Pre-Grundy Games

Games And Graphs Workshop 2017 In collaboration with : Éric Duchêne, Antoine Dailly and Urban Larsson

Gabrielle Paris

Are Pre-Grundy games boring ?

Sommaire

Pre-Grundy Games

Definition

Octal games: [Winning Ways] A game played on heaps where each player:

1. Image: Im

Definition

Octal games: [Winning Ways] A game played on heaps where each player:

1. removes all the tokens of a heap, or

1. Image: Constraint of the state of

Definition

Octal games: [Winning Ways] A game played on heaps where each player:

- 1. removes all the tokens of a heap, or
- 2. removes only some, at the end, or

1. Image: Constraint of the constraint

Definition

Octal games: [Winning Ways] A game played on heaps where each player:

- 1. removes all the tokens of a heap, or
- 2. removes only some, at the end, or
- 3. removes only some in the middle

1. Image: Constraint of the constraint

Definition

Octal games: [Winning Ways] A game played on heaps where each player:

- 1. removes all the tokens of a heap, or
- 2. removes only some, at the end, or
- 3. removes only some in the middle

Coded by an octal number $0.d_1 \dots d_t$

1. O O O O O O 2. O O O O O O O 3. O O O O O O O

• Nim: 0.33333333333333333...

1. •

• Nim: 0.33333333333333333...

1. \bigcirc <

- Nim: 0.33333333333333333...
- Kayles: 0.77.

- Nim: 0.33333333333333333...
- Kayles: 0.77.

1. Image: Constraint of the state of

- Nim: 0.33333333333333333...
- Kayles: 0.77.
- Dawson Chess: 0.137.

1. •

- Nim: 0.33333333333333333...
- Kayles: 0.77.
- Dawson Chess: 0.137.

1. Image: Constraint of the state of

Example of octal games

- Nim: 0.33333333333333333...
- Kayles: 0.77.
- Dawson Chess: 0.137.

1. Image: Constraint of the state of

Conjecture (Guy)

Octal games with finite code have a Grundy sequence ultimately periodic.

Hexadecimal games

Why stop at two heaps ?

4. • • • • • • • • • •

Hexadecimal games

Why stop at two heaps ?

 \Rightarrow we can simply generalize to leaving any number of heaps...

Grundy sequences

Grundy sequences

Periodicity and arithmetic-periodicity results

Theorem (WW)

Let H be the hexadecimal game $0.d_1\ldots d_t.$ If there exist e and p such that:

$$\forall e < n \leq 3(e+p) + t, \ \mathcal{G}(n+p) = \mathcal{G}(n)$$

then the Grundy sequence of H is periodic of period p and with pre-period e.

Periodicity and arithmetic-periodicity results

Theorem (WW)

Let H be the hexadecimal game $0.d_1\ldots d_t.$ If there exist e and p such that:

$$\forall e < n \leq 3(e+p) + t, \ \mathcal{G}(n+p) = \mathcal{G}(n)$$

then the Grundy sequence of H is periodic of period p and with pre-period e.

Theorem (R. Nowakowski)

Let H be the hexadecimal game $0.d_1 \dots d_t$. If there exist e, $3p \ge t+2$, $s = 2^{\gamma-1} + j$, $j < 2^{\gamma-1}$ such that:

1.
$$\forall e < n < t + \alpha_{e,\gamma,j}p$$
, $\mathcal{G}(n+p) = \mathcal{G}(n) + s$,

2.
$$\mathcal{G}(\llbracket 0, e \rrbracket) \subset \llbracket \mathbf{0}, \mathbf{s} - \mathbf{1} \rrbracket$$
 and $\mathcal{G}(\llbracket 0, e + p \rrbracket) \subset \llbracket \mathbf{0}, \mathbf{2s} - \mathbf{1} \rrbracket$,

3.
$$\exists d_{2\nu+1}, d_{\nu} \ge 8, \forall \mathbf{g} \in [[0, 2\mathbf{s} - 1]], \exists n > 0, \mathcal{G}(n) = \mathbf{g} \text{ or} \\ \exists d_{\mu} > 8, \forall \mathbf{g} \in [[0, 2\mathbf{s} - 1]], \exists 2\nu + 1, 2w > 0, \mathcal{G}(2\nu + 1) = \mathcal{G}(2w) = \mathbf{g}.$$

then the Grundy sequence of H is arithmetic-periodic of period p, pre-period e and saltus s.

Periodicity and arithmetic-periodicity results

Theorem (WW)

Let H be the hexadecimal game $0.d_1\ldots d_t.$ If there exist e and p such that:

$$\forall e < n \leq 3(e+p) + t, \ \mathcal{G}(n+p) = \mathcal{G}(n)$$

then the Grundy sequence of H is periodic of period p and with pre-period e.

Theorem (R. Nowakowski)

Let H be the hexadecimal game $0.d_1 \dots d_t$. If there exist e, $3p \ge t+2$, $s = 2^{\gamma-1} + j$, $j < 2^{\gamma-1}$ such that:

- 1. $\forall e < n < t + \alpha_{e,\gamma,j} p$, $\mathcal{G}(n + p) = \mathcal{G}(n) + s$,
- 2. $\mathcal{G}(\llbracket 0, e \rrbracket) \subset \llbracket 0, s 1 \rrbracket$ and $\mathcal{G}(\llbracket 0, e + p \rrbracket) \subset \llbracket 0, 2s 1 \rrbracket$,
- 3. $\exists d_{2\nu+1}, d_{\nu} \geq 8, \forall \mathbf{g} \in \llbracket \mathbf{0}, \mathbf{2s} \mathbf{1} \rrbracket, \exists n > 0, \mathcal{G}(n) = \mathbf{g} \text{ or} \\ \exists d_{u} \geq 8, \forall \mathbf{g} \in \llbracket \mathbf{0}, \mathbf{2s} \mathbf{1} \rrbracket, \exists 2\nu + 1, 2w \geq 0, \mathcal{G}(2\nu + 1) = \mathcal{G}(2w) = \mathbf{g},$

then the Grundy sequence of H is arithmetic-periodic of period p, pre-period e and saltus s.

Sommaire

Grundy's Game

A move consists in taking a heap and splitting it into two non-empty heaps of different sizes. No removing allowed.

Grundy's Game

A move consists in taking a heap and splitting it into two non-empty heaps of different sizes. No removing allowed.

Conjecture (Belekamp, Conway, Guy)

The Grundy sequence of Grundy's game is ultimately periodic.

Remark: 2³⁵ first values computed (Flammenkamp) without any further clue...

Pre-Grundy Games

Definition

Let $L = \{\ell_1, \ldots, \ell_k\}$ be a list of positive integers. A move on the game $\operatorname{PreG}(L)$ consist on splitting a heap of $n \ge \ell_j$ tokens into $\ell_j + 1$ non-empty heaps.

$$L = \{1, 3\}$$

$$\bullet \bullet \bullet \bullet \bullet_1 \bullet \bullet \bullet \bullet \bullet$$
$$\bullet \bullet \bullet_1 \bullet \bullet_2 \bullet_3 \bullet \bullet$$

Firsts results

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

Proofs: For $L = \{\ell_1, \dots, \ell_k\}, \ell_i > 1$. For $n = a\ell_1 + b + 1, b < \ell_1$, let us prove that $\mathcal{G}(n) = a$. First: $\mathcal{G}(n) \ge a$.

Firsts results

$$\begin{array}{c|c} L = \{\ell_1, \dots, \ell_k\} & type & Sequence \\ 1 \notin L & AP & (0)^{\ell_1} \ (+1) \end{array}$$

Proofs: For $L = \{\ell_1, \ldots, \ell_k\}$, $\ell_i > 1$. For $n = a\ell_1 + b + 1$, $b < \ell_1$, let us prove that $\mathcal{G}(n) = a$. First: $\mathcal{G}(n) \ge a$.

• ℓ_1 even:

$$O_{\ell_1} = (i\ell_1 + b + 1, a - i, \dots, a - i)$$

$$\mathcal{G}(O_{\ell_1}) = \mathcal{G}(i\ell_1 + b + 1) = \mathbf{i}$$

Firsts results

$$\begin{array}{c|c} L = \{\ell_1, \dots, \ell_k\} & type & Sequence \\ 1 \notin L & AP & (0)^{\ell_1} \ (+1) \end{array}$$

Proofs: For $L = \{\ell_1, \ldots, \ell_k\}$, $\ell_i > 1$. For $n = a\ell_1 + b + 1$, $b < \ell_1$, let us prove that $\mathcal{G}(n) = a$. First: $\mathcal{G}(n) \ge a$.

• ℓ_1 odd:

- if a - i odd:

$$O_{\ell_1} = \left(i\ell_1 + b + 1, 1, \frac{a - i - 1}{2}\ell_1 + 1, \frac{a - i - 1}{2}\ell_1 + 1, 1, \dots, 1\right)$$

$$\mathcal{G}(O_{\ell_1}) = \mathcal{G}(i\ell_1 + b + 1) \oplus \mathcal{G}(1) = \mathbf{i}$$

Firsts results

$$\begin{array}{c|c} L = \{\ell_1, \dots, \ell_k\} & type & Sequence \\ 1 \notin L & AP & (0)^{\ell_1} \ (+1) \end{array}$$

Proofs: For $L = \{\ell_1, \ldots, \ell_k\}$, $\ell_i > 1$. For $n = a\ell_1 + b + 1$, $b < \ell_1$, let us prove that $\mathcal{G}(n) = a$. First: $\mathcal{G}(n) \ge a$.

• ℓ_1 odd:

- if a - i even:

$$O_{\ell_1} = \left(i\ell_1 + b + 1, 2, \frac{a - i - 1}{2}\ell_1 + \frac{1}{2}, \frac{a - i - 1}{2}\ell_1 + \frac{1}{2}, 1, \dots, 1\right)$$

$$\mathcal{G}(O_{\ell_1}) = \mathcal{G}(i\ell_1 + b + 1) \oplus \mathcal{G}(2) = \mathbf{i}$$

Firsts results

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

Proofs: For $L = \{\ell_1, \dots, \ell_k\}, \ell_i > 1$. For $n = a\ell_1 + b + 1, b < \ell_1$, let us prove that $\mathcal{G}(n) = a$. First: $\mathcal{G}(n) \ge a$.

In all cases
$$\mathcal{G}(O_{\ell_1}) = \mathbf{i}$$
 for $i < a \Rightarrow \mathcal{G}(n) \ge a$.

Firsts results

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

$$O_{\ell} = (a_0\ell_1 + b_0 + 1, \dots, a_\ell\ell_1 + b_\ell + 1)$$

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

$$O_\ell = (a_0\ell_1 + b_0 + 1, \dots, a_\ell\ell_1 + b_\ell + 1)$$

•
$$\mathcal{G}(O_\ell) = a \; \Rightarrow \; \bigoplus a_i = a$$

$$\begin{array}{c|c} L = \{\ell_1, \dots, \ell_k\} & type & Sequence \\ 1 \notin L & AP & (0)^{\ell_1} \ (+1) \end{array}$$

$$O_{\ell} = (a_0\ell_1 + b_0 + 1, \dots, a_\ell\ell_1 + b_\ell + 1)$$

•
$$\mathcal{G}(O_\ell) = a \Rightarrow \bigoplus a_i = a$$

•
$$a\ell_1 + b + 1 = \sum a_i\ell_1 + b_i + 1 \quad \Rightarrow \quad \sum a_i \leq a$$

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

$$O_{\ell} = (a_0\ell_1 + b_0 + 1, \dots, a_{\ell}\ell_1 + b_{\ell} + 1)$$

•
$$\mathcal{G}(O_\ell) = a \Rightarrow \bigoplus a_i = a$$

•
$$a\ell_1 + b + 1 = \sum a_i\ell_1 + b_i + 1 \quad \Rightarrow \quad \sum a_i \leq a$$

$$\Rightarrow \sum a_i = a$$
 and $b \geq \ell \geq \ell_1 ...$ absurd.

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)
$\{1,\ell_2,\ldots,\ell_k\}(\ell_i \text{ odd })$	Р	(01)*

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence
$1 \notin L$	AP	$(0)^{\ell_1}$ (+1)
$\{1,\ell_2,\ldots,\ell_k\}(\ell_i \text{ odd })$	Р	(01)*
$\{1,2,3,\ell_4,\ldots,\ell_k\}$	AP	$(0)^1 (+1)$
$\{1,3,2\ell\}(\ell\geq 2)$	AP	$(01)^{\ell} (+2)$

Main result: arithmetic-periodicity test

Definition

The game $\operatorname{PREG}(\{\ell_1, \ldots, \ell_k\}), \ell_k \geq 2$, satisfies the test AP if there exists p > 0 and $s = 2^j$ such that: AP1. For $n \leq 3p$, $\mathcal{G}(n+p) = \mathcal{G}(n) + s$ AP2. $\mathcal{G}(\llbracket 1, p \rrbracket) = \llbracket 0, s - 1 \rrbracket$ AP3. For $n \in \llbracket 3p + 1, 4p \rrbracket$, $\mathbf{g} \in \llbracket 0, s - 1 \rrbracket$, there is an option $O_{\ell,n}$ of n such that $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$ and $\ell \geq 2$.

Main result: arithmetic-periodicity test

Definition

The game $PREG(\{\ell_1, \ldots, \ell_k\}), \ell_k \ge 2$, satisfies the test AP if there exists p > 0 and $s = 2^j$ such that: AP1. For $n \le 3p$, $\mathcal{G}(n+p) = \mathcal{G}(n) + s$ AP2. $\mathcal{G}(\llbracket 1, p \rrbracket) = \llbracket 0, s - 1 \rrbracket$ AP3. For $n \in \llbracket 3p + 1, 4p \rrbracket$, $\mathbf{g} \in \llbracket 0, s - 1 \rrbracket$, there is an option $O_{\ell,n}$ of n such that $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$ and $\ell \ge 2$.

Remarks:

• Sometimes (AP1 and AP2) \Rightarrow AP3.

AP-Theorem

Theorem

Let $L = \{\ell_1, \dots, \ell_k\}$, $\ell_k \ge 2$, such that PREG(L) verifies the AP-test. Then for all $n \ge 1$, $\mathcal{G}(n + p) = \mathcal{G}(n) + s$.

AP-Theorem

Theore<u>m</u>

Let $L = \{\ell_1, \ldots, \ell_k\}$, $\ell_k \ge 2$, such that PREG(L) verifies the AP-test. Then for all $n \ge 1$, $\mathcal{G}(n + p) = \mathcal{G}(n) + s$.

Let us show that for n = ap + 1 + b: (A) $\mathcal{G}(n) = \mathbf{as} + \mathcal{G}(1 + b)$ (B) for $\mathbf{g} \in \llbracket \mathbf{0}, (\mathbf{a} - 1)\mathbf{s} - 1 \rrbracket$, $\exists O_{\ell,n}$ of n, with $\ell \ge 2$ and $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$.

AP-Theorem

Theorem

Let $L = \{\ell_1, \dots, \ell_k\}$, $\ell_k \ge 2$, such that PREG(L) verifies the AP-test. Then for all $n \ge 1$, $\mathcal{G}(n + p) = \mathcal{G}(n) + s$.

Let us show that for n = ap + 1 + b: (A) $\mathcal{G}(n) = \mathbf{as} + \mathcal{G}(1 + b)$ (B) for $\mathbf{g} \in \llbracket \mathbf{0}, (\mathbf{a} - \mathbf{1})\mathbf{s} - \mathbf{1} \rrbracket, \exists O_{\ell,n} \text{ of } n, \text{ with } \ell \geq 2 \text{ and } \mathcal{G}(O_{\ell,n}) = \mathbf{g}.$

(Almost) clear for $n \leq 4$:

Lemm<u>a</u>

If $n \leq 4p$, then n verifies (**B**).

Let $n \ge 4p$.

Proof: $\mathcal{G}(n) \leq \mathbf{as} + \mathcal{G}(1+b)$

(A)
$$\mathcal{G}(n) = \mathbf{as} + \mathcal{G}(1+b)$$

(B) for $\mathbf{g} \in \llbracket \mathbf{0}, (\mathbf{a}-1)\mathbf{s}-1 \rrbracket$, $\exists O_{\ell,n}$ of n , with $\ell \ge 2$ and $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$.

$$\mathcal{G}(O_{\ell,n}) = \mathbf{as} + \mathcal{G}(1+b)$$

$$\Rightarrow \exists O_{\ell,n-2p}, \mathcal{G}(O_{\ell,n-2p}) = \mathcal{G}(n-2p)...$$

Proof: $\mathcal{G}(n) \ge (\mathbf{a} - \mathbf{1})\mathbf{s}$

(A)
$$\mathcal{G}(n) = \mathbf{as} + \mathcal{G}(1+b)$$

(B) for $\mathbf{g} \in \llbracket \mathbf{0}, (\mathbf{a}-1)\mathbf{s}-1 \rrbracket$, $\exists O_{\ell,n}$ of n , with $\ell \ge 2$ and $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$.

$$\mathcal{G}(O_{\ell,n-2p}) = \mathbf{g}, \ \mathbf{g} < (\mathbf{a} - \mathbf{3})\mathbf{s}, \ell \ge 2$$

 $\Rightarrow \exists O_{\ell,n}, \mathcal{G}(O_{\ell,n}) = \mathbf{g}$

Proof: $\mathcal{G}(n) \ge (\mathbf{a} - \mathbf{1})\mathbf{s}$

(A)
$$\mathcal{G}(n) = \mathbf{as} + \mathcal{G}(1+b)$$

(B) for $\mathbf{g} \in \llbracket \mathbf{0}, (\mathbf{a}-1)\mathbf{s}-1 \rrbracket$, $\exists O_{\ell,n}$ of n , with $\ell \ge 2$ and $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$.

$$egin{aligned} \mathcal{G}(O_{\ell,n-2p}) = \mathbf{g}, & \mathbf{g} < (\mathbf{a}-\mathbf{3})\mathbf{s}, \ell \geq 2 \ \Rightarrow \exists O_{\ell,n}, \mathcal{G}(O_{\ell,n}) = \mathbf{g}+\mathbf{2s} \end{aligned}$$

Moreover, n verifies **(B)**.

Proof: $\mathcal{G}(n) \geq \mathbf{as} + \mathcal{G}(1+b)$

(A)
$$\mathcal{G}(n) = \mathbf{as} + \mathcal{G}(1+b)$$

(B) for $\mathbf{g} \in \llbracket \mathbf{0}, (\mathbf{a}-1)\mathbf{s}-1 \rrbracket$, $\exists O_{\ell,n}$ of n , with $\ell \ge 2$ and $\mathcal{G}(O_{\ell,n}) = \mathbf{g}$.

$$egin{aligned} \mathcal{G}(O_{\ell,n-(\mathsf{a}-1)
ho}) &= \mathbf{g}, \ \ \mathbf{g} < \mathbf{s} + \mathcal{G}(\mathbf{1}+\mathbf{b}) \ &\Rightarrow \exists O_{\ell,n}, \mathcal{G}(O_{\ell,n}) = \mathbf{g} + (\mathbf{a}-\mathbf{1})\mathbf{s} \end{aligned}$$

 \Rightarrow *n* verifies also (A)

Conjectures and remarks

In summary:

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence	S
1 ∉ L	AP	$(0)^{\ell_1}$ (+1)	
$\{1, \ell_2, \dots, \ell_k\}(\ell_i \text{ odd })$	P	(01)*	
$\{1, 2, 3, \ell_4, \ldots, \ell_k\}$	AP	$(0)^1$ (+1)	
$\{1,3,2\ell\}(\ell\geq 2)$	AP	$(01)^\ell$ (+2)	
$\{1,2\ell\}(\ell\geq 2)$	AP	$(01)^{\ell}(23)^{\ell}14(54)^{\ell-1}(32)^{\ell}(45)^{\ell}(67)^{\ell}$ (+8)	C
$ \{1, 2\ell_1, 2\ell_2 + 1\}, \ell_i > 1$	AP	$(01)^{\ell_1}$ (+2)	C

Conjectures:

- 1. $\{1,2\ell\}$, $\ell\geq 2$: OK for $\ell\in\{2,3,4\}$ by AP-test
- **2.** $\ell_1,\ell_2>1,\;\{1,2\ell_1,2\ell_2+1\}$: OK for $\{1,4,5\},\;\{1,4,7\},\;\{1,5,6\}$ by AP-test

Conjectures and remarks

In summary:

$L = \{\ell_1, \ldots, \ell_k\}$	type	Sequence	S
1 ∉ <i>L</i>	AP	$(0)^{\ell_1}$ (+1)	
$\{1, \ell_2, \dots, \ell_k\}(\ell_i \text{ odd })$	P	$(01)^*$	
$\{1, 2, 3, \ell_4, \dots, \ell_k\}$	AP	$(0)^1$ (+1)	
$\{1,3,2\ell\}(\ell\geq 2)$	AP	$(01)^\ell \ (+2)$	
$\{1,2\ell\}(\ell\geq 2)$	AP	$(01)^{\ell}(23)^{\ell}14(54)^{\ell-1}(32)^{\ell}(45)^{\ell}(67)^{\ell}$ (+8)	C
$\{1, 2\ell_1, 2\ell_2 + 1\}, \ell_i > 1$	AP	$(01)^{\ell_1}$ (+2)	C
{1,2}	???	???	

Conjectures:

- 1. $\{1,2\ell\}$, $\ell\geq 2$: OK for $\ell\in\{2,3,4\}$ by AP-test
- **2.** $\ell_1,\ell_2>1,\;\{1,2\ell_1,2\ell_2+1\}$: OK for $\{1,4,5\},\;\{1,4,7\},\;\{1,5,6\}$ by AP-test

$L = \{1, 2\}$

$$L = \{1, 2\}$$

...maybe not!

Thank you!