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Combinatorial games

• Normal play: first player unable to move loses.
• Non-trivial equality, inequality, addition, negation.
• Positions form partially ordered abelian group.
• Game reductions (give unique canonical form):

• Domination: If Left has two options and one is
“always better” (≥) than the other, then remove
the dominated option.

• Reversibility: If Left can “predict” that Right will
respond to the Left option A by moving to B, then
replace the reversible option A with the left moves
from B.

• Misere play: First player unable to move wins.
• Everything is awful!
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General misere play

• Not merely the “opposite” of normal play.

• No relationship between misere, normal outcome
(Mesdal & Ottaway 2007).

• Addition is less intuitive.

Normal outcomes:

+ L R N P
L L ? L ∪N L
R ? R R∪N R
N L ∪ N R∪N ? N
P L R N P

Misere outcomes:

+ L R N P
L ? ? ? ?

R ? ? ? ?

N ? ? ? ?

P ? ? ? ?
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General misere play

• Zero is trivial.

• Only game equal to zero is {·|·}. Proof...
• G − G 6= 0 for all G 6= 0; i.e., no inverses.

• Equality / inequality is rare and difficult to prove.
• Can’t use “G = H ⇔ G − H ∈ P ′′ as normal play.
• Less simplification (domination, reversibility).

e.g., 0 and 1 = {0|·} are incomparable.
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Restricted misere theory (Plambeck, Seigel)

• Equality: G = H means
G + X and H + X have same outcome ∀ games X .

• A universe is a set of games closed under addition,
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• Inequality modulo U : G ≥U H means
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• A position may have algebraic structure modulo U
that it doesn’t have in general (e.g., invertibility,
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Future directions

Some definitions and nice universes.

• Dicot: at every point, either both players can move
or neither can. Let D be the universe of dicot games.

• Left end: Left has no move now.
Dead left end: Left has no move now or later (no
move in any follower).
Dead-ending game: All the end followers are dead
ends. Let E be the universe of dead-ending games.

↪→ Domineering, Hackenbush, NoGo, Snort ⊂ E ,D ⊂ E .
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Invertibility results

Write G instead of −G , call it the conjugate.

Theorem (Allen 2009)

∗+ ∗ ≡D 0.

Theorem (McKay, Milley, Nowakowski 2012)

If G + G ∈ N , and H + H ∈ N for all followers H of G,
then G + G ≡D 0.

Theorem (Milley and Renault, 2013)

If G is an end then G + G ≡E 0

Theorem (Milley 2013)

Let U be any universe and let S ⊂ U be closed under
followers. If Left wins playing first on G + G + Y
for all G ∈ S and left ends Y ∈ U , then G + G ≡U 0.
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Future directions

Absolute Game Theory

• The results so far have been summarized in a survey
paper for Games of No Chance 6 (Milley, Renault).

• New results for D were published in 2015 (Dorbec,
Renault, Siegel, Sopena).

• Since then, new results have been developed by
applying Absolute CGT (Larsson, Nowakowski,
Santos) to misere play, specifically to the dicotic and
dead-ending universes.

• These results are in a paper soon to be submitted,
by the union of the above authors.

Recall: In general, to show G ≥U H, we must show

o(G + X ) ≥ o(H + X ) ∀X ∈ U .
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Future directions

Subordinate comparison (L,M,N,R,S)

Theorem (Subordinate Comparison in D)

Let G ,H ∈ D. Then G ≥D H if and only if

1 o(G ) ≥ o(H);

2 ∀HL ∈ HL, either ∃GL ∈ GL : GL ≥D
HL or ∃HLR ∈ HLR : G ≥D HLR ;

3 ∀GR ∈ GR, either ∃HR ∈ HR : GR ≥D
HR or ∃GRL ∈ GRL : GRL ≥D H.

Theorem (Subordinate Comparison in E)

Let G ,H ∈ E . Then G ≥E H if and only if

1 ô(G ) ≥ ô(H);

2 For all HL ∈ HL, either ∃GL ∈ GL : GL ≥E
HL or ∃HLR ∈ HLR : G ≥E HLR ;

3 For all GR ∈ GR, either ∃HR ∈ HR : GR ≥E
HR or ∃GRL ∈ GRL : GRL ≥E H.

Rebecca Milley Progress and Problems in Misere Play October 24, 2017 9 / 17



Progress and Problems
in Misere Play

Rebecca Milley

General misere play

Restricted misere play

Definitions

Invertibility

Comparison

Reductions

The conjugate property

Future directions

Subordinate comparison (L,M,N,R,S)

Theorem (Subordinate Comparison in D)

Let G ,H ∈ D. Then G ≥D H if and only if

1 o(G ) ≥ o(H);

2 ∀HL ∈ HL, either ∃GL ∈ GL : GL ≥D
HL or ∃HLR ∈ HLR : G ≥D HLR ;

3 ∀GR ∈ GR, either ∃HR ∈ HR : GR ≥D
HR or ∃GRL ∈ GRL : GRL ≥D H.

Theorem (Subordinate Comparison in E)

Let G ,H ∈ E . Then G ≥E H if and only if
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Strong outcome

Definition

Let G ∈ E . The strong left outcome and strong right
outcome of G are defined as

ôL(G ) = min︸︷︷︸
left end X∈E

{oL(G + X )};

ôR(G ) = max︸︷︷︸
right end Y∈E

{oR(G + Y )}.

Definition

Let G ∈ E . We define the strong outcome of G as

ô(G ) =


L , if (ôL(G ), ôR(G )) = (L, L);
N , if (ôL(G ), ôR(G )) = (L,R);
P, if (ôL(G ), ôR(G )) = (R, L);
R, if (ôL(G ), ôR(G )) = (R,R).
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ôR(G ) = max︸︷︷︸
right end Y∈E

{oR(G + Y )}.

Definition

Let G ∈ E . We define the strong outcome of G as
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General misere play
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Definitions

Invertibility

Comparison

Reductions

The conjugate property

Future directions

Domination & reversibility

• Domination works as normal in restricted misere play.
• Reversibility does not!

• The problem is when an otherwise reversible option
would reverse through an end...

• Other (“open”) reversibility works as normal in any
misere universe (LMNRS).

• “End” reversibility has been solved for dicotic
(DRSS 2015) and dead-ending (LMNRS) universes.

Before we get to end-reversible reductions, we need
perfect murder games: M(n) = {· | 0,M(n − 1)}.

M(0) M(1) M(2) M(3) M(4)
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Future directions

End-reversible reductions

In any universe:

1. Remove dominated options.

2. Reverse open-reversible options.

In D:

3. Replace end-reversible options by ∗.
4. Replace {∗ | ∗} by 0.

In E :

3. Remove non-fundamental end-reversible options,
including removal of lone options as long as the
result is in E .

4. Simultaneously remove lone left and lone right
end-reversible options; i.e., replace {A | C} with 0 if
A and C are end-reversible.

5. Replace other end-reversible options by {· | M(n)}
for left options or {−M(n) | ·} for right.
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Definitions

Invertibility

Comparison

Reductions

The conjugate property

Future directions

Unique canonical form

• If G ,H ∈ D are reduced and G ≡D H then G and H
are identical. (Dorbec et al.)

• If G ,H ∈ E are reduced and G ≡E H then G and H
are identical. (Larsson et al.)
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Definitions
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Future directions

The conjugate property

• Recall, in general, we have G + G 6= 0.

• For some U , we might have G + G ≡U 0...
or even G + H ≡U 0, with H 6≡U G . !?
↪→ Impartial example in Plambeck 2008.
↪→ Not-really-an-example in Milley 2015.

• We say U has the conjugate property if this cannot
happen.

• Larsson et al: dicotic and dead-ending universes have
the conjugate property.
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• Extend algebraic results to other universes besides D
and E .

• Subordinate comparison.
• Reversibility through ends.
• Unique canonical forms.
• Conjugate property?

• Apply results for dead-ending universe to specific
rule sets within E , such as domineering, in order to
solve such games under misère play.
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