Normal and misère play of multiplayer games with preference

Games and Graphs Workshop

October 23rd - 25th, 2017

University Lyon~1

Koki Suetsugu

Graduate School of Human and Environmental Studies

Kyoto Univ.

Table of contents

1. Background

Normal, misère and multiplayer NIM with preference

2. Result

The Integration of misère NIM and multiplayer NIM

3. Future questions

Background

- Early studies
 - Normal and misère NIM

- Multiplayer game with preference
 - Includes Li's theory

Nimber

(3, 2, 4)

011

010

 Calculate mod-2 sum of the number of stones of each heap in binary notation without carry

100

101

$$3 \oplus 2 \oplus 4 = 5$$

Normal NIM

P-position of normal NIM:

$$n_1 \oplus n_2 \oplus \ldots \oplus n_k = 0$$

Misère NIM

P-position of misère NIM:

$$\begin{cases} n_1 \oplus n_2 \oplus \ldots \oplus n_k = 0 (\exists n_i > 1) \\ n_1 \oplus n_2 \oplus \ldots \oplus n_k = 1 (\forall n_i \leq 1) \end{cases}$$

Background

- Early studies
 - Normal and misère NIM

- Multiplayer game with preference
 - Includes Li's theory

3-player NIM

Third player wins

Second player wins

Preference

Each player has a total "preference" ordering.

If player X has preference order A > B then it is better for X that player A moves last than player B moves last.

*Assuming players behave optimally for her "preference".

Definitions

N(A): Next player of player A

 $N^{-1}(A)$: Previous player of player A

$$N^{2}(A) = N(N(A)), N^{3}(A) = N(N^{2}(A)), ...$$

$$N^{-2}(A) = N^{-1}(N^{-1}(A)), N^{-3}(A) = N^{-1}(N^{-2}(A)), ...$$

Note that $N^0(A) = N^n(A) = A$.

Preference

Each player has a total "preference" ordering.

If player X has preference order A > B then it is better for X that player A moves last than player B moves last.

*Assuming players behave optimally for her "preference".

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

$$: B > N(B) > N^2(B)$$

$$: C > N(C) > N^2(C)$$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$

- $: A > N(A) > N^2(A)$
- $B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $: A > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

- $(A) > N(A) > N^2(A)$
- $: B > N(B) > N^2(B)$
- $: C > N(C) > N^2(C)$

Definitions

Let G be a game position. Suppose that X is the first player of G. For all player X, if player $N^{i-1}(X)$ moves last, then G is called an i-position.

$$n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k$$

Example: $3 \oplus_3 15 \oplus_3 13 \oplus_3 11$

3

15

13

11

 $3 \bigoplus_3 15 \bigoplus_3 13 \bigoplus_3 11$

$$n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k$$

Example: $3 \oplus_3 15 \oplus_3 13 \oplus_3 11$

$$n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k$$

Example: $3 \oplus_3 15 \oplus_3 13 \oplus_3 11$

$$n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k$$

Example: $3 \oplus_3 15 \oplus_3 13 \oplus_3 11$

m-player normal NIM

If for all player X, her preference order is

$$X > N(X) > \cdots > N^{m-1}(X),$$

then NIM position is a 0-position(m-position) if and only if

$$n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00"$$

Note that this result includes the theory of twoplayer normal play.

S.-Y Robert Li. N-person Nim and N-person Moore's Games. Internat. J. Game Theory, Vol. 7, No. 1, pp.31-36, 1978.

New result

When does worst player take last stone?

m-player normal play:

$$n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00"$$

When does worst player take last stone?

New result: m-player misère play

Theorem:

Assume that for all integer *j* and for all player *X*, her preference order is

$$N^{j}(X) > N^{j+1}(X) > \dots > N^{m-1}(X) > X > N(X) \dots$$

> $N^{j-1}(X)$,

$$\begin{cases} n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00" (\exists n_i > 1) \\ n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 0j" (\forall n_i \le 1) \end{cases}$$

New result: m-player misère play

Theorem:

Assume that for all integer *j* and for all player *X*, her preference order is

$$N^{j}(X) > N^{j+1}(X) > \dots > N^{m-1}(X) > X > N(X) \dots$$

> $N^{j-1}(X)$,

$$\begin{cases} n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00" (\exists n_i > 1) \\ n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 0j" (\forall n_i \le 1) \end{cases}$$

This result includes twoplayer misère NIM by m = 2 and j = 1

Two-player misère NIM

Theorem:

Assume that for all integer *j* and for all player *X*, her preference order is

$$N^{j}(X) > N^{j+1}(X) > \dots > N^{m-1}(X) > X > N(X) \dots$$

> $N^{j-1}(X)$,

$$\begin{cases} n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00" (\exists n_i > 1) \\ n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 0j" (\forall n_i \le 1) \end{cases}$$

Two-player misère NIM

Theorem:

Assume that for all player *X*, her preference order is

$$N^{\mathbf{1}}(X) > X$$

$$\begin{cases} n_1 \bigoplus_{\mathbf{2}} n_2 \bigoplus_{\mathbf{2}} ... \bigoplus_{\mathbf{2}} n_k = "00 ... 00" (\exists n_i > 1) \\ n_1 \bigoplus_{\mathbf{2}} n_2 \bigoplus_{\mathbf{2}} ... \bigoplus_{\mathbf{2}} n_k = "00 ... 01" (\forall n_i \le 1) \end{cases}$$

This result also includes multiplayer normal NIM by j = 0

Multiplayer normal NIM

Theorem:

Assume that for all integer *j* and for all player *X*, her preference order is

$$N^{j}(X) > N^{j+1}(X) > \dots > N^{m-1}(X) > X > N(X) \dots$$

> $N^{j-1}(X)$,

$$\begin{cases} n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00" (\exists n_i > 1) \\ n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 0j" (\forall n_i \le 1) \end{cases}$$

Multiplayer normal NIM

Theorem:

Assume that for all player *X*, her preference order is

$$X > N(X) > \cdots > N^{m-1}(X),$$

$$\begin{cases} n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00" (\exists n_i > 1) \\ n_1 \bigoplus_m n_2 \bigoplus_m ... \bigoplus_m n_k = "00 ... 00" (\forall n_i \le 1) \end{cases}$$

When does worst player take last stone?

Another theorem

Theorem:

Assume that for all integer *j* and for each player *X*, her preference order is

$$N^{j}(X) > N^{j-1}(X) > \dots > N(X) > X > N^{m-1}(X) \dots$$

> $N^{j+1}(X)$,

then for all integer $n_1, n_2, ..., n_{k-1}$, there is an exactly one integer n_k such that NIM position $(n_1, n_2, ..., n_{k-1}, n_k)$ is a j-position.

Future problems

1. Another preferences

2. Another games

1. Moore's game, LIM, WYTHOFF, Graph Games,...