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Abstract

In this paper we present a new framework for subdivi-
sion surface fitting of arbitrary surfaces (not closed objects)
represented by polygonal meshes. Our approach is particu-
larly suited for output surfaces from a mechanical or CAD
object segmentation for a piecewise subdivision surface ap-
proximation. Our algorithm produces a mixed quadrangle-
triangle control mesh, near optimal in terms of face and
vertex numbers while remaining independent of the connec-
tivity of the input mesh. The first step approximates the
boundaries with subdivision curves and creates an initial
subdivision surface by optimally linking the boundary con-
trol points with respect to the lines of curvature of the target
surface. Then, a second step optimizes the initial control
polyhedron by iteratively moving control points and enrich-
ing regions according to the error distribution. Experiments
conducted on several surfaces and on a whole segmented
mechanical object, have proven the coherency and the ef-
ficiency of our algorithm, compared with existing methods.

1 Introduction

A subdivision surface is a smooth (or piecewise smooth)
surface defined as the limit surface generated by an infinite
number of refinement operations using a subdivision rule
on an input coarse control mesh. Hence, it can model a
smooth surface of arbitrary topology (contrary to a NURBS
model which needs a parametric domain) while keeping
a compact storage and a simple representation (a polyg-
onal mesh). Moreover it can be easily displayed to any
resolution. Subdivision surfaces are now widely used for
3D imaging and have been integrated to the MPEG4 stan-
dard [1]. For all these reasons, given an input target mesh,
subdivision surface approximation algorithms become quite
beneficial in terms of compression (the original mesh can be
stored or transmitted in the form of a coarse control polyhe-
dron), remeshing (the subdivided control polyhedron is of-
ten much regular than the original mesh), reverse engineer-

ing or animation. In this context, we present an algorithm
for fitting a piecewise smooth subdivision surface to an in-
put mesh aiming at getting close to the optimality in terms
of control points number and connectivity of the subdivision
control polyhedron. Our method is particularly suited for
mechanical surfaces or CAD parts; indeed in these cases the
research of the optimality is quite relevant. Input surfaces
must be open, but can have multiple holes (our method can-
not handle closed surfaces) but this restriction is not critical
since a closed surface can be segmented to give adapted out-
put surfaces. Section 2 details the related work about sub-
division surface fitting, while the overview of our method is
presented in section 3. Sections 4 and 5 deal with the two
distinct steps of our method: the initialization and the op-
timization of the subdivision surface. Finally, in section 6,
results are presented, evaluated and compared with existing
methods.

2 Related Work

Several methods already exist for subdivision surface fit-
ting, most of them take as input a dense mesh and obtain
the subdivision control mesh connectivity by simplification:
Lee et al. [2] and Ma et al. [3] use the Quadric Error Metrics
from Garland and Heckbert [4]. Kanai [5] uses a modified
version which directly minimizes error between the origi-
nal mesh and the subdivided simplified mesh. With these
simplification based approaches, the control mesh connec-
tivity strongly depends on the input mesh. Figure 1 shows
an example of the approximation method from Kanai [5] ap-
plied on two different meshes representing the same shape.
It appears obvious that results are quite different. Particu-
larly, the control polyhedron in Figure 1.e obtained for the
bad tessellated mesh of Figure 1.d is not correct and gives
a quite poor limit surface (see Figure 1.f) regarding to the
original one. In our algorithm, in order to remain indepen-
dent of the original connectivity, we use the boundaries and
the curvature information of the target surface to transmit
the topology to our control polyhedron. Suzuki et al. [6]
also remain independent of the target mesh, by iteratively



subdividing and shrinking an initial hand defined control
mesh toward the target surface. Unfortunately this method
fails to capture local characteristics for complex target sur-
faces, and is only suited for genus 0 closed surfaces. Jeong
and Kim [7] use a similar shrink wrapping approach and
encounter the same problems with complex topologies.

Figure 1. An example of subdivision surface
fitting using the algorithm from Kanai [5].

Concerning the geometry optimization, Lee et al. [2] and
Hoppe et al. [8] sample the original mesh with a set of points
and minimize a quadratic error to the subdivision surface.
Suzuki et al. [6] propose a faster approach, also used in [7]:
the position of each control point is optimized, only by re-
ducing the distance between its limit position and the target
surface. Hence only subsets of the surfaces are involved
in the fitting procedure thus results are not so precise and
may produce oscillations. Ma et al. [3] consider the min-
imization of the distance from vertices of the subdivision
surface after several refinements to the target mesh. Our
algorithm follows this framework while using not a point
to point distance minimization, but a point to surface min-
imization, by using the local quadratic approximant intro-
duced by Pottmann and Leopoldseder [9]. This algorithm
allows more accurate and rapid convergence.
To our knowledge, the optimality in terms of control point
number and position represents a minor problematic in the
existing algorithms but is particularly relevant for mechan-
ical or CAD objects. Only Hoppe et al. [8] optimize the
connectivity (but not the number of control points) by try-
ing to collapse, split, or swap each edge of the control poly-
hedron. Their algorithm produces high quality models but
need of course an extensive computing time. Our algorithm
optimizes the connectivity of the control mesh by analyz-
ing curvature directions of the target surface, which reflect
the natural parameterization of the object. The number of
control points is also optimized by enriching iteratively the
control polyhedron according to the error distribution.

3 Framework

Our framework for subdivision surface fitting is the fol-
lowing: firstly an initial subdivision surface is constructed,

independently of the target surface connectivity (see Sec-
tion 4), by first approximating boundaries and then using
curvature information. Secondly this initial surface is en-
riched by inserting new control points while optimizing the
geometry and the connectivity.

3.1 The choice of the subdivision scheme

Within our framework, we have to choose a subdivi-
sion scheme. Many subdivision rules exist, some of them
are adapted for triangular control meshes, like Loop [10]
and others are adapted for quadrilateral ones, like Catmull-
Clark [11]. For a given surface to approximate, the choice
of the appropriate subdivision scheme is critical. Indeed,
even if, in theory any triangle can be cut into quadrangles
(quads for short) or any quad can be tessellated into tri-
angles, results are not equivalent. The fact is that the na-
ture of the control polyhedron (quads or triangles) strongly
influences the shape and the parameterization of the re-
sulting surface. The body of a cylinder, for instance, is
much more naturally parameterized by quads than by tri-
angles. These reasons have led us to choose the hybrid
quad/triangle scheme developed by Stam and Loop [12].
This scheme reproduces Catmull-Clark on quad regions and
Loop on triangle regions (see Figure 2). Corresponding sub-
division masks are detailed in Figure 8.

Figure 2. Example of Triangle-quad subdivi-
sion.

3.2 The approximate squared distance

The subdivision curve approximation of the boundaries
(see Section 4.2), as the subdivision surface optimization
(see Section 5.1), requires a convergence process. The pur-
pose, starting from an initial surface (resp. curve) is to fit
this surface to the target data by displacing iteratively the
control points by minimizing an energy term. This opti-
mization problem ties up with the smooth parametric curve
and surface approximation problematic. Several algorithms
exist for this purpose concerning curves [13, 14] or surfaces
[15]. They are mostly based on a data parameterization
wich is very complex to optimize. Other approaches [16]
construct a regular grid on the data to overcome this param-
eterization problem, but these techniques are not adapted
for subdivision surfaces which do not rely on a parameter-
ization. Hence, we have chosen to generalize the Active
B-Spline approach from Pottmann and Leopoldseder [9]
which is based on the minimization of local approximate
squared distances from the target data and thus does not



require parameterization. We have extended this method
which have proven to converge much faster than traditional
ones [9, 17] for subdivision curves and surfaces. Their prin-
cipal contribution is the definition of local approximants of
the squared distance from a point to a surface (resp. curve).
Thus the minimization of this point to surface (resp. curve)
distance is much faster than traditional point to point dis-
tance. The local approximant of point to surface quadratic
distance is defined as follows: Considering a smooth sur-
face Ψ, we can define at each point t0, a Cartesian system
(e1, e2, e3) whose first two vectors e1, e1 are the principal
curvature directions and e3 is the normal vector. Consider-
ing this frame, the local quadratic approximant Fd(p) of the
squared distance of a point p at (0,0,d) to the surface Ψ is
given by [9]:

Fd(x1, x2, x3) =
d

d + ρ1
x2

1 +
d

d + ρ2
x2

2 + x2
3 (1)

where x1, x2 and x3 are the coordinates of p with respect
to the frame (e1, e2, e3) and ρ1 (resp. ρ2) is the curvature
radius at Ψ(t0), corresponding to the curvature direction e1

(resp. e2). The local distance approximant from a point to a
3D curve is similar, the reader may refer to [9] for a detailed
derivation and proof of these formula.

4 Subdivision surface initialisation

4.1 Overview

The purpose of the initialization process is twice: trans-
mitting the topology from the original target surface to our
initial control polyhedron and optimizing the connectivity
of this control polyhedron. The initialization algorithm is
the following: first, the boundaries of the target surface are
approximated by piecewise smooth subdivision curves; then
our process will attempt to connect control points of the cor-
responding control polygons, in order to create the optimal
set of facets that will represent our initial control polyhe-
dron. These edges are chosen according to the curvature
directions of the original surface. According to these edges,
the topology of the surface is reconstructed, in a simple and
efficient manner even for complex topologies.

4.2 Boundary curve approximation

4.2.1 Subdivision curve presentation

A subdivision curve is created using iterative subdivisions
of a control polygon. In this paper we use the subdivision
rules defined for subdivision surface by Hoppe et al. [8] for
the particular case of crease or boundary edges: new ver-
tices are inserted at the midpoints of the control segments
and new positions P ′

i for the control points Pi are computed
using their old values and those of their two neighbors using
the mask:

P ′
i =

1
8
(Pi−1 + 6Pi + Pi+1) (2)

With these rules, the subdivision curve corresponds to a
uniform cubic B-Spline, except for its end segments. We
also consider specific rules (those defined by Hoppe [8] for
corner vertices) to handle sharp parts and extremities:

P ′
i = Pi (3)

This subdivision curve will coincide with the boundary
of a subdivision surface generated by commonly used sub-
division rules like Catmull-Clark [11] or Loop [10].

4.2.2 The approximation algorithm

Our main purpose concerning this part of the process is to
get close to the optimality in terms of number and place-
ment of the found control points. Our algorithm is an exten-
sion for subdivision rules, including sharp vertex process-
ing, of the Active B-Spline Curve developed by Pottmann
and Leopoldseder [9] (see Section 3.2). One shortcoming
of their method is the high dependency to the initial ac-
tive curve. Hence we have introduced a new process, an-
alyzing curvature properties of B-Splines, which computes
a near optimal evaluation of the initial number and posi-
tions of control points. Describing this curve approxima-
tion method is beyond the scope of this paper, thus we in-
vite readers to refer to [18] for complete explanations and
details about this algorithm. Globally, our boundary curve
approximation works as follows: firstly, sharp vertices are
detected and the boundary is cut into smooth parts. Then,
for each smooth part, we apply the approximation algorithm
described in [18] to find a near optimal approximating sub-
division curve. Then smooth parts are connected with as-
sociated sharp tagged control points. An example is shown
on Figure 3.

Figure 3. Example of boundary approxima-
tion.

4.3 Edge score definition

Once the boundary control polygons have been ex-
tracted, the purpose is to create edges and facets by connect-
ing the control points in such a way that the corresponding
created initial subdivision surface is the better approxima-
tion of the target surface for these given control points. For
this purpose, we consider the lines of curvatures of the orig-
inal surface, represented by local directions of minimum
and maximum curvature. Control lines of a subdivision sur-
face are strongly linked to the lines of curvature. Indeed the



topology of a control polyhedron will strongly influence the
geometry information of the associated limit surface, which
is also carried by lines of curvature [19]. This coherency
between control lines and lines of curvature is shown in the
example on Figure 4.

Figure 4. The coherency between control
lines (a), minimum (b) and maximum (c) di-
rections of curvatures.

Thus, for each couple of control points from the bound-
ary control polygons, a Coherency Score (SC) is calculated,
taking into account the coherency of the corresponding po-
tential control edge with the lines of curvatures of the cor-
responding area on the target surface.

Figure 5. Edge score definition.

The mechanism is illustrated on Figure 5: For each po-
tential edge E, we consider its vertices P0, P1 and their
respective limit positions P∞

0 , P∞
1 . Then we calculate the

pseudo geodesic path, between these limit positions, to sim-
ulate the control line, by applying the Dijkstra algorithm on
the vertices of the original surface. Finally we consider the
curvature tensors of the n vertices Vi of this path, and partic-
ularly their curvature directions. The coherency score SC
for this potential edge E is:

SC(E) =
min(

∑n
i=1 θmini,

∑n
i=1 θmaxi)

n
(4)

with θmini (resp. θmaxi) is the angle between the min-
imum (resp. maximum) curvature direction of the vertex Vi

and the segment P∞
0 P∞

1 . This score SC ∈ [0, 90] is ho-
mogeneous to an angle value in degrees. Two special cases
are taken into account, concerning the nature of vertices Vi

belonging to the path:

• If Vi owns an isotropic curvature tensor (plane or
spherical region), hence the directions of curvature

do not carry information. In these cases θmini and
θmaxi are set to 45, to not influence the final score.

• If Vi is on a boundary (while not being the beginning
or the end of the path), then a penalty is introduced, be-
cause if the corresponding potential edge represents a
correct control edge, thus it should not cross or touch a
boundary. Therefore in these cases θmini and θmaxi

are set to 90.

4.4 Topology extraction and reconstruction

The reconstruction of a control polyhedron having the
same topology that the original surface is not a trivial prob-
lem, knowing that the target surface can have multiple holes
(and therefore multiple boundary control polygons). Alliez
et al. [19] use parameterization and constrained Delaunay
algorithms for topology reconstruction; we aim at avoiding
such complex processes knowing that moreover, parame-
terization does not always work on surfaces with multiple
holes. Our algorithm is the following: we extract a single
contour, that we call the Topologic Contour, representing
the boundary of the final control polyhedron. In the case
of a single boundary target surface, it is automatic. In the
case of a multiple boundaries target surface, we have several
control polygons, hence we link them by creating edges and
doubling certain control points. For n boundaries, we create
(n − 1) edges, by choosing those associated with smallest
scores SC. This process is illustrated in Figure 6.

Figure 6. Topology extraction for a surface
with three boundaries.

For a two holes surface (see Figure 6.a), we have created
one single topological oriented contour (see Figure 6.b).
The difficulty here is to create a coherent Topological con-
tour. Figure 6.c presents this problematic. We have chosen
to start the topologic contour from control point B1

0 which,
therefore, becomes C0, then B1

1 becomes C1 and B2
1 be-

comes C2 and then a question occurs: does the topological
contour have to continue on B2

0 or B2
2? Even if this question



seems trivial for a plane object, it becomes very complex
in the case of a topologically complex, multiple holes sur-
face and moreover will be critical for the rest of the process.
Our solution is the following (see Figure 6.d): first, consid-
ering limit positions of B1

1 and B2
1 , we mark every edge

belonging to their pseudo-geodesic path. Then we extract
triangles from the previous path (TB1

0B1
1) and from each

possible path (TB2
0B

2
1 and TB2

1B
2
2 ). Finally we calculate

the shortest path, considering marked edges as impassable,
from TB1

0B1
1 to TB2

0B
2
1 and TB2

1B
2
2 . The shortest path

(the blue arrow in the example) gives us the correct control
point to integrate to the topological contour (see Figure 6.e).
Once the topological contour has been extracted, our algo-
rithm is quite simple (see Figure 7). We consider the po-
tential edge associated with the smallest score SC (dotted
segments in Figure 7), and we cut the contour along this
edge, creating two sub-contours. This algorithm is repeated
recursively on sub-contours until it remains only plane con-
tours (see contours 1,2,3 on Figure 7). Then for each plane
contour, we check its convexity, if it is convex, we create
a facet, and if not, we decompose it into convex parts, us-
ing the algorithm from Hertel and Mehlhorn [20]. By as-
sembling created facets we obtain our initial polyhedron of
which limit surface (see Figure 7) represents in most case a
quite good approximation of the original surface.

Figure 7. Initial control polyhedron creation.

5 Subdivision surface optimization

Even if the initial subdivision surface often represents
a good approximation of the target surface, the initializa-
tion mechanism considers only the boundary information.
Hence we have now to take into account the interior data.
Considering this purpose, we have defined two complemen-
tary mechanisms: A subdivision inversion algorithm, gen-
eralizing Pottmann and Leopoldseder method [9] for the
complex quad-triangle subdivision rules, and a enrichment
mechanism which adds points and optimizes connectivity
according to the error position and distribution.

5.1 Quad-triangle subdivision inversion

For a given target surface and a given approximating
subdivision surface, this process aims at displacing control
points by minimizing a global error over the whole surface.
To achieve this purpose, we use a least square method based
on the quadratic distance approximant defined by Pottmann
and Leopoldseder [9] (see Section 3.2). Our algorithm is
the following:

• The curvature is calculated for each vertex of the tar-
get surface. We have implemented the work of Cohen-
Steiner et al. [21], based on the Normal Cycle. This es-
timation procedure has proven to be the most efficient
and stable among the others and gives very satisfying
results even for bad tessellated objects.

• Several sample points Sk are chosen on the subdivi-
sion surface, they correspond to vertices of the subdi-
vided polyhedron at a finer level l0. The associated
footpoints (projections of the sample points on the tar-
get surface) are extracted. For each of them, we cal-
culate the curvature tensor, by a linear interpolation of
those of the surrounding vertices, using barycentric co-
ordinates. This tensor allows us to construct the Frame
e1, e2, e3 and the curvature radius ρ1 and ρ2, useful for
the point to surface distance computation (see Equa-
tion 1). Sample points Sk can be computed as linear
combinations of the initial control points P 0

i (see Fig-
ure 8); they correspond to control points P l0

i at the
finer level l0.

Sk = Ck(P 0
1 , P 0

2 , ..., P 0
n) (5)

• The functionnals Ck are determined using iterative
multiplications of the l0 subdivision matrices Ml asso-
ciated with our subdivision rules (see Figure 8). These
subdivision matrix Ml are such as:

P l = Ml.P
l−1 (6)

with P l = [(P l
1, P

l
2, ..., P

l
n)]T . The subdivision masks

depends on the nature of the neighboorhood of the con-
sidered control points. For a given control point Pi,
surrounded by ne edges and nq quads, the mask is
given in Figure 8.c. If Pi is surrounded only by tri-
angles (resp. quads) the mask is given in Figure 8.a
(resp. Figure 8.b). We also take into account border
points (see Equation 2) and sharp border points (see
Equation 3). The functionnals Ck, for the level l0, are
the lines of the matrix C such as:

C =
l0∏

l=1

Ml × Ll0 (7)

Ll0 is the limit matrix which gives the limit positions,
proposed by Stam and Loop [12], of the considered
control points at the level l0.



• For all Sk, local quadratic approximants F k
d of the

squared distances to the target surface are expressed
according to the frames e1, e2, e3 at the corresponding
Footpoints. The minimization of their sum F gives the
new positions of the control points P 0

i .

F =
∑

k

F k
d (Sk) =

∑

k

F k
d (Ck(P 0

1 , P 0
2 , ..., P 0

n))

(8)

Figure 8. Smoothing masks for Loop,
Catmull-Clark and the quad-triangle scheme.

Figure 9. Our surface optimization. (a) origi-
nal surface. (b,c,d) control polyhedrons after
0,1 and 5 iterations. (e,f,g) limit surfaces.

Figure 9 shows an example of the algorithm. Figure 9.b
and 9.e show respectively a hand-made bad initial control
polyhedron and the corresponding limit surface. After only
5 iterations, the limit surface (Figure 9.g) is perfectly fit-
ted with the original one. Resulting errors are respectively
15.9× 10−3 and 5.0× 10−3 after 1 and 5 iterations for our
algorithm against respectively 21.4×10−3 and 16.1×10−3

for the traditional point-to-point minimization used by Ma
et al. [3] for example. Our algorithm is clearly faster to
converge. All surfaces considered in the experiments were
normalized in a cubic bounding box of length equal to 1.

5.2 Enrichment and connectivity optimization

In this section we present our method to enrich precisely
the polyhedron, while trying to keep a near optimal con-
nectivity. The first step of this algorithm is the principal

error field extraction. The goal is to extract not only the
maximum error point but an area (a set of error points) cor-
responding to the error field in order to be able to analyze
the error distribution. For this purpose we consider sam-
ple points Sk on the subdivision surface and associated dis-
tances dk to the corresponding projections on the target sur-
face. Then, we extract an add to our error set, Skmax cor-
responding to the maximum error, and every sample points
corresponding to a significant error (we have fixed a thresh-
old T = dkmax

2 ) and connected to an other point of the
error point set. This extraction is shown for a 2D case in
Figure 10.

Figure 10. Principal error field extraction.

Then, we distinguish two cases, illustrated in Figure 11
for the target objects from figure 12.b and 12.a:

1. The error field corresponds to a local error. Hence, if
several faces Fk are concerned by the error field (they
contain at least one error point), it means that the topol-
ogy in this region is not correct, hence, we merge these
faces and then add a point in the resulting face and
connect it with its neighbors. Figure 11.b show such
an error field (error points are marked in red). Corre-
sponding faces have been merged, before adding a new
control point (see Figure 11.c).

2. The error field is diffuse. Hence, there is no precise
error center, the error field corresponds rather to a lack
of degrees of freedom. Thus, every concerned face Fk

is enriched. A point is added at the center and con-
nected to its neighbors. If two faces are adjacent we
also cut their common edge. An example is shown on
Figure 11.e and 11.f. This mechanism concerns also
cases were there exist one principal error but the er-
ror field already contains a control point. This means
that the control point does not bring enough freedom
to model the target surface, hence we enrich every face
of the field.

We detect these two cases, simply by considering the
percentage of the error point set with an error close to
dkmax (the theshold 0.80 × dkmax gives satisfaying re-
sults). If this percentage is lower than a threshold (usually
50%) thus the error set is considered as a Gaussian like dis-
tribution associated with a local error (case 1), otherwise the
error set is considered as a plateau like distribution (case 2).
This quite simple algorithm has given satisfying results in
our experiments.



Figure 11. The two cases of error distribution
with corresponding enrichment.

6 Complete algorithm and results

Our whole algorithm is the following:

Begin Subdivision Surface Approximation

The initial subdivision surface is created using boundary curves
and curvature information (see Section 4).
while E > ε do

// E is the approximation error and ε a threshold value.
while E > ε and m < m0 do

// m is the iteration number and m0 a maximum number.
Optimisation procedure (see Section 5.1). The subdivision
surface is moved toward the target surface, by minimizing
a sum of quadratic distances.

end while
if E > ε then

A new control point is inserted onto the subdivision surface
according to the error distribution (see Section 5.2).

end if
end while

End Subdivision Surface Approximation

Figure 12. Examples of our subdivision sur-
face approximation scheme.

Our approximation method was tested on several differ-

ent objects (with ε = 5 × 10−3 and m0 = 5). Figure 12
presents results for different target surfaces with different
topologies. Control polyhedrons have quite small numbers
of faces and vertices compared with initial surfaces (conve-
nient for compression tasks) and the approximation errors
remain very low (see Table 1). Besides, for the example of
the cylinder (see Figure 12.c) results are quite better than
for the algorithm from Kanai [5] (see Figure 1). More-
over we can distinguish an other advantage, dealing with
the remeshing task, on Figure 12.c: the resulting subdivided
surface is a quite nicely remeshed model compared with the
initial target object.

V/F Ini V/F Ctrl E L1 (×10−3)
(Fig12.a) 950/1734 20/30 2.69
(Fig12.b) 324/491 16/17 2.06
(Fig12.c) 168/248 10/5 1.72

Table 1. Vertex and Face numbers of initial
objects (V/F Ini) and control polyhedrons
(V/F Ctrl), and Resulting errors (E L1).

We have applied our method to a whole object (see Fig-
ure 13), by previously segmenting it (we have used the al-
gorithm from Lavoué et al. [22]), and then applying our
algorithm on each patch (boundaries where fixed to avoid
cracks). Then, all patches have been connected by mark-
ing boundary control edges as sharp (red edges on the fig-
ure). The resulting subdivision surface is quite interesting in
terms of vertex and face numbers and approximation errors.

Figure 13. Application of our fitting scheme
to the Fandisk object. (a) Segmented object,
(b) control polyhedron, (c) limit surface.

V/F Ctrl E L1 E L2
Our 75/89 0.78 × 10−3 1.20 × 10−5

Ma 173/342 5.06 × 10−3

Hoppe 87/170 0.25 × 10−5

Table 2. Results for different approximation
methods applied to the Fandisk object.

We have compared our results with methods from Ma
et al. [3] and Hoppe et al. [8]. Table 2 shows vertex and
face numbers of control polyhedrons (V/F Ctrl), average
errors (E L1) and average quadratic errors (E L2). We ob-
tain a better approximation error than Ma et al., for a lower



number of faces and vertices. Hoppe et al. obtain a bet-
ter quadratic error than ours but both are quite low and our
control polyhedron is lighter than theirs. Moreover their
method relies on a very long and complex global optimiza-
tion while our algorithm is faster (about 5s for Fandisk).
Ma et al. and Hoppe et al. produce a triangle only control
polyhedron, while our method is able to adapt the connec-
tivity to the natural parameterization of the target object by
creating triangles and quads.

7 Conclusion

We have presented a new framework for subdivision
surface fitting. Our algorithm, adapted for open surface
meshes, is independent of the connectivity of the target
mesh and aims at optimizing the generated subdivision sur-
face, in terms of connectivity and control points number.
First, boundaries of the target surface are approximated with
subdivision curves which lead to a first version of the sub-
division surface by linking control points of the boundary
control polygons. These edges are created with respect to
the lines of curvature, to preserve the natural parameteriza-
tion of the target surface of which topology is reconstructed
using pseudo geodesic distances computation. The second
step is the following: the initial subdivision surface is itera-
tively enriched and optimized until the approximation error
becomes correct. The optimization step is an extension for
subdivision surfaces of the quite fast and efficient method
from Pottmann and Leopoldseder and the local enrichment
step adds control points while optimizing the connectivity
according to the error distribution. Applications of our al-
gorithm are quite large including compression, reverse engi-
neering and remeshing. Concerning perspectives, we plan
to improve the connectivity optimization during mesh en-
richments, by conducting a deeper analysis of the error dis-
persion.
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