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Abstract
This paper presents a 3D shape retrieval algorithm based on the Bag of Words (BoW) paradigm. For a given
3D shape, the proposed approach considers a set of feature points uniformly sampled on the surface and asso-
ciated with local Fourier descriptors; this descriptor is computed in the neighborhood of each feature point by
projecting the geometry onto the eigenvectors of the Laplace-Beltrami operator, it is highly discriminative, robust
to connectivity and geometry changes and also fast to compute. In a preliminary step, a visual dictionary is built
by clustering a large set of feature descriptors, then each 3D shape is described by an histogram of occurrences
of these visual words. The performances of our approach have been compared against very recent state-of-the-
art methods on several different datasets. For global shape retrieval our approach is comparable to these recent
works, however it clearly outperforms them in the case of partial shape retrieval.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval —

1. Introduction

After Image and Video in the 90s, three-dimensional data
(mostly represented by polygonal meshes) constitute the
emerging multimedia content; large collections of 3D mod-
els are now available and thus the need for efficient tools
to filter, search, and retrieve this 3D content becomes more
acute. Hence in recent years, the problem of content-based
shape retrieval (CBIR) has attracted the interest of scientists.
The objective of such system is to retrieve, from a given 3D
query, the most similar 3D models from a given database;
a similar issue consists in classifying a given shape into the
correct category.
This problem is not easy since, to be really efficient, such re-
trieval/classification system has to be robust to common 3D
shape variations like connectivity change, non-rigid defor-
mation (isometry), local deformation or cropping.
A lot of methods have been introduced, based on global de-
scriptors; some of them are only robust to rigid deforma-
tions [CTSM03, FMK∗03], while more recent ones are also
invariant to non rigid deformations, like isometry or skele-
tal articulation; except the work of Gal et al. [GSCO07]
which relies on histograms of local shape diameter values,
most of these recent invariant descriptors are based on some

spectral embeddings: Reuter et al. [RWP06], and Marini et
al. [MPSF10] describe the shape by the eigenvalues of the
Laplace-Beltrami operator while Rustamov [Rus07] consid-
ers the eigenvectors of this operator, similarly, the approach
from Jain and Zhang [JZ07] relies on the eigenvectors of
the affinity matrix; besides, the conformal factor descriptor
from Ben-Chen et al. [BCG08] and the diffusion distances
introduced by Bronstein et al. [BBK∗09] are also based
on the Laplace-Beltrami operator (eigendecomposition for
[BBK∗09] and integration into a sparse linear system for
[BCG08]). Even if these global descriptors provide a good
invariance to non-rigid, quasi-isometric transforms, most of
them are not adapted to deal with partial similarity and by
extension local deformation or cropping. Moreover only few
of them can deal with topological changes.
Hence, to face these hard robustness issues, some re-
searchers turned their attention to local descriptors asso-
ciated with salient feature points (or keypoints), follow-
ing successful approaches in 2D image recognition like
SIFT [Low04]. In such keypoint-based 2D image recogni-
tion techniques [MS05], the object to recognize is repre-
sented by a set of salient local features (usually sparse) asso-
ciated with local descriptors, then the recognition consists in
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finding a correspondence between the sets of feature points
from the model and the scene objects respectively, using
techniques like RANSAC (rigid matching) or some graph-
matching algorithms. For 3D recognition, Funkhouser and
Shilane [FS06] introduced such a local approach, their de-
scriptor is based on Spherical Harmonics, while the match-
ing is derived from RANSAC; to select a minimal set of dis-
tinctive features a quite complex process computes their re-
spective predicted retrieval performances using a training set
of classified 3D models. Recently, Sun et al. [SOG09] intro-
duced a multi-scale local descriptor, the Heat Kernel Sig-
nature (HKS), computed via an eigendecomposition of the
Laplace Beltrami operator. Basically the HKS is defined for
each vertex x as a function of t and intuitively relates to the
amount of heat that remains at point x after time t; the HKS
also allows to select salient feature points since its extrema
correspond to protrusions on the surface. This signature is
quite related to the diffusion distance also used by Bron-
stein et al. [BBK∗09] as a global descriptor. Very recently
Sun et al. [SCF10] combined the HKS-based feature points
with a matching framework based on fuzzy geodesics while
Dey et al. [DLL∗10] filter them according to their persis-
tence to obtain a more robust set of feature points which is
then integrated into a region matching algorithm. Similarly
Agathos et al. [APP∗09] introduce a feature point detec-
tor also related to surface protrusions to create regions and
then match them using a graph matching technique based
on the Earth Mover’s Distance. Tabia et al. [TCDV10] also
create regions related to surface protrusions (detector from
Tierny et al. [TVM09]) and then describe them using a set
of curves. Ruggeri et al. [RPSS09] introduced another key-
point detector also based on an eigendecomposition of the
Laplace-Beltrami operator, as well as an associated local de-
scriptor consisting of the geodesic shape distribution around
the point; these feature points are then used to smartly sam-
ple the object before applying a bipartite graph matching for
recognition.
There exist two main problems with these approaches based
on 3D feature points and direct matching: 1) the repeatabil-
ity (i.e. the invariance in location) of salient feature points,
regarding connectivity or topological changes is not so ob-
vious and 2) the graph matching is often a quite complex
process (inexact graph isomorphism is NP-complete) partic-
ularly when a high level of invariance is required (i.e. isom-
etry, local deformation, cropping). Sub-graph isomorphism
(i.e. for partial shape similarity) is even more difficult.
The fact is that the intra-class variation involved in 3D model
recognition is much higher than for specific 2D object recog-
nition in images; hence existing 2D recognition techniques
are difficult to directly transpose into the 3D world. How-
ever another kind of techniques also based on feature points
was introduced in computer vision, specifically designed
for higher intra-class variations (used in the case of object-
category recognition rather than specific-object recognition):
the Bag of Words (BoW) framework. In this kind of ap-
proaches [FFP05], each feature point from a given image is

associated to the nearest visual word in a given visual dic-
tionary (we assume that the dictionary has been preliminary
built using clustering techniques in the descriptor space); the
image is then represented as an histogram (i.e. the bag) of
occurrences of the visual words.
Few works based on Bag of Words (BoW) have been intro-
duced for 3D object recognition. Ohbuchi et al. [OOF∗08]
and Lian et al. [LGS10] present similar approaches, the 3D
model is represented by a set of 2D views which are indexed
using bags of 2D SIFT features. Liu et al. [LZQ06] and
Li and Godil [LG09] introduce BoW algorithms based on
Spin Image descriptors computed on a dense set of feature
points (uniformly sampled on the surface). Bronstein et al.
[BBGO11] also consider a dense set of feature points (every
vertex of the mesh) and describe them using the Heat Kernel
Signature from Sun et al. [SOG09]. Differently, Toldo et al.
[TCF09] do not sample feature points on the 3D model but
segment it into regions; then each region is associated with
several descriptors and thus several visual words. These ex-
isting 3D BoW methods provide quite good results however
in our opinion they still suffer from some drawbacks: first,
the descriptors which are used in these works are quite poor
regarding their equivalent in computer vision; this makes
necessary the addition of spatial information between feature
points like in [BBGO11, LG09]. A second problem comes
from the sampling of the feature points, two possibilities ex-
ist like for 2D images: either you select a sparse set of points
(or regions) like Toldo et al. [TCF09], or you consider a
dense collection like [BBGO11]; in case of a sparse set, key-
points have to be stable regarding connectivity or topological
changes and that is a very difficult problem; for instance the
segmentation used in [TCF09] seems quite dependent of the
topology. In case of a dense set of keypoints, you have to
insure that they are evenly distributed over the whole sur-
face even in case of very irregular connectivity and that is
not the case if you consider each vertex as a keypoint like in
[BBGO11].
In that context we introduce a new Bag of Words approach
for 3D shape recognition; our algorithm relies on a uniform
sampling of the feature points based on Lloyd relaxations;
each feature point is described using a rich spectral descrip-
tor. Our approach is highly robust to connectivity change,
non-rigid or local deformations and cropping, due to three
main reasons:

• The regular sampling of the feature points is quite inde-
pendent of the connectivity, geometry or topology of the
model (on the contrary with a protrusion detector or a seg-
mentation algorithm some feature points/regions may dis-
appear after even a small topological change).

• The descriptor associated with each feature point is the lo-
cal Fourier spectrum computed over a large neighborhood
of the point (after projection of the geometry onto the
spectral bases). This descriptor is very discriminative and
moreover is quite robust to noise or connectivity change.

• Our approach completely discards the structural informa-

c© The Eurographics Association 2011.



Guillaume Lavoué / BoW Spectral Shape Retrieval

tion of the feature points, hence it is intrinsically invariant
to isometric deformations or topological changes.

The proposed approach is particularly robust to cropping
or local deformations and thus is particularly efficient for
partial shape similarity which is a particularly difficult task,
still tackled by few methods [TCF09, TVM09, DLL∗10].
The paper is organized as follows, section 2 provides a recall
on the Bag of Words principles and an overview of our ap-
proach, section 3 describes our feature point detector and de-
scriptor while section 4 presents our indexing/retrieval meth-
ods using BoW. Finally, section 5 presents some experiments
which evaluate the robustness of our algorithm and provide
a comparison with state of the art methods.

2. Overview of our approach

Figure 1 illustrates the main steps of our algorithm. Basically
we model a 3D object as a collection of local feature points;
each point is associated with a local patch on which we com-
pute a descriptor. According to its descriptor, each patch is
then associated with the nearest visual word from a given
visual dictionary (i.e. the codebook). Hence, the object is
finally described by the corresponding distribution of code-
words (an histogram of occurrences). The visual dictionary
is preliminary built by clustering a huge set of feature point
descriptors computed over a large collection of 3D models.
The centroids of the clusters represent the codewords of the
dictionary.

Figure 1: Flow chart of our Bag of Words approach.

3. Feature point detection and description

3.1. Detection

We consider a uniform sampling of the feature points on the
mesh surface; the reason is that such uniform sampling gave
very good results in the field of 2D image recognition (see
results from [FFP05] for instance), moreover most of exist-
ing 3D salient point detectors provide collections of points

which are either too sparse (i.e. protrusion detectors) or not
so stable under complex geometrical or topological changes.
To create the uniform sampling, we consider a random set of
np vertices on the mesh as an initial set of seeds (see figure
2 on the left) and then we apply Lloyd relaxation iterations.
Lloyd’s algorithm [Llo82] is a fixed-point iteration that sim-
ply consists of iteratively moving the seeds to the centroids
of their Voronoi cells; this algorithm was used by many au-
thors to construct random and uniform sampling (i.e. blue
noise sampling) on surfaces. Our algorithm is as follows:

1. Each vertex of the mesh is associated to the nearest seed;
this creates a partitioning of the model into np regions,
basically corresponding to the Voronoi regions associated
to the np seeds.

2. The centroids of the np Voronoi regions are computed
and become the new seeds.

3. Steps (1) and (2) are repeated until convergence.

The metric used is simply the 3D Euclidian distance. This
simple algorithm converges quickly and provides a uniform
sampling of the seeds (i.e. the feature points) over the sur-
face. Figure 2 illustrates the set of feature points before and
after the Lloyd’s relaxation.

Figure 2: Illustration of the Lloyd’s relaxation algorithm.
Left: 200 seeds randomly sampled. Right: result after 50
Lloyd’s iterations

This distribution has the benefit to cover uniformly the
whole surface of the object, even in the case of irregular con-
nectivity; of course this uniformity is limited by the fact that
our feature points are necessarily on existing vertex posi-
tions. This constraint was not a problem in our experiment,
moreover it can be easily avoided by using some very recent
blue noise sampling methods like [BWWM10].
Each feature point pi is then associated with a local patch Pi
on which we will compute a descriptor; we could have taken
Pi as the Voronoi region associated to each point however we
prefer to extract larger overlapped regions. Hence, for each
feature point we extract this local patch Pi by considering the
connected set of facets belonging to a given sphere of center
pi and of a given radius r. We construct it by a region grow-
ing approach. Figure 3 illustrates a local patch for r = 10%
of the bounding box length.
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Figure 3: A feature point (black sphere) and its associated
patch (in red).

3.2. Description

Each feature point is associated to a descriptor computed on
its patch. Our objective is to propose a rich (i.e. informa-
tive) descriptor which is also fast to compute. Our idea is to
use the local Fourier spectra of the patch, computed by pro-
jecting the geometry of the patch onto the eigenvectors of
the Laplace-Beltrami operator (solved locally on the patch).
The use of spectral tools for 3D shape retrieval has proven its
efficiency (see section 1), however the proposed descriptor
owns some original properties regarding the state-of-the-art:

• A lot of methods consider directly eigenvalues or
eigenvectors of the Laplace operator for retrieval (e.g.
[RWP06, Rus07, JZ07, MPSF10]), while we consider the
spectral transform coefficients (after projection of the 3D
signal onto the eigenvectors). Surprisingly this has never
been done before whereas these spectral coefficients are
particularly discriminative and also robust to noise and
connectivity changes like pointed in [WLBD09].
• While all other methods uses spectral descriptors com-

puted over the whole mesh, we compute our spectral
transform locally, i.e. patch-by-patch. Since the eigende-
composition is a very costly process, this may save some
computation time.

The Laplace-Beltrami operator ∆ is the counterpart of the
Laplace operator in Euclidian space. It is defined as the di-
vergence of the gradient for functions defined over mani-
folds. The eigenfunction and eigenvalue pairs (Hk,λk) of
this operator satisfy the following relationships:

−∆Hk = λkHk (1)

In the case of a 2-manifold triangular mesh the above eigen-
problem can be discretized and simplified within the Finite
Element Modeling framework (Neumann boundary condi-
tions) [LZ10]:

−Qhk = λkDhk (2)

hk denotes the vector [Hk
1 , ...H

k
m]

T where m is the number
of vertices of the patch. D is the Lumped Mass matrix, it is
a m×m diagonal matrix defined by D = diag(∑t∈ℵ(vi) |t|)
with ℵ(vi) the set of neighboring triangles from vertex vi. Q

is the Stiffness matrix and is defined as:

Qi, j = (cotan(βi, j)+ cotan(β′i, j))/2 (3)

Qi,i = −∑ j Qi, j (4)

βi, j and β
′
i, j are the two angles opposite to the edge between

vertices vi and v j.
To resolve this discrete eigenproblem we use the fast algo-
rithm from Vallet and Lévy [VL08], based on a band-by-
band approach and an efficient eigen-solver; hence we ob-
tain the eigenvectors (i.e. the manifold harmonic bases) and
the associated eigenvalues. The spectral coefficients x̃k (resp.
ỹk, z̃k) are then calculated as the inner product between the
patch geometry x (resp. y,z) and the sorted eigenvectors hk:

x̃k =< x,hk >=
m

∑
i=1

xiDi,iH
k
i (5)

The kth (k = 1..m) spectral coefficient amplitude is then de-
fined as:

ck =
√

(x̃k)2 +(ỹk)2 +(z̃k)2 (6)

Hence, for a given patch Pi around a feature point pi, our
descriptor is the spectral amplitude vector ci = [ci

1, ...c
i
nc ],

with ci
k, the kth spectral coefficient amplitude of the patch Pi.

We consider only the nc first spectral coefficients to limit the
descriptor to low/medium frequencies hence bringing more
robustness.

4. 3D object representation and matching

4.1. Codebook construction

Given a 3D object containing a set of patches Pi associated
with descriptors ci, the next step is to represent it as a distri-
bution of visual words from a given dictionary. To create the
visual dictionary Γ = (c̄1, ...c̄nw), we apply a simple k-means
clustering (nw clusters) on a huge dataset of descriptors and
keep the nw centroids c̄k of the clusters as visual words. Each
visual word c̄k is a nc-dimensional vector.

4.2. BoW representation and matching

For a given model M, each patch Pi is associated with its
closest visual word; practically we associate each patch Pi
with a vector bi, of size nw, such as:

bi
j = 1 i f j = argmink∈[1..nw]||c

i− c̄k|| (7)

bi
j = 0 else (8)

Then the bag of words bM of the whole model M is a nw-
dimensional vector containing the distribution of the visual
words over all its patches:

bM =
np

∑
i=1

bi (9)

Some examples of bag of words are presented in figure 4,
for np = 200 patches, nw = 30 clusters and nc = 40 spectral
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coefficients. We can observe that whereas the two armadillo
models have strong differences of pose their BoWs are very
similar; even a strong simplification (from 22K vertices to
6K vertices) does not significantly change the BoW. On the
contrary the BoW of the cup model is significantly different.

Figure 4: Bag of Words examples.

5. Experiments

We have conducted a set of experiments to evaluate our
method. The first experiment studies the influence of the
parameters; a second experiment evaluate the performance
of our method in term of global shape retrieval while the
last one considers a partial shape retrieval scenario. The next
section describes the databases which were used in these ex-
periments.

5.1. Databases and measures

To test our method we have considered three existing
databases:

• The McGill Database †. It contains 255 objects divided
into ten classes (Ant, Crabs, Hands, Humans, Octopuses,
Pliers, Snakes, spectacles, Spiders and Teddy); the intra-
class variations consist in non-rigid transforms applied to
the models.
• The SHREC 2007 Watertight dataset ‡. It contains 20 cat-

egories each composed of 20 meshes; the intra-class vari-
ations are higher than for the McGill corpus, for instance
the FourLeg category contains different animals (horse,
dog, cow, ...).
• The SHREC 2007 Partial retrieval dataset §. It is com-

posed of the SHREC 2007 Watertight dataset and a query

† http://www.cim.mcgill.ca/∼shape/benchMark/
‡ http://watertight.ge.imati.cnr.it/
§ http://partial.ge.imati.cnr.it/

set of 30 models, each one obtained by merging or remov-
ing several subparts of models belonging to the Watertight
dataset.

To asset the efficiency of the methods we use the following
measures, using the tools from [SMKF04]:

• Nearest Neighbor (NN): The percentage of queries for
which the closest match belongs to the query’s class.

• First Tier (FT): The recall for the (C−1) closest matches,
where C is the cardinality of the query’s class.

• The Second Tier (ST): The recall for the 2(C−1) closest
matches. It is similar to the Bulls Eye Score (recall for the
2C closest matches).

• The Discounted Cumulative Gain (DGC): This statistic
gives more importance to correct detections near the front
of the list; the objective is to reflect how well the overall
retrieval would be viewed by a human.

5.2. Influence of the parameters

Our method is based on three parameters: the number of
patches np, the number of coefficients nc of the spectral de-
scriptor and the number of codewords nw. We have studied
the influence of these parameters on the results by carrying
out several retrieval tests on the McGill Database each time
varying one of the parameters. The visual dictionary was
built by clustering all the feature point descriptors of every
3D model of the dataset. Table 1 presents the correspond-
ing performances in term of the First Tier measure. Several
points are interesting to raise:

• When the number of spectral coefficients nc increases
from 30 to 40, the discriminative power of the Fourier de-
scriptor increases hence the performances are better; how-
ever for nc = 50 the FT measure is lower, the reason is
that adding too high frequencies to the spectral descriptor
removes a part of its robustness.

• Increasing the size nw of the dictionary leads to an im-
provement of the performances; however a saturation ef-
fect appears, indeed the FT difference between nw = 200
and nw = 300 is very small.

• Increasing the number of patches np also leads to an im-
provement of the results however once again we can ob-
serve a saturation effect.

According to these observations and regarding the fact that
higher are the values and higher are the indexing/retrieval
times, we fix these parameters for all experiments to : nc =
40, nw = 200 and np = 200. It is interesting to notice that
similar tests on different databases yield similar optimal val-
ues.

5.3. Global Shape Retrieval

We have compared the performance of our BoW method
with two recent algorithms on the McGill Database: the
graph-based approach from Agathos et al. [APP∗09] and the

c© The Eurographics Association 2011.



Guillaume Lavoué / BoW Spectral Shape Retrieval

Table 1: First Tier measure for different parameter settings.

nc 30 40 50
np = 200‖nw = 200 0.621 0.629 0.624

nw 100 200 300
np = 200‖nc = 40 0.619 0.629 0.630

np 100 200 300
nw = 200‖nc = 40 0.611 0.629 0.634

hybrid 2D/3D approach from Papadakis et al. [PPTG08].
Table 2 presents the results; for each row, the algorithms
are positioned according to their respective performances.
The first remark is that the graph-based algorithm [APP∗09]

Table 2: Retrieval statistics for the McGill database.

Class Method NN FT ST DGC
[APP∗09] 97.6 74.1 91.1 93.3

Whole BoW 94.5 62.9 77.6 88.1
[PPTG08] 92.5 55.7 69.8 85.0
[PPTG08] 100 73.6 89.2 94.8

Ants BoW 96.7 58.3 86.7 89.1
[APP∗09] 96.7 54.9 79.7 88.4
[APP∗09] 100 98.2 99.8 99.9

Crabs BoW 100 61.1 73.9 91.4
[PPTG08] 100 55.2 71.8 88.7
[APP∗09] 95.0 83.9 88.9 95.2

hands BoW 100 54.5 69.7 87.8
[PPTG08] 90.0 43.4 57.6 77.8
[APP∗09] 96.6 93.5 96.4 98.1

humans BoW 100 68.2 88.8 93.4
[PPTG08] 100 47.0 63.8 83.1
[APP∗09] 88.0 58.8 81.8 88.1

Octopuses [PPTG08] 56.0 29.5 45.0 68.9
BoW 60.0 24.7 38.2 64.2

[APP∗09] 100 100 100 100
Pliers BoW 100 92.1 98.4 99.2

[PPTG08] 100 71.6 87.9 94.6
[APP∗09] 100 43.2 95.2 84.7

Snakes [PPTG08] 80.0 23.7 28.7 62.4
BoW 88.0 20.8 25.0 64.3
BoW 100 90.2 98.7 99.0

Spectacles [APP∗09] 100 70.3 99.8 94.0
[PPTG08] 96.0 53.5 63.3 85.9
[APP∗09] 100 87.2 100 98.4

Spiders BoW 100 71.6 96.0 93.6
[PPTG08] 100 71.5 91.0 93.7

BoW 100 96.6 100 99.9
Teddy [PPTG08] 100 90.3 98.4 99.1

[APP∗09] 100 45.3 63.2 83.9

provides the best results, that is logical since the database
considers only skeletal articulation deformations without

topological changes hence it is particularly suited for
graph-based representation. However we can notice that our
method, whereas considering no structural information at
all, provides quite good results, almost always better than
[PPTG08]. In particular our method is particularly suited
for nearest neighbor classification (its NN value is 100% for
7 categories).

We have also tested our method on the SHREC 2007 Wa-
tertight dataset; figure 5 presents the Precision vs Recall
plots of our method and the recent method from Toldo et al.
[TCF09] which is also based on Bag of Words. The two algo-
rithms present quite comparable performances; the method
from Toldo et al. [TCF09] owns a better precision for low
recall values while our algorithm is better for high recall val-
ues.

Figure 5: Precision vs Recall curves, for the Shrec 2007
database, of the proposed approach and the BoW algorithm
from Toldo et al. [TCF09]

5.4. Partial shape similarity

Partial shape similarity is a quite complex problem tack-
led by few methods. We have tested and compared the per-
formance of our algorithm on the SHREC 2007 Partial re-
trieval dataset. This dataset contains a query set of 30 shapes
which are compared against a testing set of 400 models (the
SHREC 2007 Watertight dataset). Each of the query models
is composed of sub-parts from two or three models from the
testing set; for each query object, a ground-truth classifica-
tion of each model of the testing set is provided (highly rele-
vant, marginally relevant or non relevant). The visual dictio-
nary was built by clustering the descriptors of the 400 mod-
els of the testing set.
Figure 6 illustrates some query models and the top-8 results
returned by our algorithm; we can observe that despite the
difficulty of the task, all the retrieved objects are relevant ex-
cept the Horse returned at 4th position in the bottom row.
In particular, in the bottom row, despite an important crop-
ping and a large scale difference, the armadillo model is well
recognized by our system.
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Figure 6: Some examples of query objects from the SHREC 2007 Partial retrieval dataset and the top-8 retrieved models.

We conducted a quantitative performance evaluation us-
ing the Normalized Discounted Cumulated Gain vector
(NDCG) as proposed in the SHREC 2007 Partial retrieval
contest; for a given query, the value NDCG[i] represents ba-
sically the relevance of the top-i results, it is recursively de-
fined as:

DCG[i] = G[i] i f i = 1 (10)

DCG[i] = DCG[i−1]+G[i]log2(i) otherwise (11)

where G[i] is a gain value depending on the relevance of the
ith retrieved model (2 for highly relevant, 1 for marginally
relevant and 0 otherwise). The Normalized Discounted Cu-
mulated Gain vector (NDCG) is then obtained by dividing
the DCG by the ideal cumulated gain vector. Figure 7 illus-
trates the NDCG plots for our method and several methods
from the state of the art:

• The BoW method from Toldo et al. [TCF09]
• The graph-based technique from Tierny et al. [TVM09]
• The best runs of the two methods from the SHREC

2007 Partial retrieval contest [VF07]: the extended reeb
graphs (ERG) and the curve-skeleton based many-to-
many matching (CORNEA).

Our method clearly outperforms the other algorithms, even
most recent ones [TCF09, TVM09]. This is probably due to
the fact that our method completely discards the structural
information, hence the topological changes due to the sub-
part merging do not affect very much the bags of words.
Moreover the descriptive power of our spectral descriptor
efficiently discriminates the relevant regions of each model.

Our approach is also computationally efficient; for in-
stance, for the Partial retrieval dataset where the average
model size is 18K vertices, the whole indexing of a model
(uniform point sampling, local spectral descriptor calcula-
tion, Bag of Word construction) takes an average of 25 sec-
onds per model. Our implementation is based on the CGAL
library (C++) and runs on a 2GHz laptop.

Figure 7: NDCG curves of several methods, for the SHREC
2007 Partial retrieval dataset.

6. Conclusion

We have presented a new robust 3D shape retrieval method
based on the Bag of Words paradigm; the proposed approach
relies on a uniform sampling of feature points associated
with a new local Fourier descriptor both fast to compute
and discriminative. Our algorithm is particularly suited for
partial similarity scenarios where it clearly outperforms the
state-of-the-art.
A weakness of our method is that, whereas it correctly re-
trieves a model from a partial query, it does not perfom the
precise matching between the corresponding sub-parts. A
solution to perform this matching would be to construct a
graphical structure over the set of feature points and to ap-
ply some kind of fast approximate sub-graph isomorphism,
robust to non rigid deformations.
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