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Background

eEarly studies

e NOrmal and misere NIM

e Multiplayer game with preference
- Includes Li's theory
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3-player NIM
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/ First player can't win \

Third player wins Second player wins



Preference

o000
© 000

Each player has a total
“preference” ordering.

If player X has preference
order A > B then it is better
for X that player A moves last
than player B moves last.

X Assuming players
behave optimally for
her “preference”.



Definitions

N (A): Next player of player A
N~1(A4): Previous player of player A

N2(A) = N(N(A)),N3(A) = N(N2(4)), ..
N=2(A) =N"Y(N"1(4)),N73(4) = N"1(N72(4)), ..

Note that N°(4) = N™*(4A) = A.
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Definitions

Let G be a game position. Suppose that X is the
first player of G. For all player X, if player N*=1(X)
moves last, then G Is called an i-position.



Generalized NIM Sum:€

ny O, n, Oy, ... Dy Ny
Example: 3@; 1584513 P 11
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Generalized NIM Sum:€

ny O, n, Oy, ... Dy Ny
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Generalized NIM Sum: @,

ny O, n, Oy, ... Dy Ny
Example: 3@; 1584513 P 11
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m-player normal NIM

If for all player X, her preference order is
X>NX)>-->N"1(X),

then NIM position is a 0—position(m—position) If
and only If

ny O, n, B,y ... By 1, = "00...00"
>:Note that this result includes the theory of two-
player normal play.

S.-Y Robert Li. N-person Nim and N-person Moore's Games.
Internat. J. Game Theory, Vol. 7, No. 1, pp.31-36, 1978.



New result



When does worst player take
last stone?

misere play:
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When does worst player take
last stone?

misere play:
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m-player normal play: m-player misére play:
Ny @m 1y By oo By 1 ="00 ... 00" _ New result




New result: m-player misere play

Theorem:

Assume that for all integer j and for all player X,
her preference order is

N (X)>N*"1X)>-->N"1(X)>X>NX)..
> N/7H(X),
then (nq, n,, ..., n,_1, 1) IS a j-position if and only
if
;nl D.,n, Dy ... Dy e =700...00"(An; > 1)
N Om Ny O - O = "00...077(Vn; < 1)
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This result includes two-
player misere NIM by
m=2andj =1



Two-player misere NIM

Theorem:

Assume that for all integer j and for all player X,
her preference order is

N/ (X) > NV*EH(X) > - > N™H(X) > X > N(X) ...
> N/7H(X),
then (nq,n,, ..., n,_q1, ng) IS a j-position if and only
if
;nl D,n, Dy ... Dy e =700...00"(An; > 1)
N Om Ny O - O = "00...077(Vn; < 1)




Two-player misere NIM

Theorem:

Assume that for all player X, her preference order
IS

NY(X) > X
then (nq,n,, ..., ny_1,n) IS a 1-position if and only
if
rnl @2 n9 @2 @2 ny = "OO OO"(Hni > 1)
kTll @2 n- @2 @2 ny = "OO Olll(vni < 1)




This result also Includes
multiplayer normal NIM
byj =0



Multiplayer normal NIM

Theorem:

Assume that for all integer j and for all player X,
her preference order is

N/ (X) > NV*EH(X) > - > N™H(X) > X > N(X) ...
> N/7H(X),
then (nq,n,, ..., n,_q1, ng) IS a j-position if and only
if
;nl D.,n, Dy ... Dy e =700...00"(An; > 1)
N Om Ny O - O = "00...077(Vn; < 1)




Multiplayer normal NIM

Theorem:

Assume that for all player X, her preference order
IS

X>NX)>-->N"1(X),
then (nq,n,, ..., ny_1,n) IS a 0-position if and only
if
N, @Dy Doy ... By g = "00...00"(FAn; > 1)
Ny Omny Om - B e = "00...007(Vn; < 1)
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When does worst player take
last stone?

misere play:

normarilpgﬁz OBy =0 ﬁ ndn, - One=03n; >1)
n@n, - On=10n; < 1)

j=1

m-player misére play:
{n1 S.,n, D,y ... By, ="00...00"(3n; > 1)

m-player normal play:
n O,n, B,y ... By e, ="00...00" =
n O,n, By .. By ni, ="00...0/(Vn; < 1)




Another theorem

Theorem:

Assume that for all integer j and for each player X,
her preference order is

N (X)>N"1X)>->NX)>X>N"1(X)..
> NJ*+L(X),

then for all integer ny, n,, ..., ny_4, there is an
exactly one integer n;, such that NIM position
(n{,ny, ..., N,_1, Ng) IS @ j-position.



Future problems

1. Another preferences

2. Another games

1. Moore’s game, LIM, WYTHOFF, Graph Games,...



