University of Clermont Auvergne LIMOS Laboratory

Computing the Shapley value of graph games with restricted coalitions

K. MAAFA, L. NOURINE, M. S. RADJEF

October 25, 2017

GAG Workshop, Lyon, France.

Outline

(1) Introduction

- Classical cooperative games
- Restricted cooperation
(2) Graph games on a product of chains

Outline

(1) Introduction

- Classical cooperative games
- Restricted cooperation

2 Graph games on a product of chains

Introduction

A cooperative game is a pair (N, v) where
i) N is a finite set of players.
ii) $v: 2^{N} \rightarrow \mathbb{R}$ is a function with $v(\emptyset)=0$.

Question

How the players will share the value $v(N)$?

An answer: the Shapley value [L.S. Shapley 1953]

$$
\varphi_{i}=\sum_{S \ni i} \frac{(|S|-1)!\cdot(n-|S|)!}{n!}[v(S)-v(S \backslash\{i\})]
$$

The vector φ is called the Shapley value of the game (N, v).

The Shapley value was obtained by imposing a set of axioms that the solution must satisfy: efficiency, linearity, symmetry, null player.

Restricted cooperation

A problem

I practice not all coalitions are feasible: language barriers, geography, hierarchies.

implicational systems

Let $\Sigma=\left\{A_{1} \rightarrow a_{1}, \ldots, A_{m} \rightarrow a_{m}\right\}$ be an implicational system on N and $X \subseteq N$. The Σ-closure of X, denoted X^{Σ}, is the smallest set containing X and satisfying: $\forall 1 \leq j \leq m, A_{j} \subseteq X^{\Sigma} \Rightarrow a_{j} \in X^{\Sigma}$.
The set $\mathcal{F}_{\Sigma}=\left\{X^{\Sigma}, X \subseteq N\right\}$ is a closure system (closed under intersection and containing N) and hence is a lattice (a partially ordered set where any two elements have a least upper bound and a greatest lower bound).

Example

$$
\Sigma=\{2 \rightarrow 1,4 \rightarrow 3,6 \rightarrow 5\}
$$

Generalization of the Shapley value [Faigle et al 2016]

For a maximal chain c and $i \in N$, we denote by $F(c, i)$ the last coalition in c that doesn't contain the player i, and by $F^{+}(c, i)$ the first coalition in c that contains the player i.

$$
\begin{equation*}
\varphi_{i}(v)=\frac{1}{|C h|} \sum_{c \in C h} \frac{v\left(F^{+}(c, i)\right)-v(F(c, i))}{\left|F^{+}(c, i) \backslash F(c, i)\right|} . \tag{1}
\end{equation*}
$$

Define the set

$$
\mathcal{A}_{i}=\left\{\left(F, F^{\prime}\right) \in \mathcal{F}_{\Sigma}^{2} \mid \exists c \in C h: F=F(c, i) \text { and } F^{\prime}=F^{+}(c, i)\right\} .
$$

For any $F \in \mathcal{F}_{\Sigma}$, we denote by $C h^{\downarrow}(F)\left(\operatorname{resp} . C h^{\uparrow}(F)\right)$ the number of maximal chains of the sublattice $[\emptyset, F]$ (resp. $[F, N]$). With this notation, equation (1) becomes

$$
\begin{equation*}
\varphi_{i}(v)=\frac{1}{C h^{\downarrow}(N)} \sum_{\left(F, F^{\prime}\right) \in \mathcal{A}_{i}} \frac{C h^{\downarrow}(F) \cdot C h^{\uparrow}\left(F^{\prime}\right)}{\left|F^{\prime} \backslash F\right|}\left(v\left(F^{\prime}\right)-v(F)\right) . \tag{2}
\end{equation*}
$$

Outline

(1) Introduction

- Classical cooperative games
- Restricted cooperation

2) Graph games on a product of chains

We have a partial order (P, \preccurlyeq) on N, which is the disjoint union de chains of the same length.

$$
i \rightarrow j \in \Sigma \Leftrightarrow i \preccurlyeq j
$$

\mathcal{F}_{Σ} is isomorphic to the product of the chains of the order (P, \preccurlyeq).

Graph games

The model of weighted graph games captures the interactions between pairs of players. This is done by considering an undirected graph $G=(N, E)$ with an integer weight $v_{i j}$ for each edge $\{i, j\} \in E$.
We define a cooperative game (N, Σ, v) by:

$$
v(S)=\sum_{\{i, j\} \subseteq S} v_{i j} \quad \forall S \in \mathcal{F}_{\Sigma} .
$$

Idea

Partition \mathcal{A}_{i} in such a way that $C h^{\downarrow}(F) \cdot C h^{\uparrow}\left(F^{+}\right)$is constant inside each block of the partition.

Proposition 3

let $i \in N$ and $c(i)$ the chain containing i in P. The elements \mathcal{A}_{i} are exactly the pairs $\left(F \cup\{i\}^{\Sigma} \backslash\{i\}, F \cup\{i\}^{\Sigma}\right.$) where $F \in \mathcal{F}_{\Sigma}$ with $F \cap c(i)=\emptyset$.

The set \mathcal{A}_{i} can thus be identified with

$$
\tilde{\mathcal{A}}_{i}=\left\{F \in \mathcal{F}_{\Sigma} \mid F \cap c(i)=\emptyset\right\} .
$$

The partition

We define an equivalence relation \mathcal{R}_{i} over $\tilde{\mathcal{A}}_{i}$ as follows:

$$
F_{1} \mathcal{R}_{i} F_{2} \Leftrightarrow P_{\mid F_{1}} \text { is isomorphic to } P_{\mid F_{2}} .
$$

Encoding the equivalence classes

The next proposition gives an encoding of the class \bar{F}, with $|F|=k$, by a vector of integers in the set:

$$
\mathcal{D}_{k}=\left\{\left(x_{0}, \ldots, x_{l}\right) \in \mathbb{N}^{1+1}, \text { such that } \sum_{t=0}^{1} x_{t}=m-1, \sum_{t=0}^{1} t \cdot x_{t}=k\right\}
$$

proposition 4

Let $i \in N$. The sets \mathcal{Q}_{i} and $\mathcal{E}=\bigcup_{k=0}^{n-1} \mathcal{D}_{k}$ are in bijection by the mapping $\psi: \mathcal{Q}_{i} \rightarrow \mathcal{E}, \bar{F} \mapsto \psi(\bar{F})=\left(x_{0}, \ldots, x_{l}\right)$ where x_{t} is the number of chains of size t in $P_{\mid F}$ for $1 \leq t \leq I$, and $x_{0}=m-1-\sum_{t=1}^{1} x_{t}$.
Furthermore, we have $\psi(\bar{F}) \in \mathcal{D}_{k}$ with $k=|F|$.

Proposition 5

We have $\left|\mathcal{D}_{k}\right| \in O\left(k^{\prime}\right)$.

Notation

Let $x \in \mathcal{E}$ an denote by \mathcal{A}_{i}^{x} the class $\psi^{-1}(x)$

Lemma 1

Assume that all the chains of P have the same length and let $x \in \mathcal{E}$. Then for all $F_{1}, F_{2} \in \mathcal{A}_{i}^{X}$, we have:

$$
C h^{\downarrow}\left(F_{1} \cup\{i\}^{\Sigma} \backslash\{i\}\right) \cdot C h^{\uparrow}\left(F_{1} \cup\{i\}^{\Sigma}\right)=C h^{\downarrow}\left(F_{2} \cup\{i\}^{\Sigma} \backslash\{i\}\right) \cdot C h^{\uparrow}\left(F_{2} \cup\{i\}^{\Sigma}\right) .
$$

Notation

Pour $F \in \mathcal{A}_{i}^{X}$:

$$
\alpha_{x}=\operatorname{Ch}^{\downarrow}\left(F \cup\{i\}^{\Sigma} \backslash\{i\}\right) \cdot \operatorname{Ch}^{\uparrow}\left(F \cup\{i\}^{\Sigma}\right)
$$

Lemma 2

Let $x \in \mathcal{E}$ and $k=\sum_{t=0}^{1} t \cdot x_{t}$. We have

$$
\alpha_{x}=\frac{(k+h(i))!\cdot(n-k-h(i)-1)!}{h(i)!\cdot(I-h(i)-1)!\cdot \prod_{t=0}^{l}[t!\cdot(I-t)!]^{x_{t}}}
$$

Proposition 6

Let (N, Σ, v) be a weighted graph game and $i \in N$. We have,
$\varphi_{i}(v)=\frac{1}{\operatorname{Ch}^{\downarrow}(N)} \sum_{k=0}^{n-1} \sum_{x \in \mathcal{D}_{k}} \sum_{j \neq i} \beta_{i j}^{x} \cdot \alpha_{x} \cdot v_{i j}$, where $\beta_{i j}^{x}=\left|\left\{F \in \mathcal{A}_{i}^{x} \mid j \in F \cup\{i\}^{\Sigma}\right\}\right|$.

Lemma 3

Let $i \neq j \in N$ and $x \in \mathcal{E}$. Then

$$
\beta_{i j}^{x}=\left\{\begin{array}{l}
0, \text { si } j \rightarrow i, \\
\frac{(m-1)!}{\prod_{t=0}^{l} x_{t}!}, \text { si } i \rightarrow j, \\
\frac{(m-2)!}{\prod_{t=0}^{l} x_{t}!} \cdot \sum_{t=h(j)+1}^{l} x_{t}, \text { sinon. }
\end{array}\right.
$$

Theorem 1

The Shapley value φ_{i} of a player i in a weighted graph game on a product of m chains with the same length $I-1$ can be computed in $O\left(n^{\prime+3}\right)$, where n is the number of players. For fixed I, it can be computed in polynomial time.

Thank you for your attention

