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ABSTRACT
A pseudo-hierarchical graph matching procedure dedicated
to object recognition is presented in this paper. From a
single model image, a graph is built by extracting invari-
ant local features and linking them according to a so-called
proximity rule. The resulting graph presents several inter-
esting properties including invariance to scale, robustness
to various distortions and empirical linearity of the number
of edges with respect to the number of nodes. The match-
ing process is made hierarchical in order to increase both
speed and detection performances. It relies on progressively
incorporating the smaller model features as the hierarchy
level increases. As a result, even a matching between graphs
containing thousands of nodes is very fast (a few millisec-
onds). Experiments demonstrates that the method outper-
forms state-of-the-art specific object detectors in terms of
precision-recall measures and detection time.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition; I.4.10 [Image Processing and
Computer Vision]: Image Representation—Hierarchical ;
I.5.1 [Pattern Recognition]: Models—Structural ; G.2.2
[Discrete Mathematics]: Graph Theory—Graph labeling

General Terms
Object recognition; graph
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1. INTRODUCTION
Object recognition has been a very active topic in the

past 30 years. Whereas the perfect class object recogni-
tion system is yet to be invented, specific object recognition
has received a decreasing attention since the apparition of
keypoints, whose most famous avatar is probably SIFT [12].
Indeed, recognition methods using keypoints present numer-
ous advantages: they are invariant to translation, scale, ro-
tation and occlusion without significant increase in complex-
ity; thanks to the high descriptive power of the keypoints,
any training is quite unnecessary; they are close to real-time;
and finally they are simple to carry out.

However, extracting keypoints is one thing but detecting
the full object is another. We can roughly distinguish be-
tween two classes of methods doing so: (1) methods using
a global transform, and (2) methods derived from graph
matching (i.e. using local transforms). So far, methods us-
ing a global transform have been thoroughly investigated
and have shown quite convincing results [11, 12, 16, 14,
15]. Yet, there are several problems with using a global
transform. First of them, the choice of the transform: since
most detection systems operate in the real world, a 3D pro-
jective transform should be used by default, however the
large number of required parameters is discouraging both
for RANSAC-derived methods [16, 14] and for approaches
inspired from the Hough transform [12]. In the first case,
RANSAC would have to iterate O(nk) times, where n is the
number of matches and k the number of matches necessary
for estimating the transform parameters, while in the sec-
ond, the space of parameters must have k dimensions. Since
it is either not feasible or too slow for large values of k, most
approaches use a simplified transform (e.g. an affine trans-
form) to approximate the reality while preserving a decent
processing time. Another problem of the global methods is
their inability to handle non-rigid distortions, such as what
can happen to a magazine or to a face. For those reasons,



using a global transform is not entirely satisfying.
On the other hand, graph matching seems to be a straight-

forward way to object detection. Indeed, after having ex-
tracted some salient keypoints, both model object and scene
can be represented as graphs. Moreover, graph matching op-
erates at a local scale by comparing pairs of nodes or pairs
of edges, thus avoiding the need of a global transform while
in the same time giving more flexibility to the model [9]
and increasing performances [6] if distant features are dis-
connected. In sum, the only problem with graph match-
ing is that it is NP-hard. While recent researches have
focused on global approximations (graph-cuts [17], tensor-
based [7]), the timing performances remain disappointing
for large graphs. In comparison, the historically older relax-
ation methods perform faster and stay competitive in prac-
tice [10, 13, 17], although no theoretical guarantee ensures
their convergence. Since we focus here on a subclass of prob-
lems where we can rely on scale-invariant local features, it
is possible to further increase the matching speed by using
the additional information provided by the features, that is,
their orientation and scale. In this paper and on the con-
trary of RANSAC-derived approaches for instance, we take
full advantage of both information, but more especially of
the scale, to build a hierarchical matching system relying on
probabilistic relaxation.

Indeed, hierarchies have been shown to be an efficient
way of reducing the computational burden by spreading the
spatial constraints over several scale levels, which in addi-
tion improves the robustness to intra-class variability [8, 18].
In particular, Wilson and Hancock have developed a graph
matching procedure with hierarchical relaxation [18] based
on a bottom-up process that compares pairs of so-called
super-cliques between the model and scene graphs. How-
ever, the comparison between super-cliques somehow unnec-
essarily increases the complexity with respect to a simpler
pairwise edge comparison as done by Christmas et al. [4]
for instance. This last work describes another probabilis-
tic relaxation and was also adapted to a pseudo-hierarchical
graph matching in a related paper [3]. It presents several ad-
vantages: the framework is minimalist and simple to use; it
is implicitly designed for subgraph isomorphism; it is robust
to noise; and the algorithm was empirically shown to con-
verge faster than most of the other existing methods (typ-
ically it takes less than 5 iterations). Unfortunately, the
hierarchy used was simplistic and difficult to generalize. Ini-
tially developed for an application of road-segments match-
ing, the authors used a two-pass procedure to overcome the
large number of segments with respect to the computational
power available at that time. In the first pass, they sim-
plified the model graph by removing every segment smaller
than a threshold. Then, they executed the matching pro-
cess with this reduced graph and, based on the result, they
estimated the parameters of the similarity transform that
matched the model on the scene. Finally, they incorporated
all model segments in the second pass - eliminating every hy-
pothesis not compliant with the global transform - and ran
the relaxation once again to get the final result. This simple
approach succeeded in this case, however it has many draw-
backs: the searched object has to be present only once in the
scene in order to correctly estimate the global transform; the
number of levels used (i.e. 2) is minimal and immutable; the
requirement of a global transform itself makes lose the very
interest of the method, i.e. feed the algorithm with only sim-

ple local information and let the algorithm aggregate them
to decide upon the global result. Although we used the same
probabilistic framework, our method is perfectly suited for
multi-object detection and extends the hierarchy to an ar-
bitrary number of levels without the need of a global trans-
form. Our matching procedure is however not hierarchical
in the strict sense of the word: in hierarchical strategies,
nodes of the lower levels of abstraction are contracted into
single nodes of higher levels. Instead, we base our strategy
on gradually incorporating the model features in the match-
ing process as the hierarchy level increases, while in the same
time the scene graph is pruned for compensation.

The rest of the paper is organized as follows: we begin
by briefly presenting the original theory of Christmas et al.
[4]. Then, we introduce the notion of proximity graph in
section 3. The pseudo-hierarchical matching procedure is
described in detail in section 4. Finally, we demonstrate
the effectiveness of the method in section 5 and conclude in
section 6.

2. PROBABILISTIC RELAXATION
In this section, we sum up for the reader the probabilistic

framework developed by Christmas et al. in [4]. Given two
complete graphs Gm and Gs (respectively, the model and
scene graphs), the aim of the matching is to find the best
mapping between each model and scene node. In our for-
malism, G = (V,E,X) where E represents the set of edges,
V is the set of vertices and X the set of their associated
unary measurements (in our case, a SIFT descriptor). The
eventuality of subgraph isomorphism is dealt with by adding
the null node v0 ∈ V m to the model graph ; in other words
extraneous nodes in the test image are simply tagged with
the null-label.

As in similar works, the method needs two kinds of prob-
abilistic measures to estimate the likelihood of matches be-
tween each scene node and each model node: (a) the prob-
ability of a node-to-node assignment p(uα ← vi|xα) using
unary attributes only (uα ∈ V s, xα ∈ Xs and vi ∈ V m),
and (b) an edge compatibility function that describes the
local affinity between two presumed matches:

p(eαβ |uα ← vi, uβ ← vj) (1)

with eαβ ∈ Es. After having initialized the probabilities
using measure (a), the relaxation iterates until convergence
of the system according to the following update rule:

p(n+1)(uα ← vi) =

p(n)(uα ← vi)Q
(n)(uα ← vi)∑

vj∈Vm p
(n)(uα ← vj)Q(n)(uα ← vj)

(2)

where

Q(n)(uα ← vi) =∏
uβ∈V s\uα

∑
vj∈Vm

p(n)(uβ ← vj)p(eαβ |uα ← vi, uβ ← vj).

(3)

For further details, we refer the reader to the original pa-
per [4].



3. SCALE-INVARIANT PROXIMITY GRAPH
Although Christmas et al. [4] had formulated the match-

ing problem using complete graphs (i.e. ∀i 6= j, vi, vj ∈
V × V ⇒ eij ∈ E) in their original paper, it is usually not
feasible computationally speaking. Indeed, it would involve
the calculation of O(|V m|2 |V s|2) edge probabilities where
each set easily contains hundreds or thousands of features
in realistic condition of use as well as in our experiments. A
critical point for our system is thus to be able to relax the
spatial constraints between distant features. Surprisingly,
it remains compatible with the relaxation mechanism of [4]
provided that we force the density function to worth zero
when the model or scene edge does not exist:{

∀eij /∈ Em, p(eαβ |uα ← vi, uβ ← vj) = 0

∀eαβ /∈ Es, p(eαβ |uα ← vi, uβ ← vj) = 0
(4)

Theoretically speaking, this constraint may sound counter-
intuitive since in the event where (uα, uβ) or (vi, vj) are
not connected, it looks like inducing that the two matches
uα ← vi and uβ ← vj are necessary false. In reality however,
it results in that the features can only receive an influence
from their direct neighbors (but indirect influence between
distant features still occurs after several steps of diffusion of
the probabilities).

Thus, we simply define the proximity graph as a graph
in which distant features are not connected. Formally, we
restrain the set of edges to:

E =

{
eij

∣∣∣∣∀i, j ‖pi − pj‖√
σiσj

< χ

}
(5)

where p = (px, py) denotes a keypoint position, σ its scale
and χ is a constant. This definition yields several interesting
properties with respect to our application:

• The graph topology is independent of the scale, i.e.
both model and scene graph structures are invariant
to the size of the object in the image. This comes
from the fact that the distance between keypoints is
normalized by their scale in eq. (5).

• Each graph edge stands for a stable connection. In-
deed, from the “perspective” of a keypoint, the noise
on the relative position of the other keypoints increases
with their distance in the pyramidal scale-space (i.e.
bigger points appear closer).

• The proximity graph substantially reduces the compu-
tational burden while in the same time improving the
detection performances (section 5).

• From above, the graph displays a hierarchically cen-
tralized structure (Figure 1.(c)): the biggest the patch,
the more connections it has. It is interesting since the
density of features is uniform in the pyramidal scale-
space of the image. In other words, the high propor-
tion of smaller keypoints compensates for the previ-
ous property. Experimentally, we found out that the
number of edges is linear with the number of vertices
instead of squared with a complete graph.

• No planarity constraint is imposed. Contrary to a clas-
sical Delaunay triangulation [18, 2], our graph is unaf-
fected by node disappearing due to noise.

(a) Gm1 (b) Gm2 (c) Gm3 = Gm

Figure 1: Model graph decomposition (here, 3 lev-
els). Smaller features are incorporated as the level
increases.

4. PSEUDO-HIERARCHICAL MATCHING
Globally, the graph matching is processed in a top-down

manner that starts with the coarsest scale and ends with
the finest (contrary to true hierarchical approaches). For
each scale level, a probabilistic relaxation is run to find out
the best possible mapping between a subset of the model
graph and the gradually pruned scene graph. Thanks to this
restriction, our method is very fast. The complete algorithm
is detailed in algorithm 1 but we now detail the different
steps.

4.1 Model Graph Decomposition
To begin with, we decompose the model graph into a set

of subgraph {Gml }Ll=1 based on the scale of the keypoints.
For each level l, only the features whose scale is superior
to a threshold sl are retained (for the null feature, σ0 = ∞
by convention). More specifically, the thresholds are defined
such that the coarsest one is equal to a fraction ρ ∈ [0, 1]
of the model object radius wobj , and the finest one to the
minimal possible feature scale σmin:

sl = σmin

(
ρ.wobj
σmin

) L−l
L−1

Hence, Gml = (V m,l, Em,l, Xm,l) with V m,l = {∀i vmi |
σmi > sl} (and so on for Em,l and Xm,l). An example of
such a decomposition is given in Figure 1. Note that the
graph topology does not change across the levels, i.e. ∀l < l′,

Em,l ⊆ Em,l
′
⊆ Em. We call this decomposition a pseudo-

hierarchical structure since, in the coarser levels, no “super-
node” or whatsoever is intended to represent a subset of
nodes of inferior levels. Instead, smaller nodes are simply
appearing in the graph when the level increases. Our ap-
proach is thus easy to handle and do not need any specific
addition to the mathematical background of [4]. Finally,
note that only the model graph is decomposed ; since we do
not know in advance the scale of the model object possibly
present in the scene graph, it would be impossible to apply
the same procedure to this graph.

4.2 Association Graph
As in other graph matching papers [13, 17], we introduce

the notion of association graph to describe the discrete space
of match hypothesis between the model and scene nodes.



Although the original approach of Christmas could be im-
plemented by updating a single vector of |V m| probabilities
for each scene node at each iteration, we adopted a more
flexible architecture to deal with the different operations re-
quired by our optimization.

Formally, the association graph A = (V A, EA, XA, Y A)
represents the candidate hypothesis examined during the
matching along with their relations of mutual influence. Here,

V A is the set of hypothesis, XA =
{
p(n)

}
the corresponding

probabilities estimated at the iteration n, EA the set of edges
and Y A their associated weight from eq. (1). An illustra-
tion of such a graph is given in Figure 2.(a). In the following
of this paper, we will refer to an hypothesis hiα ∈ V A as a
couple of model and scene nodes hiα = (vi, uα) and to a null
hypothesis as h0α = (v0, uα).

Before explaining how to build V A and EA from the model
and scene graphs, we now describe a set of operations, com-
mon to all hierarchy levels, executed on the association graph
before, during and after the relaxation process:

4.2.1 Optimizing the relaxation
Prior to the relaxation, we reorganize for each hypothesis

in V A the list of its edges by grouping together the edges
connected to neighboring hypothesis having the same model
node. This way, the succession of a product and a sum in
formula (3) can be evaluated in O(nedge) time complexity
instead of O(n2

edge) with a naive implementation.

4.2.2 Dynamic Pruning of the graph
To further increase performances, the association graph

is lightened at each relaxation iteration by ejecting the hy-
pothesis for which the associated scene node corresponds to
the null node with a minimum confidence level (typically,
more than 99.9%).

4.2.3 Extraction of the detections
Finally, after completion of the relaxation process, the as-

sociation graph is processed to extract detections. Firstly,
we apply the MAP rule to every scene node, that is we
eliminate every non-maximum hypothesis in terms of the
posterior probability. Also, every null hypothesis is deleted
as well. What remains is a set of connected components
{Ck = {hiα}}, each of them representing a single detection
in the scene image. Note that the model subgraph Cmk =
{vi} and scene subgraph Csk = {uα} derived from Ck are
also connected in their respective graph thanks to the con-
struction procedure of the association graph (eq. (4), see
next section).

4.3 Matching Initialization
The coarser subgraph Gm1 is used for the initial matching

with the scene. Since this graph contains a small number of
features, the matching is almost instantaneous. We detail
here the required operations:

4.3.1 Hypothesis generation
Before the relaxation process, the unary nodes attributes

are used to set the initial probabilities:

p(0)(uα ← vi) = p(uα ← vi|xα)

=
p(xα|uα ← vi)p(uα ← vi)∑

vj∈Vm p(xα|uα ← vj)p(uα ← vj)

with p(uα ← vi) = constant since we have no mean of
estimating this prior, and:

p(xα|uα ← vi) =

{
φi(xα) if φi(xα) > ε1,

0 else.
(6)

In the case where p(0)(uα ← vi) is null, then the hypothesis
is not considered. We assumed that the measurement noise
on the SIFT descriptors follows a Gaussian distribution, that
is φi(xα) = N (xα; xi,Σ) with uniform variance. Moreover,
if vi is the null node, then we set p(xα|uα ← v0) = η1 (see
section 5.1 for how to set ε1 and η1).

4.3.2 Edge generation
Looking at eq. (2), one can realize that two hypothesis

only needs to be connected if their edge compatibility is
not null. Since we already force the compatibility to be
null for every pair of hypothesis whose corresponding nodes
are not linked in the model graph or in the scene graph by
definition of eq. (4), it is sufficient to simply iterate on every
model edge eij and scene edge eαβ , each time connecting the
hypothesis hiα and hjβ (note that the null node is connected
to every other nodes in the model graph, including itself),
in order to fully initialize EA.

Practically, the edge compatibility p(eαβ |uα ← vi, uβ ←
vj) = yiα,jβ ∈ Y A is estimated by extracting 4 locally in-
variant features from eij and eαβ :

• the normalized edge length e
(1)
αβ = ‖pα − pβ‖ /(σα +

σβ),

• the normalized angle e
(2)
αβ = θαβ − θα,

• the normalized scale difference e
(3)
αβ = |σα − σβ | /

max(σα, σβ) and

• the angle difference e
(4)
αβ = θα − θβ

where θ denotes the orientation of a keypoint or an edge.
We assumed four independent Gaussian distributions with

respect to the model edge descriptors
{
e
(n)
ij

}4

n=1
to calculate

the final compatibility. Again, if the result is inferior to a
constant threshold ε2, the edge is ignored, and when the
model edge contains the null node, the result is worth η2
(again, see section 5.1).

4.4 Updating the association graph
After the first relaxation using Gm1 , we get a set of con-

nected components, each one corresponding to a localized
detection in the scene image. Most of those components
only contains a single match, i.e. one scene keypoint de-
scriptor was similar to a model one but no consistent point
was found in the neighborhood. We consider those detec-
tions as insufficient and eliminate them.

Then, the rest of the update algorithm consists in itera-
tively refining the model (i.e. adding smaller model features)
and expanding the connected components in the scene graph
(i.e. trying to add neighbors). The expansion step is itself
divided in two steps: first, to add new hypothesis involving
neighbors of detected nodes (Figure 2.(b)) and, second, to
connect the new hypothesis between them (Figure 2.(c)).

Since the sizes of the considered sets of neighbors are very
small with respect to the scene graph, updating the associ-
ation graph is very fast. Moreover, wrong detections do not



(a) example of an initial matching (coarse). Note that only
the model graph is decomposed.

(b) Adding new hypothesis. (c) Linking them.

Figure 2: (a) Illustration of the association graph
(orange nodes) between the model graph (left) and
the scene graph (right). (b), (c): Update algorithm
(see text for details).

grow over time and hence the matching time do not explode.
The final complete matching procedure is summarized in al-
gorithm 1.

5. EXPERIMENTS

5.1 Parameter training

Independent parameters.
The probabilistic framework of Christmas et al. [4] does

not require hyper-parameters (contrary to RANSAC, for in-
stance). However, we have to learn instead the constant ε1,
ε2, η1 and η2 during a pseudo training stage independent of
the model images.

Practically, we tuned the threshold ε1 (eq. (6)) so as to
eliminate 99% of the candidate hypothesis. It is rather gen-
erous, since it virtually amounts to building a visual dic-
tionary of only 1/1% = 100 words. For that purpose, we
extracted a large number of SIFT descriptors in natural im-
ages and performed random pairwise comparisons. Then,
η1 was fixed to the expected value of formula (6) when two
random descriptors are used, since it corresponds to a com-
parison between a known descriptor and an unknown one
(the null node).

To fix the value of η2, we assumed a uniform distribu-
tion over the ranges of the four invariants (section 4.3.2),
respectively 2, 2π, 1 and 2π, so that η2 = 1/(8π2). We then
arbitrarily fixed the threshold ε2 to η2/10.

Finally, the number of relaxation iterations R was set to
2 without observing noticeable loss of performances, proof
that the relaxation process converges excessively fast.

Model-dependent parameters.
The parameter χ controls the trade-off between a densely

connected proximity graph and a high detection speed. As
a consequence, we set this parameter to its minimal value

Algorithm 1 Full pseudo-hierarchical matching procedure.

Initialization (level l = 1):

1. For each vi ∈ V m1 and for each uα ∈ V s:
Try to generate an hypothesis hiα (section 4.3.1).

2. For each eij ∈ Em1 and for each eαβ ∈ Es:
if hiα ∈ V A and hjβ ∈ V A: Try to generate an edge
between them (section 4.3.2).

Update: For each l ∈ [2..L]:

1. Initialize T to an empty list.

2. For each hiα ∈ V A:
Sort hiα’s list of edges (section 4.2.1)

3. Repeat R times (number of relaxation iterations):
- Run one iteration of relaxation (eq. (2)).
- Prune the association graph (section 4.2.2).

4. Apply MAP and extract the set of connected compo-
nents {Ck}Ck=1 (section 4.2.3).

5. if l = L: exit and return the set of {Ck}.

6. For each connected component Ck, k ∈ C (section 4.4):
Compute the set of neighboring scene nodes Ns

k =
{uβ ∈ V s|uα ∈ Csk, uβ /∈ Csk, eαβ ∈ Es}.
For each uβ ∈ Ns

k and for each vj ∈ V ml :
- Try to generate a new hypothesis hjβ .
- If successful: connect hjβ with Ck and add hjβ to T .

7. For each hypothesis hjβ ∈ T (section 4.4):
For each vk neighbor of vj :
For each uγ neighbor of uβ :
If hkγ ∈ T : add an edge between hjβ and hkγ



Figure 3: Robustness to a projective transform:
matching results using complete graphs (left, 7
matches) and proximity graph (right, 46/47 correct
matches).

provided that the model features are sufficiently connected
(i.e. |Em| / |V m| ≈ 8). In most cases, a value of χ = 1
produces good results when σ corresponds to the radius of
a SIFT patch. The influence of ρ and L is studied in the
following experiments.

5.2 Robustness to distortions
In order to validate the alleged property of the proxim-

ity graph to withstand non-rigid matching, we now compare
the mappings obtained using complete graphs and proximity
graphs. To begin with, we present in Figure 3 the matching
results between two identical pictures, one of them under-
going a projective distortion (note how the beaver’s head is
smaller in the bottom row). Only 7 keypoints are matched
using complete graphs whereas 46 correct pairs are found
using proximity graphs (the same parameters are used in
both cases).

Then, robustness to 3D viewpoint change is presented
through the CMU hotel dataset [1]. We matched pairs of im-
ages separated by a number of frames ranging from ∆ = 20
to ∆ = 80 using SIFT keypoints. Note that SIFT itself
is not affine invariant, making the task even more difficult.
Since we do not control the keypoint generation process (i.e.
contrary to manual landmarks as in [2]), it is difficult to
quantitatively assess the quality of the result, but the re-
sults in Figure 4 show that the proposed method succeeds
in connecting together the keypoints present on the different
facades despite an important viewpoint change.

5.3 Comparison with existing methods
Since our method is straddling two domains (namely, graph

matching and object detection), it is difficult to compare
with existing graph matching procedures. Indeed, our al-
gorithm requires the existence for each node of a scale and
an orientation - in addition to their spatial position and de-
scriptor. Moreover, our model and scene graphs must have
a specific structure (i.e. a proximity graph). Unfortunately,
those conditions are not fulfilled in standard benchmarks, as
for example in the hotel dataset [1, 2] (manual landmark-
ing makes the node scale per se unavailable). Instead, we
compared against some more traditional object detection
methods from the state-of-the-art:

• a baseline RANSAC [11] (with an homography)

∆ = 20 ∆ = 40 ∆ = 60 ∆ = 80
314 matches 158 matches 116 matches 69 matches

Figure 4: Matching results between pairs of images
separated by ∆ frames from the hotel dataset [2]
(SIFT keypoints are used instead of manual land-
marks). The proposed matching remains robust to
important 3D viewpoint changes.
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Figure 5: Precision-Recall curves (see text for de-
tails).

• Locally Optimized RANSAC (LO-RANSAC) [5, 14]
(2D similarity followed by an homography)

• Lowe’s method [12] (voting followed by an affine trans-
form)

5.3.1 Evaluation dataset
We manually shot two videos with a standard SONY handy-

cam (720x480 px). Since it was taken under realistic viewing
conditions for an indoor robot, the videos naturally contains
a variety of noises including movement blur, video interlace,
poor lightning. The videos were sampled to obtain a set of
400 images (1160 vertices per scene graph on average). Two
objects were used to benchmark our method (Figure 6), each
of them appearing about 200 times in the test dataset. One
close-up image of each object was used to build our model
(respectively 225 and 1093 vertices in the model graphs) and
to learn the other methods.

5.3.2 Experimental Results
Results are presented in Figure 5 in terms of precision-

recall (P-R) curves. Precision and recall are defined as
Nc/Nd and Nc/Ng, respectively, with Nc the number of cor-
rect detections, Nd the total number of detections and Ng
the number of ground truth boxes (the higher is the curve,
the better). We used a threshold on the cardinality of the
connected components (i.e. count of matches) to generate



  

Figure 6: Model objects (top-left) and sample de-
tections (threshold set for 95% precision).

the curves for our method. Some detection examples are
shown in Figure 6.

Globally, the proposed method outperforms the others.
We mainly explain this fact by our hierarchical procedure
and by the distance used between keypoints. Firstly, most
keypoints on a model image are very small and blur, hence
being quite unspecific. Since our method starts the match-
ing from the bigger keypoints (i.e. the most specific) and
progressively adds smaller keypoints, we are less concerned
by this issue. A clear evidence of this fact is the difference
of precision between the hierarchical method (3 levels) and
the same method without hierarchy (1 level contains all the
model features) in Figure 5. Secondly, we used an abso-
lute distance between SIFT descriptors whereas the other
methods use an approximate relative distance (ratio nearest
neighbor/second nearest) computed with a k-d tree. In noisy
condition, an absolute distance is more robust although it
generates more pairwise hypothesis.

Influence of the parameters L and ρ.
We also investigated the effect in terms of detection per-

formances of the number of levels in the hierarchy L and of
the initial scale threshold ρ. We varied in turn ρ and L, each
time fixing the alternate parameter to its optimal value. Re-
sults are summarized in Figure 7 in terms of P=R measure
and average detection time.

Interestingly, the maximal detection performances are
reached for intermediate values of ρ and L, namely [0.2, 0.3]
for ρ and [3, 6] for L. This corresponds in the first case to
a minimum patch size of about 25% of the model size or
equivalently, about 6% of the model area. Note that for
higher values of ρ not enough features remain in Gm1 and
the detection becomes ineffective (hence the P=R measure
is null for ρ ≥ 0.35). Inversely, the detection time logically
explodes for lower values of ρ. The number of levels clearly
does not have a great importance as long as L ≥ 3, so set-
ting L = 3 seems the best choice since the detection time
linearly increases with L. To sum up, hierarchies with more
than 3 levels outperform two-pass approaches like [3] with-
out significant increase of processing time.

5.3.3 Timing Performance
We compared the average processing time with different
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Figure 7: Influence on the performances of the first
level threshold ρ (top) and the number of levels L
(bottom).

Table 1: Average processing times to detect the two
model objects (i.e. one 225-nodes model graph and
one 1093-nodes model graph against a scene graph
of 1160 nodes on average) for different levels of op-
timization.

Methods time (s)

Complete graph 100,000
Proximity graph 2.58
Pseudo-hierarchy 0.027

RANSAC 0.118
LO-RANSAC 0.077

Lowe’s method 0.128

levels of optimization:

• with complete graphs as in [4],

• with proximity graphs (L = 1),

• with proximity graphs and pseudo-hierarchy (L = 3).

The results are summarized in Table 1. As can be observed,
there is a difference of 5 orders of magnitude between the
first and the the second option1, and again another difference
of 2 orders of magnitude between the second and the third
one. All in all, the detection speed of the original work
[4] was improved by a factor 106. Moreover, our method
appears to be very competitive compared to the state-of-
the-art detectors. This results is however partially due to
the fact that the k-d tree used in those methods to index
keypoint descriptors is almost empty (only 2 model images),
thus generating more matches than it normally would in a
realistic case of use.

1This result was extrapolated from the number of vertices
and edges in the graphs. For reference, a matching between
two complete graphs of 163 and 120 vertices takes about
13 s.



6. CONCLUSION
We demonstrated that a pseudo-hierarchical relaxation

can be efficient in terms of both computation time and de-
tection performances. It outperforms several state-of-the-
art methods in terms of precision-recall curves, and the de-
tection time was reduced by several order of magnitudes
compared to the original approach thanks to the proxim-
ity graph and to a novel multi-level matching procedure.
Although the proposed method is not pure graph match-
ing strictly speaking (since we have put some restrictions
on the graph structure), it proved to be very effective and
usable in practice contrary to many classical graph match-
ing approaches where the experiments are conducted under
heavy simplifications (less than 100 nodes per graph, Delau-
nay triangulation to reduce as much as possible the number
of edges, manual landmarks, and so on). Finally, our system
is not yet scalable (the complexity is linear with the number
of model objects), but we believe that these results are very
encouraging and we are looking forward improving this issue
and extending to class object recognition in next works.
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