
Eurographics Workshop on 3D Object Retrieval (2012)
M. Spagnuolo, M. Bronstein, A. Bronstein, and A. Ferreira (Editors)

SHREC’12 Track: 3D mesh segmentation

G. Lavoué1, J-P. Vandeborre2, H. Benhabiles3, M. Daoudi2, K. Huebner4, M. Mortara5, M. Spagnuolo5

1Université de Lyon, CNRS, INSA-Lyon, LIRIS UMR 5205, France.
2LIFL (UMR Lille1/CNRS 8022), University of Lille 1, France.

3Le2i UMR 5158 CNRS, Université de Bourgogne, France.
4Computational Vision & Active Perception Lab, Royal Institute of Technology (KTH), Stockholm, Sweden.

5CNR-IMATI Genova, Italy.

Abstract
3D mesh segmentation is a fundamental process in many applications such as shape retrieval, compression,
deformation, etc. The objective of this track is to evaluate the performance of recent segmentation methods using
a ground-truth corpus and an accurate similarity metric. The ground-truth corpus is composed of 28 watertight
models, grouped in five classes (animal, furniture, hand, human and bust) and each associated with 4 ground-truth
segmentations done by human subjects. 3 research groups have participated to this track, the accuracy of their
segmentation algorithms have been evaluated and compared with 4 other state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling— I.2.10 [Artificial intelligence]: Vision and Scene Understanding—Shape

1. Introduction

Three-dimensional models are mostly represented as polyg-
onal meshes; this kind of representation has the advantage
of being perfectly adapted to 3D display with the help of
modern 3D accelerated hardware. But the main drawback of
this representation is the lack of a structure or a hierarchical
description that could be very useful for many applications.
Hence, the automatic segmentation of 3D mesh models is
very often a necessary pre-processing tool for applications
such as compression, texture mapping, animation and par-
ticularly shape retrieval. Mesh segmentation consists in sub-
dividing a polygonal surface into patches of uniform proper-
ties either from a strictly geometrical point of view or from
a perceptual / semantic point of view.
According to recent states-of-the-art [Sha08], mesh seg-
mentation techniques can be classified into two categories:
surface-type (or geometric) methods and part-type (or se-
mantic) methods. In the first case, the algorithms are based
on low level geometric information (e.g. curvature) in or-
der to define segments (i.e. regions) with respect to geomet-
ric homogeneity, while in the latter case, the algorithms aim
at distinguishing segments that correspond to relevant fea-
tures of the shape, by following higher level notions such as
defined in human perception theory. This kind of approach

is particularly suited for object animation/ deformation and
shape retrieval applications, where the decomposition has to
be meaningful.
The recent creation of ground-truth databases for the seg-
mentation of 3D meshes [CGF09, BVLD09, BVLD10], has
given to the computer graphics community the opportunity
to quantitatively evaluate the segmentation algorithms; how-
ever, in spite of the success of these benchmarks, only few
results from a limited number of algorithms are currently
publicly available whereas such quantitative performance
data are crucial for the emulation of this field of research.
In that context, the objective of this SHREC 2012 segmen-
tation track is to provide researchers with the opportunity to
directly compare their methods with their counterparts, of-
fering the community a fair evaluation and comparison.

2. Data

For this track we use the grund-truth corpus from
[BVLD10]; it contains 28 3D models (as triangle meshes)
grouped in five classes, namely animal, furniture, hand, hu-
man and bust. Each 3D model of the corpus is associated
with 4 manual segmentations which give a total of 112
ground-truth segmentations done by 36 volunteers. Figure
1 illustrates the models of the corpus with one manual seg-
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Figure 1: Models of our corpus associated with one ground-
truth.

mentation per model. All the selected models are manifold,
connected, and do not have intersecting faces; hence they are
supported as an input by any segmentation algorithm. The
volunteers have freely segmented the models and no condi-
tion was imposed on the manner with which they have seg-
mented them.

3. Evaluation methodology

For a given segmentation algorithm to evaluate, the evalua-
tion protocol is the following:

1. The algorithm is launched on the 28 models of the
database, thus producing 28 segmentations.

2. For each model, the segmentations Sa from the algorithm
is compared to the 4 ground-truth segmentations Sk using
a mesh segmentation similarity metric.

3. We obtain a segmentation quality score for each model;
these 28 scores can then be averaged over all models, all
categories or presented in increasing order in the form of
a performance curve.

To provide a relevant evaluation of the performance, it is crit-
ical to choose an accurate mesh segmentation similarity met-
ric (see step 2 above); several metrics have been proposed

so far, they have been extensively studied and compared
in [BVLD10] and the 3D-NPRI metric has shown to provide
the best results (in term of correlation with the human opin-
ion). This metric is derived from the Rand Index (RI) also
used in [CGF09], it was introduced in [BVLD10] by trans-
posing the 2D image version of Unnikrishnan et al. [UP07].
Let Sa be the automatic segmentation to be compared to a
set of ground-truth segmentations Sk; we denote the corre-
sponding label of a vertex i (label of the region which the
vertex belongs to) by lSa

i in segmentation Sa and by lSk
i in

a ground-truth segmentation Sk. The 3D Probabilistic Rand
Index (3D-PRI) is defined as:

3DPRI(Sa,{Sk}) =
1(N
2
) ∑

i, j
i < j

ei j pi j +(1− ei j)(1− pi j)

(1)
where ei j is a binary number which denotes the event of a
pair of vertices i and j belonging to the same region in the
automatic segmentation:

ei j = I(lSa
i = lSa

j ) (2)

and pi j is the probability of the vertices i and j belonging to
the same region in the ground-truth segmentations {Sk}:

pi j =
1
K ∑

k
I(lSk

i = lSk
j ) (3)

This 3D-PRI takes values ranged in [0,1], where 0 indi-
cates no similarity between Sa and Sk, and 1 indicates a per-
fect match. To provide more meaningful results and increase
the dynamic range of the metric, the authors [BVLD10] pro-
vided also a version normalized by a baseline of random seg-
mentations: the 3D-NPRI, which takes values in [-1,1] with
0 standing for an average similarity as a random segmenta-
tion could produce and 1 for a perfect similarity.

4. Methods

Three segmentation methods have been registered to the
track:

• Box Approximation and Decomposition [Hue12] from the
Computer Vision & Active Perception Lab, KTH, Stock-
holm, Sweden.

• Plumber [MPS∗04] from the CNR-IMATI, Genova, Italy.
• Boundary Learning [BLVD11] from LIFL, Université de

Lille and LIRIS, Université de Lyon, France.

These algorithms are detailed in the next subsection. We
have also launched four algorithms from the state of the art
on our dataset to strengthen the results. They are quickly
described in subsection 4.2.

4.1. Registered methods

4.1.1. Box Approximation and Decomposition

This method [Hue12] is proposed by Kai Huebner from
the Computer Vision & Active Perception Lab, KTH,
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Stockholm, Sweden.

The aim of this segmentation algorithm is to iteratively
split an oriented bounding box (starting from one root box)
in such a way that the new point sets yield a better box ap-
proximation of the shape. Iterative splitting of a root box cor-
responds to the build-up of a hierarchy of non-axis aligned
minimum volume bounding boxes (MVBBs). As the moti-
vation of the algorithm originates from our research in robot
grasping of arbitrary object, we want to conveniently ap-
proximate a shape with as few boxes as possible. Though the
internal fitting algorithm [BHP01] is efficient, a fitting step
after each splitting consumes valuable computation time. A
heuristic to find a good split of the point cloud is needed. In
our case, we define a good split by consulting the relation of
the box volume before and after performing a split. A split
of the parent box is the better, the less volume the two child
MVBBs include. Intuitively, this is clear, as shape approxi-
mation is better with highly tight-fitting boxes. To efficiently
split the point set in a box, we project the points to the 6 box
surfaces and compare the best 2D splits. According to the
best split, the original point cloud is divided into two subsets
of the data points. Using these as new inputs to the fitting al-
gorithm represents the complete iterative fit-and-split tech-
nique. As an iteration breaking criterion, we subsequently
test the real 3D volume gain θ of the resulting best 2D split.
Therefore, we compute the gain in volume defining:

θ= (volume(C1)+volume(C2)+volume(A\P))/volume(A)
(4)

where A is the overall set of boxes in the current hierar-
chy, P is the current (parent) box, C1,C2 are the two child
boxes that will be produced by the selected split, and vol-
ume being a volume function. θ is the main parameter of
the algorithm, controlling depth of the splitting hierarchy
and granularity of the produced segments. As mentioned,
the algorithm has been developed for decomposition of ob-
ject models into intuitive parts for generating robot grasp
hypotheses [Hue12], i.e. to be robust towards noise, out-
liers, and incomplete models as they appear in real sensor
settings. In this context it also has to mentioned that the al-
gorithm takes only the vertices into consideration, but does
not need any polygonal surface representation. Also, a ran-
dom subset selection may result in different decomposition
when re-processing a model. Though grasp evaluation was
evaluated by the authors, the segmentation result itself has
never been evaluated before. Minor changes had to be made
to let the original open source code (available at http:
//www.csc.kth.se/~khubner/badgr/) to provide
the output data needed for the SHREC 2012 dataset. Some
results with boxes are shown in figure 2.

4.1.2. Plumber

This method [MPS∗04] was registered for the track by
Michela Mortara and Michela Spagnuolo from the CNR-

Figure 2: Some examples of segmentations / box decompo-
sitions from [Hue12].

IMATI Genova, Italy.
Plumber is a specialized shape segmentation method for de-
tecting tubular features of 3D objects represented by triangle
meshes. The Plumber algorithm segments a surface into con-
nected components that are either body parts or elongated
features, that is, handle-like and protrusion-like features, to-
gether with their concave counterparts, i.e. narrow tunnels
and wells (more details in [MPS∗04]). Thus, Plumber iden-
tifies primitives of the object with a specific structure, i.e.
generalized cones and cylinders, and not only related to a
curvature and concavity analysis [MPS∗03,KT03]. The seg-
mentation can be done at single or multi-scale, and produces
a shape graph which codes how the tubular components are
attached to the main body parts.

Intuitively, tubes are identified by parts of the shape whose
intersection with a sphere of appropriate radius produces two
intersection curves. The section of the tube and its axis can
be arbitrarily shaped; however, chosen a level of detail Ri,
tubes of diameter Ri or smaller will be identified. Small radii
determine details, while bigger ones are used to analyse the
global characteristics of the model.

Chosen a level of detail Ri, Plumber performs the follow-
ing steps:

1. identify limb-regions composed by vertices generating
two intersection curves by the sphere centred on them,
and check that the limb-regions have two boundaries on
the object surface (so that the same topology of a cylinder
is guaranteed);

2. shrink each of the two selected boundary components
along the surface to its medial-loop, whose points are
nearly equidistant from the two border loops;

3. expand-back the medial-loop by sweeping the extent of
the shape in both directions. More precisely, at each it-
eration we place a sphere of radius R in the barycentre
of the new medial loops. If the intersection between the
sphere and the surface generates two loops, mesh vertices
inside the sphere are marked as visited;

4. the procedure is iterated in both directions until:

• no more loops are found, or more than one loop is
found on not-visited regions;

• the new loop lies on triangles that are already part of
another tube, or the length of the new loop exceeds a
pre-defined threshold.
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5. the tube skeleton may be extracted by joining the loops’
barycentres.

For this track, we have run Plumber at 8 increasing radii,
determined by the the average edge length over the input
mesh multiplied by even factors from 2 to 16.

For some models, the sampling density on the radius val-
ues was not sufficiently fine to capture all the tubular fea-
tures, or the maximum radius value was not big enough to
detect very thick tubes. Moreover, thick tubes need large
spheres to be detected, and the corresponding tube grow-
ing step makes intersections with other tubes frequently oc-
curr, which makes the sweeping stop prematurely (this is the
case for the Homer legs), whereas the method performs very
well on thin and elongated features even in complex config-
urations (e.g. the furniture models). Being targeted to tubu-
lar shaped primitives, the method is not suitable for certain
shape classes without any elongated features, like the busts.

4.1.3. Boundary Learning

This method [BLVD11] is proposed by Halim Benhabiles,
Guillaume Lavoué, Jean-Philippe Vandeborre and Mo-
hamed Daoudi from LIFL, Université de Lille and LIRIS,
Université de Lyon, France.

The algorithm is carried out using two main steps: the off-
line step in which an objective boundary function is learned
using a set of manually segmented models (ground-truths),
and the on-line step in which the learned function is used to
segment the input mesh. The problem of learning the bound-
ary edge function is formulated as a classification problem,
resolved with the Adaboost classifier. This classifier takes
as input a training dataset (we used the Princeton segmenta-
tion benchmark [CGF09] as training set) and generates the
boundary edge function. The training dataset is composed
of a set of feature vectors Fe computed for each edge of the
ground-truth meshes. A feature vector Fe of a given edge
contains a set of geometric criteria and is associated with its
proper class label L so that L =+1 if the edge is a boundary
(according to the manual segmentations of the mesh con-
taining this edge) and L = −1 if the edge is not a bound-
ary. Once the learning is done, the classifier produces the
boundary edge function. This function is a weighted com-
bination of the set of geometric criteria. It takes as input
a feature vector from any given edge and outputs a signed
scalar value whose sign will provide the estimated classifi-
cation of the edge. The use of the boundary edge function
on a given mesh leads to produce a set of interest regions
(see figure 3.a), each of which is represented by a set of con-
nected edges of the mesh. Hence it is not possible to directly
consider these regions as the final segment boundaries of the
mesh. To overcome this problem we propose a processing
pipeline that transforms these non-connected fuzzy regions
into thin, closed and smooth contours, by using the edge
function. This processing pipeline comprises three stages. In

the first stage of the process, for each interest region, a thin-
ning algorithm [HG01] is applied. This latter algorithm gives
as output a set of open linear contours (figure 3.b). Next,
each open contour is completed using an improved version
of the algorithm proposed by Lee et al. [LLS∗05] using the
edge function (figure 3.c). At this step we have created a set
of closed contours which represent a first version of the seg-
mentation boundaries. However, these boundaries are often
not smooth nor precise since in the thinning stage we do not
consider any geometric information. To overcome this draw-
back, we apply an improved version of the snake movement
algorithm proposed in [JK04] based also on the learned edge
function. The snake movement allows to improve the quality
of the boundaries in term of smoothness and precision with-
out changing the mesh connectivity (figure 3.d). This set of
improved boundaries defines the final segmentation (figure
3.e).

4.2. State-of-the-art methods

To strengthen the evaluation we have also launched the fol-
lowing algorithms on the dataset, using authors’ implemen-
tations:

• Curvature Classification. Lavoué et al. [LDB05] propose
a segmentation algorithm based on curvature classifica-
tion and then region growing and merging. It extracts con-
nected regions associated with similar curvature. This al-
gorithm is especially suited for CAD models.

• Fitting Primitives. Attene et al. [AF06] base their algo-
rithm on an iterative hierarchical face clustering. Start-
ing with one cluster per face, clusters are then iteratively
merged into larger patches that best fit some predefined
primitives like plane, sphere or cylinders.

• Topology Driven. Tierny et al. [TVD07] have proposed
a hierarchical segmentation mostly based on the topol-
ogy of the model. They first extract an enhanced topolog-
ical skeleton using Reeb graph and constriction detection.
Then this skeleton is used to extract the core of the object
and to identify the junction areas. The result of this oper-
ation is a fine segmentation which can then be simplified
by merging the nodes of the skeleton.

• Shape Diameter. Shapira et al. [SSCO08] compute a
highly relevant scalar field over the mesh vertices: the
Shape Diameter Function. Their algorithm classifies this
scalar field into several clusters and then uses graph-cut to
provide a smooth partition of the 3D mesh.

5. Evaluation results

Tables 1 and 2 present respectively the 3D-NPRI values and
ranking for all methods, averaged for each category and for
the whole corpus; several remarks can be drawn regarding
these results:

• The best method is the Boundary Learning one
[BLVD11]. This appears logical since this algorithm has
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Figure 3: Post processing pipeline; interest regions (a), thinning (b), contour completion (c), snake movement (d), final seg-
mentation (e).

Table 1: 3D-NPRI results for all tested methods.

Method Name Animal Bust Furniture Hand Human Global Rank
Box Approximation and Decomposition [Hue12] 0.52 -0.08 0.08 -0.09 0.37 0.16

Plumber [MPS∗04] 0.36 0.00 0.54 0.27 0.33 0.30
Boundary Learning [BLVD11] 0.68 0.41 0.79 0.68 0.69 0.65

Curvature Classification [LDB05] 0.43 0.10 0.38 0.45 0.29 0.33
Fitting Primitives [AF06] 0.45 0.09 0.56 0.52 0.61 0.45

Topology Driven [TVD07] 0.51 -0.07 0.36 0.78 0.50 0.41
Shape Diameter [SSCO08] 0.62 0.24 0.85 0.19 0.66 0.51

learned how people segment 3D models and thus pro-
duces results very close to the ground-truth; moreover it
integrates several different features (including curvature,
shape diameter function, dihedral angles, etc.) whereas
most of other methods rely on only one type of fea-
ture. However we can notice that the method relying only
on the Shape Diameter function [SSCO08] still produces
very good results, which attests the power of this feature.
• We can notice that the peformance of the methods is

highly class-dependent, indeed no method owns the same
rank for all classes. The performance actually depends
on the features used by each method. For instance, the
Plumber algorithm [MPS∗04] detects tubular parts, hence
it provides good results for the furniture class; on this lat-
ter class, the Box Approximation and Decomposition ap-
proach [Hue12] behaves poorly since chairs or tables are
not adapted to such decomposition (see figure 4).
• Certain classes are easier to segment than others; for in-

stance all methods produce good results on the animal
class (see figure 5), whereas the bust class seems much
more difficult to segment by any automatic method (see
figure 6). This is probably due to the high semantic aspect
carried by a face, this semantic aspect influences the man-
ual segmentations, and is difficult to capture using simple
local geometric criteria.

Figure 7 represents 3D-NPRI indices for each model of
the corpus, these indices are plotted in increasing order for
each algorithm, hence ith index does not refer to the same
3D model for each algorithm. These curves provide a good
overview of the performances of the algorithms among the
models of the corpus.

Figure 4: Segmentation results for one object from the fur-
niture class.

6. Conclusions

In this paper, we have presented the database, evaluation
protocol, involved methods and results of the 3D mesh seg-
mentation track of the SHREC 2012 contest. The Bound-
ary Learning method has logically demonstrated superior
results; however there is still room for improvements since
some classes remain difficult to segment.
All results from this track are available through our online
3D Mesh segmentation benchmark http://www-rech.
telecom-lille1.eu/3dsegbenchmark/ which al-
lows an online evaluation of segmentation algorithms.
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Table 2: 3D-NPRI ranking for all tested methods.

Method Name Animal Bust Furniture Hand Human Global Mean
Box Approximation and Decomposition [Hue12] 3 5 7 7 5 7

Plumber [MPS∗04] 7 5 4 5 6 6
Boundary Learning [BLVD11] 1 1 2 2 1 1

Curvature Classification [LDB05] 6 3 5 4 7 5
Fitting Primitives [AF06] 5 4 3 3 3 3

Topology Driven [TVD07] 4 5 6 1 4 4
Shape Diameter [SSCO08] 2 2 1 6 2 2

Figure 7: 3D-NPRI indices of the 28 models sorted in increasing order for all algorithms.
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