone de contrôle, (b,c) 2 itérations de subdivision, (d) Courbe limite.
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V.2. Approximation algorithm

Our algorithm, detailed in [38], for the approximation of a target polyline with a subdivi-
sion curve presents two distinct steps: an initialization of the subdivision curve, analyzing
curvature distribution of the target curve, and an optimization which moves and adds control
points by minimizing a global distance to the target.

V.2.1. Subdivision curve initialization

Our subdivision curve represents a uniform cubic B-Spline curve except for its end seg-
ments, therefore except at its ends, the curve is composed with polynomial curve segments
Si. We have studied the behavior of the curvature on such a segment, in order to make the
connection between the optimal number of control points and the curvature of the target
curve.

Theorem:
Considering a uniform cubic B-Spline segment, local curvature maxima are necessarily

located at the extremities.

Proof:
For a cubic B-Spline segment Si, the curvature C(u), at each parameter, is defined by 

C(u) =  Si(u) . The second derivative of a cubic B-spline is a linear B-spline. Moreover the
largest norm value of a line segment occurs at one of its endpoints. Hence, curvature maxima
are necessarily located at the extremities.

According to this theorem, a local maximum of curvature located over the target curve is
associated with the extremity of a B-Spline segment and therefore there is necessary at least
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FIG. 8 – Example of initial control point processing.
(a) Curvature variation over the target curve, (b) Corresponding maxima and initial subdivision 

curve with the associated control polygon.

Exemple de détermination des points de contrôle initiaux.
(a) Variation de la courbure de la courbe cible, (b) Maxima correspondants et courbe initiale 

avec son polygone de contrôle.
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one associated control point whose limit position is at the extremum. So, for n local curva-
ture maxima we can affirm that at least n initial control points are needed. The placement of
the n control points is determined with a linear system. Indeed, for a subdivision curve, the
limit position Pi’ of a control point Pi can be processed according to its neighbors: 

(4) Pi′ = }
1
6

} (Pi – 1 + 43Pi + Pi + 1)

Since we know that these limit positions must coincide with the local curvature maxima,
we obtain the linear system. Figure 8 shows an example of this initialization process.

V.2.2. Subdivision curve optimization

Once the initial subdivision curve has been processed, the optimization algorithm fits this
curve to the target data by displacing iteratively the control points Pi and adding new ones.
We have extended the method from Pottmann et al [18] for subdivision rules (see
Section III.3). The optimization process is the following, at each iteration several sample
points Sk are chosen on the subdivision curve, and the associated projections Ok are calcula-
ted on the target curve. In our case, sample points are the vertices of the subdivision curve at
a finer level, after application of several steps of subdivision. Thus sample points Sk can be
computed as linear combinations of the control points Pi (see Section V.1). Then for each Sk
the local quadratic approximant xxx of the squared distance function of Sk to the target curve,
is expressed (see Section III.3). And finally the new positions of the control points are pro-
cessed by minimizing the sum of the local quadratic approximants (least square method).
The convergence of this algorithm is very fast, figure 9 presents an example; at the second
iteration the target curve is perfectly fitted. If after several iterations, the approximation error
remains high, then new control points are inserted at the maximum error position. At the end
of the algorithm, each piece of boundary from the boundary network is perfectly fitted with a
subdivision curve.
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FIG. 9 – Example of the optimization procedure. (a) Initial subdivision curve,
(b, c) Resulting curve after respectively 1 and 2 optimization iterations.

Exemple de la procédure d’optimisation. (a) Courbe de subdivision initiale, (b,c) Courbes obtenues 
après respectivement 1 et 2 itérations d’optimisation.
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VI. SUBDIVISION SURFACE FITTING

Once the boundary network has been approximated with subdivision curves, we construct
for each patch, a local approximating subdivision surface, using the network of control poly-
gons. The algorithm, detailed in [39], is the following: for each patch, the control polygons
corresponding to its boundaries are extracted from the network. Then, an initial subdivision
surface is created by optimally linking the boundary control points with respect to the lines
of curvature of the target surface. Finally, for each patch, the initial subdivision surface is
optimized by iteratively moving control points and enriching regions according to the error
distribution.

VI.1. Local subdivision surface initialization

VI.1.1. Principle 

Considering a surface patch, once the control polygon representing its boundary has been
extracted, the purpose is to create edges and facets by connecting these control points in the
best possible way. For this purpose, we consider the lines of curvature of the original surface,
represented by local directions of minimum and maximum curvature dmin and dmax. The
control lines of a subdivision surface are the projections of the edges of the control polyhe-
dron on the limit surface (see Figure 3.d and Figure 10.a). These control lines are strongly
linked with the lines of curvature of the subdivision surface. Indeed the topology of a control
polyhedron will strongly influence the geometry information of the associated limit surface,
which is also carried by lines of curvature [37]. This coherency between control lines and
lines of curvature is shown in the example on Figure 10.
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FIG. 10 – The coherency between control lines (a), minimum (b) and maximum 
(c) directions of curvatures.

La cohérence entre les lignes de contrôle (a) et les directions de courbure minimum (b) 
et maximum (c).
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Thus, for each couple of control points from the boundary control polygon, a coherency
score SC is calculated, taking into account the coherency of the corresponding potential
control edge with the lines of curvature of the corresponding area on the target surface. The
mechanism is illustrated on Figure 11: for each potential edge E, we consider its vertices P0,
P1 and their respective limit positions P0

∞, P1
∞. Then we calculate an approximation of the

geodesic path between these limit positions, to simulate the control line, by applying the
Dijkstra algorithm on the vertices of the original surface. Finally we consider the curvature
tensors of the n vertices Vi of this path, and particularly their curvature directions. The cohe-
rency score SCfor this potential edge E is:

(5) SC(E) = 

where θ mini (resp. θ maxi) is the angle between the minimum (resp. maximum) curvature
direction of the vertex Vi and the segment P0

∞ P1
∞. This score SC ∈ [0,90] is homogeneous to

an angle value in degrees.

VI.1.2. Algorithm 

Our algorithm is the following: at each iteration, we consider the potential edge associa-
ted with the smallest score SC (dotted segments in Figure12.b) and we cut the boundary
control polygon along this edge. This operation is repeated until it remains only plane poly-
gons. Then for each of them, we check its convexity; if it is convex, we create a facet, and if
not, we decompose it into convex parts, using the algorithm from Hertel and Mehlhorn [40].
By assembling created facets we obtain our initial control polyhedron (see Figure 12.c) of

min(^n

i =1 θmini, ^
n

i =1 θmaxi)
}}}}n
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FIG. 11 – Mechanism for coherency score definition.

Mécanisme pour la définition du score de cohérence.
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which limit surface (see Figure 12.d) represents in most case a quite good approximation of
the original surface (see Figure 12.a).

VI.2. Local subdivision surface optimization

The initial subdivision surface often represents a sufficient approximation of the target
surface patch, even if this initialization process considers first of all the boundary informa-
tion. Indeed, owing to the curvature based segmentation step, surface patches are quite
simple surfaces, of which most of the geometry information is carried by the boundaries.
However, in some cases some more control points may be needed to correctly approximate
the target surface. Considering this purpose, we have defined two complementary mecha-
nisms: an enrichment mechanism which adds control points and optimizes the connectivity
according to the error position and distribution, and a geometry optimization algorithm
which aims at displacing control points to minimize the approximation error. 

VI.2.1. Enrichment and connectivity optimization

In this section we present how to modify and optimize the connectivity of our control
polyhedron. We have two mechanisms to consider: an enrichment of the control mesh,
consisting in the addition of new control points, and an optimization of the connectivity,
insuring that, for a given set of control points, the associated connectivity (set of faces and
edges) is the better possible regarding to the resulting error. This mechanism is quite com-
plex to implement, therefore, since the connectivity has been optimized in the initialization
step, we will just try to limit its departure. Hence we have integrated these two mechanisms
into a single algorithm, which considers the error distribution to enrich precisely the control
polyhedron, while trying to keep a near optimal connectivity.

Considering a target surface and a corresponding initial subdivision surface, the first step
of this algorithm is the principal error field extraction. The goal is to extract not only the
maximum error point but an area (a set of error points) corresponding to the error field in
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FIG. 12 – Example of local subdivision surface initialization.

Exemple d’initialisation d’une surface de subdivision locale.
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order to be able to analyze the error distribution. For this purpose we consider sample points
Sk, on the subdivision surface and associated distances dk to the corresponding projections on
the target surface. Then, we extract and add to our error set, Skmaxcorresponding to the
maximum error dkmax, and every sample points corresponding to a similar error (we have
fixed a threshold T = dkmax/2) and connected to an other point of the error point set. This
extraction is shown for a 2D case in Figure 13. 

Once we have the principal error field, we study its dispersion to modify the control
mesh. If several control faces are concerned by the error field (if they contain at least one
error point) it means that the topology in this region is not correct, hence, we merge these
faces and then add a point in the resulting face and connect it with its neighbors. Figure 14.a
shows a target surface and Figure 14.b shows the initial subdivision surface with the corres-
ponding error field (error points are marked). Concerned control faces (Figure 14.c) have
been merged, before adding a new control point (see Figure 14.d and e). 

VI.2.2. Geometry optimization

For a given target surface and a given initial subdivision surface, this process aims at dis-
placing control points by minimizing a global error over the whole surface. To achieve this
purpose, we use a least square method based on the quadratic distance approximants defined
by Pottmann and Leopoldseder [18] (see Section III.3). Our algorithm is the following:

• The curvature is calculated for each vertex of the target surface.
• Several sample points Sk are chosen on the subdivision surface, they correspond to ver-

tices of the subdivided polyhedron at a finer level l0. The associated footpoints (projec-
tions of the sample points on the target surface) are extracted. For each of them, we
calculate the curvature tensor, by a linear interpolation of those of the surrounding ver-
tices, using barycentric coordinates. This tensor allows us to construct the Frame (e1,
e2, e3) and the curvature radiuses ρ1 and ρ2, useful for the point to surface distance
computation (see Equation 1). Sample points Sk can be computed as linear combina-
tions of the control points ρi

0 (see Section III.2); they correspond to the vertices ρi
l0 of

the subdivision surface at the finer level l0 (after l0 subdivision steps).
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FIG. 13 – Principal error field extraction (2d example).

Extraction du champ d’erreurs principal (exemple en 2D).

1961-Her/Teleco 60/11-12  9/11/05 11:19  Page 1302



(5) Sk = Ck (ρ1
0, ρ2

0,…, ρn
0)

The functionals Ck are determined using iterative multiplications of the l0 subdivision
matrices Ml associated with our subdivision rules. These subdivision matrixes Ml are such as
Pl = Ml 3Pl – 1 with Pl = [(P1

l, P2
l,… Pn

l])T. Thus the functionals Ck for the level l0, are the
lines of the matrix C such as:

(6) C =  
l0

Π
l = 1

Ml 3Ll0

Ll0
is the limit matrix which gives the limit positions, proposed by Stam and Loop [25], of

the considered vertices at the level l0.
• For all Sk, local quadratic approximants Fk

d of the squared distances to the target sur-
face are expressed according to the frames (e1, e2, e3) at the corresponding footpoints.
The minimization of their sum F gives the new positions of the control points Pi

0.

(7) F = 
k̂  

Fk
d (Sk) = ̂

k  
Fk

d (Ck (ρ1
0, ρ2

0,…, ρn
0))

The minimization of this quadratic function leads to the resolution of a linear squared
system. 

Concerning the choice of the number of sample points Sk, we have chosen l0 = 2 refine-
ments for all examples in this article. As for each refinement, the number of vertices will
increase by a factor of at least four, the number of equations will be about sixteen times the
number of unknowns. That ensures a stable solution when solving equation (7) in the least
squares sense. This algorithm provides a very fast convergence, which is critical since this
geometry optimization is a computationally costly procedure.
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FIG. 14 – Connectivity and geometry optimization example.
(a) Original surface. Initial (b, c), enriched (d, e) and optimized (geometry) (f, g) subdivision surface.

Exemple d’optimisation de la connectivité et de la géométrie. (a) Surface originale. Surface de subdivision
initiale (b, c), enrichie (d, e) et optimisée (géométrie) (f, g).
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VI.2.3. Whole optimization algorithm

Our algorithm for the optimization of local subdivision surfaces is the following:

BeginSubdivision Surface Optimization 

While (E>ELimit}

// E is the approximation error and ELimit a threshold value.

While (E>ELimit and m<m0}

// m is the geometry optimization iteration number and m0  a maximum number.

Call the geometry optimization procedure (see Section VI.2.2). The subdivision surface         is moved
toward the target surface, by minimizing a sum of quadratic distances. 

End While

If (E>ELimit}

A new control point is inserted onto the subdivision surface according to the error distribution (see
Section VI.2.1).

End If

End While

End Subdivision Surface Optimization 

m0  was fixed to 5, in order to limit the number of iterations of the geometry optimization,
since its convergence is very fast (often 3 or 4 iterations) and seeing that this process remains
computationally costly. Note that boundary control points are fixed, to insure that no crack
will appear later, during the construction of the final whole control polyhedron containing
every local control meshes corresponding to the different patches.

Figure 14 shows the complete process. Boundaries of the target surface (see Figure 14.a)
have been approximated and an initial subdivision surface has been constructed (see Figures
14.b and 14.c). The associated approximation L1 error is E=30.7×10-3. Then the error distri-
bution is analyzed and concerned faces are merged. A new point in inserted (see Figure 14.d
and 14.e) and the geometry is optimized (3 iterations) (see Figure 14.f and 14.g). The final
approximation error is E = 5.8×10–3.

VII. CONSTRUCTION AND CODING OF THE FINAL CONTROL
POLYHEDRON AND RESULTS

VII.1. Encoding

Once each patch has been fitted with a subdivision surface, the final control polyhedron
for the whole object is created by assembling local control polyhedrons while marking local
boundary control edges as sharp(specific subdivision rules which respect sharpness of the
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edges). This control polyhedron containing triangles, quadrangles, higher order polygons and
marked edges is then encoded. Concerning connectivity information, we have chosen to
implement the Face Fixer [3] algorithm (see Section II.1) seeing that this encoding scheme is
based on edges and allows to process arbitrary polygonal meshes and not just fully triangu-
lated ones. In addition this scheme, which provides quite good compression rates, is able to
encode easily face groupings which can be useful, in a perspective way, to transmit the seg-
mentation results within the object. This algorithm encodes the connectivity graph by a list of
n labels among k (k~10, depending on the maximum face degree), with n the number of
edges. The corresponding bit stream is created using an arithmetic coder which achieves
quite good results. Concerning geometry encoding, a 10 bit quantization is performed. Then
we eliminate some coordinates, indeed, once the positions of three vertices of a planar face
are known, we have to encode only 2 coordinates for the remaining vertices. Flags on the
edges (sharpor not) are represented by a n sized binary vector, encoded by a run length algo-
rithm. Thus the total size of the compressed stream is the sum of the connectivity (C), geo-
metry (G) and flags (F) sizes (see examples in Figure 15, C, G and F are given in bytes).

VII.2 Results and discussions

Our compression scheme was tested on the mechanical database from Renault, these
models are issued from CAD, and thus associated with highly irregular connectivity (see
mesh examples on Figure 16). Figure 15 presents the results for the Fandisk mesh (Figure
15.a) and for several objects from Renault database. All these experiments were conducted
on a PC, with a 2 GHz XEON bi-processor; processing times are between 5 and 10 seconds
for the whole compression process (the decompression is instantaneous). The models have
been translated and scaled in a bounding box of length equal to 1. Figure 15 shows initial
objects (with patch boundaries), subdivision control polyhedrons and associated limit sur-
faces while detailing the number of vertices and faces of the original objects and of the
corresponding control polyhedrons. Original and compressed sizes, in bytes, are also high-
lighted. Control polyhedrons have widely less faces and vertices compared with initial sur-
faces and the approximation errors remain very low (limit surfaces are very close from
original objects). Mean L1, and maximum errors are shown on Table I, they are calculated
between the original object and the subdivision surface after 4 refinement steps. Table I
shows original binary sizes (BS), sizes of these binary files compressed with the Zip coder
(ZIP) and associated compression rates (ZIP CR). Although the ZIP coder is lossless without
any quantization, these values can be compared with compressed file sizes (CS) obtained
with our compression algorithm, which achieves extremely high compression rates 
(CR = BS/CS). 
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FIG. 15 – Results of our fitting scheme for different mechanical parts. Initial objects 
(patch boundaries are marked), control polyhedrons and limit surfaces.

Résultat de notre algorithme d’approximation pour différentes pièces mécaniques. Objets initiaux 
(les frontières des patchs sont marquées), polyèdres de contrôle et surfaces limites.

FIG. 16 – Examples of mesh connectivity of our 3D model database 
and corresponding numbers on Figure 15.

Exemples de connectivité de notre base de modèles 3D et correspondance avec la figure 15.
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TABLE I. – Original binary sizes (BS), Zipped binary sizes (ZIP) and associated rate (ZIP CR). Compressed size
(CS) with our algorithm, associated compression rates (CR) and associated L1 and maximum errors.

Tailles binaires originales (BS), tailles des fichiers binaires zippés (ZIP) et taux correspondants (ZIP CR).
Taille des objets compressés (CS) avec notre algorithme, taux de compression correspondants (CR) 

et erreurs L1 et maximum associées.

Table II shows a comparison for the Fandisk object, with different state of the art algo-
rithms: Alliez and Desbrun progressive encoding [8] and the wavelets based algorithms from
Khodakovsky et al. [4] and Valette and Prost [5]. Our algorithm achieves drastically better
compression rates (~800). However, coders from Alliez, Valette and Khodakovsky are pre-
sented in their lossless versions, the geometric error is limited to the quantization error (a
10 bits quantization, like ours). Our error is larger (L1 = 0.887 ×10–3), but the decompressed
subdivided object (see Figure 15.a) does not seem visually damaged compared with the ori-
ginal one, thus results are completely adapted for our visualization task. Indeed, resulting
surfaces after decompression and subdivision are quite smooth and visually pleasant, without
discontinuities or noise like those produced by hard quantization or lossy compression
schemes like wavelet based ones. Particularly, our algorithm, thanks to the segmentation step,
preserves sharp features. 

TABLE II. – Compressed sizes and associated compression rates for several compression 
algorithms applied to the Fandisk object.

Tailles des fichiers compressés et taux de compression associés pour différents 
algorithmes de compression appliqués à l’objet Fandisk.

VIII. CONCLUSION

We have presented a new framework for compression and coding of 3D models. Our
approach, particularly adapted for mechanical objects, is based on subdivision surface fit-
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BS (Bytes) ZIP (Bytes) ZIP CR CS (bytes) CR L1 Error (10-3) Max Error (10-3)

Fig15.a 233 772 59 438 3.93 292 801 0.887 10.18

Fig15.b 80 784 12 014 6.72 387 209 0.953 33.09

Fig15.c 98 748 29 680 3.33 183 540 0.985 5.94

Fig15.d 156 708 16 849 9.30 192 816 0.765 7.31

Fig15.e 298 608 45 539 6.56 208 1436 2.588 21.66

Fig15.f 297 144 43 714 6.80 244 1217 1.766 12.01

Alliez at al. [8] Valette and Prost [5] Khodakovsky et al. [4] Our scheme

Compressed Size (bytes) 14 075 10 603 6 063 292

CR 17 22 39 801
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ting. Our approximation algorithm aims at optimizing the connectivity and the control points
number of the generated subdivision control polyhedron. After a segmentation step, the 3D
object is decomposed into surface patches of which boundaries are approximated with sub-
division curves which lead to initial local subdivision control polyhedrons by linking control
points of the boundary control polygons. These edges are created with respect to the lines of
curvature, to preserve the natural parameterization of the target surfaces. Local subdivision
surfaces are then iteratively enriched and optimized until the approximation errors become
correct. The final whole control polyhedron containing triangles, quadrangles, higher order
polygons and sharpedges is then created by assembling local subdivision control polyhe-
drons, and encoded using an efficient edge based algorithm followed by an entropic coding
for the connectivity and a 10 bit quantization for the geometry. Results show quite impres-
sive compression rates compared with state of the art algorithms. Thanks to subdivision pro-
perties, at the decompression step, the object can be displayed at any resolution. Moreover
limit surfaces are visually pleasant (piecewise C1 and C2), without artifacts or cracks like
those produced by traditional lossy compression schemes, while sharp features of the origi-
nal models are preserved. Our method is effective for mechanical models since they present
large constant curvature regions which are particularly adapted for subdivision inversion.
However, our method is less suited for natural objects. Concerning perspectives, we plan to
improve the connectivity optimization during control mesh enrichments, by conducting a
deeper analysis of the error distribution. Finding a way to handle natural noisy objects is also
of interest.
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