University of Clermont Auvergne LIMOS Laboratory

Computing the Shapley value of graph games with restricted coalitions

K. MAAFA, L. NOURINE, M. S. RADJEF

October 25, 2017

GAG Workshop, Lyon, France.

K. MAAFA, L. NOURINE, M. S. RADJEF Computing the Shapley value of graph games with restricted coalitions

Outline

Introduction

- Classical cooperative games
- Restricted cooperation

Introduction

- Classical cooperative games
- Restricted cooperation

Graph games on a product of chains

Introduction

A cooperative game is a pair (N, v) where

i) N is a finite set of players.

ii) $v: 2^N \to \mathbb{R}$ is a function with $v(\emptyset) = 0$.

Question

How the players will share the value v(N) ?

An answer: the Shapley value [L.S. Shapley 1953]

$$\varphi_i = \sum_{S \ni i} \frac{(|S|-1)! \cdot (n-|S|)!}{n!} [v(S) - v(S \setminus \{i\})]$$

The vector φ is called the Shapley value of the game (*N*, *v*).

The Shapley value was obtained by imposing a set of axioms that the solution must satisfy: efficiency, linearity, symmetry, null player.

Restricted cooperation

A problem

I practice not all coalitions are feasible: language barriers, geography, hierarchies.

implicational systems

Let $\Sigma = \{A_1 \rightarrow a_1, ..., A_m \rightarrow a_m\}$ be an implicational system on *N* and $X \subseteq N$. The Σ -closure of *X*, denoted X^{Σ} , is the smallest set containing *X* and satisfying: $\forall 1 \leq j \leq m, A_j \subseteq X^{\Sigma} \Rightarrow a_j \in X^{\Sigma}$. The set $\mathcal{F}_{\Sigma} = \{X^{\Sigma}, X \subseteq N\}$ is a closure system (closed under intersection and containing *N*) and hence is a lattice (a partially ordered set where any two elements have a least upper bound and a greatest lower bound).

Example

$$\Sigma = \{2 \rightarrow 1, 4 \rightarrow 3, 6 \rightarrow 5\}$$

Introduction Classical cooperative graph games on a product of chains Restricted cooperation

Generalization of the Shapley value [Faigle et al 2016]

For a maximal chain c and $i \in N$, we denote by F(c, i) the last coalition in c that doesn't contain the player i, and by $F^+(c, i)$ the first coalition in c that contains the player *i*.

$$\varphi_i(\mathbf{v}) = \frac{1}{|Ch|} \sum_{c \in Ch} \frac{\mathbf{v}(F^+(c,i)) - \mathbf{v}(F(c,i))}{|F^+(c,i) \setminus F(c,i)|} \,. \tag{1}$$

Define the set

$$\mathcal{A}_i = \{(F,F') \in \mathcal{F}_{\Sigma}^2 \mid \exists c \in Ch : F = F(c,i) \text{ and } F' = F^+(c,i)\}.$$

For any $F \in \mathcal{F}_{\Sigma}$, we denote by $Ch^{\downarrow}(F)$ (resp. $Ch^{\uparrow}(F)$) the number of maximal chains of the sublattice $[\emptyset, F]$ (resp. [F, N]). With this notation, equation (1) becomes

$$\varphi_{i}(\mathbf{v}) = \frac{1}{Ch^{\downarrow}(N)} \sum_{(F,F') \in \mathcal{A}_{i}} \frac{Ch^{\downarrow}(F) \cdot Ch^{\uparrow}(F')}{|F' \setminus F|} (\mathbf{v}(F') - \mathbf{v}(F)).$$
(2)

- Classical cooperative games
- Restricted cooperation

Graph games on a product of chains

We have a partial order (P, \preccurlyeq) on N, which is the disjoint union de chains of the same length.

$$i \to j \in \Sigma \Leftrightarrow i \preccurlyeq j$$

 \mathcal{F}_{Σ} is isomorphic to the product of the chains of the order (P, \preccurlyeq) .

Graph games

The model of weighted graph games captures the interactions between pairs of players. This is done by considering an undirected graph G = (N, E) with an integer weight v_{ij} for each edge $\{i, j\} \in E$. We define a cooperative game (N, Σ, v) by:

$$oldsymbol{v}(oldsymbol{S}) = \sum_{\{i,j\}\subseteq oldsymbol{S}}oldsymbol{v}_{ij} ~~orall oldsymbol{S}\in \mathcal{F}_{\Sigma}.$$

Idea

Partition A_i in such a way that $Ch^{\downarrow}(F) \cdot Ch^{\uparrow}(F^+)$ is constant inside each block of the partition.

Proposition 3

let $i \in N$ and c(i) the chain containing i in P. The elements A_i are exactly the pairs $(F \cup \{i\}^{\Sigma} \setminus \{i\}, F \cup \{i\}^{\Sigma})$ where $F \in \mathcal{F}_{\Sigma}$ with $F \cap c(i) = \emptyset$.

The set A_i can thus be identified with

$$\tilde{\mathcal{A}}_i = \{ F \in \mathcal{F}_{\Sigma} \mid F \cap c(i) = \emptyset \}.$$

The partition

We define an equivalence relation \mathcal{R}_i over $\tilde{\mathcal{A}}_i$ as follows:

$$F_1\mathcal{R}_iF_2 \Leftrightarrow P_{|F_1}$$
 is isomorphic to $P_{|F_2}$.

Encoding the equivalence classes

The next proposition gives an encoding of the class \overline{F} , with |F| = k, by a vector of integers in the set:

$$\mathcal{D}_k = \{(x_0, \dots, x_l) \in \mathbb{N}^{l+1}, \text{ such that } \sum_{t=0}^l x_t = m-1, \sum_{t=0}^l t \cdot x_t = k\}.$$

proposition 4

Let $i \in N$. The sets Q_i and $\mathcal{E} = \bigcup_{k=0}^{n-l} \mathcal{D}_k$ are in bijection by the mapping $\psi : Q_i \to \mathcal{E}, \overline{F} \mapsto \psi(\overline{F}) = (x_0, \dots, x_l)$ where x_t is the number of chains of size t in $P_{|F}$ for $1 \le t \le l$, and $x_0 = m - 1 - \sum_{t=1}^{l} x_t$. Furthermore, we have $\psi(\overline{F}) \in \mathcal{D}_k$ with k = |F|.

Proposition 5

We have $|\mathcal{D}_k| \in O(k')$.

Notation

Let $x \in \mathcal{E}$ an denote by \mathcal{A}_i^x the class $\psi^{-1}(x)$

Lemma 1

Assume that all the chains of *P* have the same length and let $x \in \mathcal{E}$. Then for all $F_1, F_2 \in \mathcal{A}_i^x$, we have:

 $Ch^{\downarrow}(F_1 \cup \{i\}^{\Sigma} \setminus \{i\}) \cdot Ch^{\uparrow}(F_1 \cup \{i\}^{\Sigma}) = Ch^{\downarrow}(F_2 \cup \{i\}^{\Sigma} \setminus \{i\}) \cdot Ch^{\uparrow}(F_2 \cup \{i\}^{\Sigma}).$

Notation

Pour $F \in A_i^x$:

$$\alpha_{\mathbf{x}} = \mathbf{C}\mathbf{h}^{\downarrow}(\mathbf{F} \cup \{i\}^{\Sigma} \setminus \{i\}) \cdot \mathbf{C}\mathbf{h}^{\uparrow}(\mathbf{F} \cup \{i\}^{\Sigma})$$

Lemma 2

Let
$$x \in \mathcal{E}$$
 and $k = \sum_{t=0}^{l} t \cdot x_t$. We have

$$\alpha_x = \frac{(k+h(i))! \cdot (n-k-h(i)-1)!}{h(i)! \cdot (l-h(i)-1)! \cdot \prod_{t=0}^{l} [t! \cdot (l-t)!]^{x_t}}$$

Proposition 6

Let (N, Σ, v) be a weighted graph game and $i \in N$. We have,

$$\varphi_i(\boldsymbol{v}) = \frac{1}{Ch^{\downarrow}(N)} \sum_{k=0}^{n-l} \sum_{x \in \mathcal{D}_k} \sum_{j \neq i} \beta_{ij}^x \cdot \alpha_x \cdot \boldsymbol{v}_{ij}, \text{ where } \beta_{ij}^x = |\{F \in \mathcal{A}_i^x \mid j \in F \cup \{i\}^{\Sigma}\}|.$$

Lemma 3

Let $i \neq j \in N$ and $x \in \mathcal{E}$. Then

$$\beta_{ij}^{x} = \begin{cases} 0, \ si \ j \to i, \\ \frac{(m-1)!}{\prod\limits_{t=0}^{l} x_{t}!}, \ si \ i \to j, \\ \frac{(m-2)!}{\prod\limits_{t=0}^{l} x_{t}!} \cdot \sum_{t=h(j)+1}^{l} x_{t}, \ \text{sinon.} \end{cases}$$

Theorem 1

The Shapley value φ_i of a player *i* in a weighted graph game on a product of *m* chains with the same length l - 1 can be computed in $O(n^{l+3})$, where *n* is the number of players. For fixed *l*, it can be computed in polynomial time.

Thank you for your attention