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A cooperative game is a pair (N, v) where
i) N is a finite set of players.
ii) v : 2N → R is a function with v(∅) = 0.

Question
How the players will share the value v(N) ?
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An answer: the Shapley value [L.S. Shapley 1953]

ϕi =
∑
S3i

(|S| − 1)! · (n − |S|)!

n!
[v(S)− v(S \ {i})]

The vector ϕ is called the Shapley value of the game (N, v).

The Shapley value was obtained by imposing a set of axioms that the
solution must satisfy: efficiency, linearity, symmetry, null player.
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Restricted cooperation

A problem

I practice not all coalitions are feasible: language barriers, geography,
hierarchies.

implicational systems

Let Σ = {A1 → a1, ...,Am → am} be an implicational system on N and
X ⊆ N. The Σ-closure of X , denoted X Σ, is the smallest set containing X
and satisfying: ∀1 ≤ j ≤ m,Aj ⊆ X Σ ⇒ aj ∈ X Σ.
The set FΣ = {X Σ,X ⊆ N} is a closure system (closed under intersection
and containing N) and hence is a lattice (a partially ordered set where any
two elements have a least upper bound and a greatest lower bound).

Example

Σ = {2→ 1,4→ 3,6→ 5}
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Generalization of the Shapley value [Faigle et al 2016]

For a maximal chain c and i ∈ N, we denote by F (c, i) the last coalition in c
that doesn’t contain the player i , and by F +(c, i) the first coalition in c that
contains the player i .

ϕi (v) =
1
|Ch|

∑
c∈Ch

v(F +(c, i))− v(F (c, i))

|F +(c, i) \ F (c, i)|
. (1)
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Define the set

Ai = {(F ,F ′) ∈ F2
Σ | ∃c ∈ Ch : F = F (c, i) and F ′ = F +(c, i)} .

For any F ∈ FΣ, we denote by Ch↓(F ) (resp. Ch↑(F )) the number of
maximal chains of the sublattice [∅,F ] (resp. [F ,N]). With this notation,
equation (1) becomes

ϕi (v) =
1

Ch↓(N)

∑
(F ,F ′)∈Ai

Ch↓(F ) · Ch↑(F ′)
|F ′ \ F |

(v(F ′)− v(F )) . (2)
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We have a partial order (P,4) on N, which is the disjoint union de chains of
the same length.

i → j ∈ Σ⇔ i 4 j

.

FΣ is isomorphic to the product of the chains of the order (P,4) .
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Graph games

The model of weighted graph games captures the interactions between
pairs of players. This is done by considering an undirected graph
G = (N,E) with an integer weight vij for each edge {i , j} ∈ E .
We define a cooperative game (N,Σ, v) by:

v(S) =
∑
{i,j}⊆S

vij ∀S ∈ FΣ.
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Idea

Partition Ai in such a way that Ch↓(F ) · Ch↑(F +) is constant inside each
block of the partition.

Proposition 3

let i ∈ N and c(i) the chain containing i in P. The elements Ai are exactly
the pairs (F ∪ {i}Σ \ {i},F ∪ {i}Σ) where F ∈ FΣ with F ∩ c(i) = ∅.

The set Ai can thus be identified with

Ãi = {F ∈ FΣ | F ∩ c(i) = ∅}.
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The partition

We define an equivalence relation Ri over Ãi as follows:

F1RiF2 ⇔ P|F1 is isomorphic toP|F2 .

Encoding the equivalence classes

The next proposition gives an encoding of the class F , with |F | = k , by a
vector of integers in the set:

Dk = {(x0, . . . , xl ) ∈ Nl+1, such that
l∑

t=0

xt = m − 1,
l∑

t=0

t · xt = k}.
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proposition 4

Let i ∈ N. The sets Qi and E =
n−l⋃
k=0
Dk are in bijection by the mapping

ψ : Qi → E , F 7→ ψ(F ) = (x0, . . . , xl ) where xt is the number of chains of

size t in P|F for 1 ≤ t ≤ l , and x0 = m − 1−
l∑

t=1
xt .

Furthermore, we have ψ(F ) ∈ Dk with k = |F |.

Proposition 5

We have |Dk | ∈ O(k l ).
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Notation

Let x ∈ E an denote by Ax
i the class ψ−1(x)

Lemma 1
Assume that all the chains of P have the same length and let x ∈ E . Then
for all F1,F2 ∈ Ax

i , we have:

Ch↓(F1 ∪ {i}Σ \ {i}) ·Ch↑(F1 ∪ {i}Σ) = Ch↓(F2 ∪ {i}Σ \ {i}) ·Ch↑(F2 ∪ {i}Σ).
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Notation
Pour F ∈ Ax

i :

αx = Ch↓(F ∪ {i}Σ \ {i}) · Ch↑(F ∪ {i}Σ)

Lemma 2

Let x ∈ E and k =
l∑

t=0
t · xt . We have

αx =
(k + h(i))! · (n − k − h(i)− 1)!

h(i)! · (l − h(i)− 1)! ·
l∏

t=0
[t! · (l − t)!]xt
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Proposition 6

Let (N,Σ, v) be a weighted graph game and i ∈ N. We have,

ϕi (v) =
1

Ch↓(N)

n−l∑
k=0

∑
x∈Dk

∑
j 6=i

βx
ij ·αx ·vij , where βx

ij = |{F ∈ Ax
i | j ∈ F∪{i}Σ}|.
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Lemma 3
Let i 6= j ∈ N and x ∈ E . Then

βx
ij =



0, si j → i ,

(m − 1)!
l∏

t=0
xt !

, si i → j ,

(m − 2)!
l∏

t=0
xt !

·
l∑

t=h(j)+1

xt , sinon.
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Theorem 1
The Shapley value ϕi of a player i in a weighted graph game on a product of
m chains with the same length l − 1 can be computed in O(nl+3), where n is
the number of players. For fixed l , it can be computed in polynomial time.
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