Rulesets for Beatty games

Lior Goldberg Aviezri S. Fraenkel

Games and Graphs Workshop, 2017

To appear in IJGT; online version: http://rdcu.be/wrcd

Beatty games

Any game with the following properties:

- Subtraction game with two (symmetric) piles.
- Invariant game.
- The set of P-positions is $\left\{(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor): n \in \mathbb{Z}_{\geq 0}\right\}$, for arbitrary irrationals $1<\alpha<2<\beta$ where $1 / \alpha+1 / \beta=1$.

Motivation: t-Wythoff

t-Wythoff $\left(t \in \mathbb{Z}_{\geq 1}\right)$ is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k-\ell|<t$ (Diagonal move).
The player first unable to move loses (normal play).

Motivation: t-Wythoff

t-Wythoff $\left(t \in \mathbb{Z}_{\geq 1}\right)$ is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k-\ell|<t$ (Diagonal move).
The player first unable to move loses (normal play).
Properties:
- Subtraction game with two (symmetric) piles.

Motivation: t-Wythoff

t-Wythoff $\left(t \in \mathbb{Z}_{\geq 1}\right)$ is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k-\ell|<t$ (Diagonal move).
The player first unable to move loses (normal play).
Properties:
- Subtraction game with two (symmetric) piles.
- Invariant game.

Motivation: t-Wythoff

t-Wythoff $\left(t \in \mathbb{Z}_{\geq 1}\right)$ is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k-\ell|<t$ (Diagonal move).
The player first unable to move loses (normal play).
Properties:
- Subtraction game with two (symmetric) piles.
- Invariant game.
- The set of P-positions is $\left\{(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor): n \in \mathbb{Z}_{\geq 0}\right\}$ where $\alpha=[1 ; t, t, t, \ldots]$ and $\beta=\alpha+t$. Note that $1 / \alpha+1 / \beta=1$.

Beatty games

Any game with the following properties:

- Subtraction game with two (symmetric) piles.
- Invariant game.
- The set of P-positions is $\left\{(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor): n \in \mathbb{Z}_{\geq 0}\right\}$, for arbitrary irrationals $1<\alpha<2<\beta$ where $1 / \alpha+1 / \beta=1$.

Existence of Beatty games

Conjecture (Duchêne and Rigo, 2010)

For every irrational $1<\alpha<2$ and β such that $1 / \alpha+1 / \beta=1$, there exists a Beatty game.

Existence of Beatty games

Conjecture (Duchêne and Rigo, 2010)

For every irrational $1<\alpha<2$ and β such that $1 / \alpha+1 / \beta=1$, there exists a Beatty game.

Proof (Larsson et al., 2011)

A ruleset can be constructed by applying the \star-operator to the set of P-positions - taking the P-positions of the game whose moves are $\left\{(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor): n \in \mathbb{Z}_{\geq 1}\right\}$.

Existence of Beatty games

Conjecture（Duchêne and Rigo，2010）

For every irrational $1<\alpha<2$ and β such that $1 / \alpha+1 / \beta=1$ ， there exists a Beatty game．

Proof（Larsson et al．，2011）

A ruleset can be constructed by applying the \star－operator to the set of P－positions－taking the P－positions of the game whose moves are $\left\{(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor): n \in \mathbb{Z}_{\geq 1}\right\}$ ．

Problem

This ruleset is not an explicit＂one－line＂ruleset（compare，for example，to Wythoff）．

A ruleset for an arbitrary α

Theorem

Assume $\alpha<1.5$. The following ruleset is a Beatty game for α :

- Nim moves.
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k-\ell|<\lfloor\beta\rfloor-1$. Except for the move $(2,\lfloor\beta\rfloor)$.
- Remove $\lfloor\alpha n\rfloor$ tokens from one pile and $\lfloor\beta n\rfloor-1$ tokens from the other ($n \in \mathbb{Z}_{\geq 1}$).
- A finite set of additional moves.

For $1.5<\alpha<2$ the ruleset is slightly more complicated.

Modified t-Wythoff (MTW)

The ruleset in the theorem explicitly mentions α. Can we do better?

Modified t-Wythoff (MTW)

The ruleset in the theorem explicitly mentions α. Can we do better?

There are simpler rulesets in the literature for specific values of α :

Example

(1) $\alpha=[1 ; t, t, t, \ldots]$ (t-Wythoff).
(2) $\alpha=[1 ; 1, k, 1, k, \ldots]$ (Duchêne and Rigo, 2010).

Modified t-Wythoff (MTW)

The ruleset in the theorem explicitly mentions α. Can we do better?

There are simpler rulesets in the literature for specific values of α :

Example

(1) $\alpha=[1 ; t, t, t, \ldots]$ (t-Wythoff).
(2) $\alpha=[1 ; 1, k, 1, k, \ldots]$ (Duchêne and Rigo, 2010).

Definition

(i) A ruleset is said to be MTW (Modified t-Wythoff) if it is a finite modification of t-Wythoff for some $t \in \mathbb{Z}_{\geq 1}$.
(ii) An irrational $1<\alpha<2$ is said to be $M T W$, if there exists an MTW ruleset for the corresponding Beatty game.

Modified t-Wythoff (MTW)

Theorem

Let $1<\alpha<2$ be irrational. Then, α is MTW if and only if

$$
\alpha^{2}+b \alpha-c=0
$$

for some $b, c \in \mathbb{Z}$ such that $b-c+1<0$.

Forbidden subtractions

A move in the ruleset must not connect two P-positions. There are two types of such forbidden subtractions: Direct and Crossed.

For example, consider two P-positions: $(4,9)$ and $(1,3)$.

Direct

$$
\begin{array}{ll}
4 & \xrightarrow{\text { Remove 3 }}
\end{array} 1
$$

$$
(3,6)
$$

Crossed
$4 \xrightarrow{\text { Remove } 1} 3$
$9 \xrightarrow{\text { Remove 8 }} 1$
$(1,8)$

Forbidden subtractions

$$
\alpha=[1 ; 2,3,4, \ldots]
$$

$\lfloor\alpha n\rfloor$	$\lfloor\beta n\rfloor$
0	0
1	3
2	6
4	9
5	13
7	16
8	19
10	23
11	26

Direct forbidden subtractions

A direct forbidden subtraction has the form:

$$
(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor)-(\lfloor\alpha m\rfloor,\lfloor\beta m\rfloor)=(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)
$$

where $k=n-m$ and $a, b \in\{0,1\}$.
The values of a and b are determined by the relative position of the points $p_{k}=(\{\alpha k\},\{\beta k\})$ and $p_{n}=(\{\alpha n\},\{\beta n\})$:

Direct forbidden subtractions

A direct forbidden subtraction has the form:

$$
(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor)-(\lfloor\alpha m\rfloor,\lfloor\beta m\rfloor)=(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)
$$

where $k=n-m$ and $a, b \in\{0,1\}$.
The values of a and b are determined by the relative position of the points $p_{k}=(\{\alpha k\},\{\beta k\})$ and $p_{n}=(\{\alpha n\},\{\beta n\})$:

Direct forbidden subtractions

A direct forbidden subtraction has the form:

$$
(\lfloor\alpha n\rfloor,\lfloor\beta n\rfloor)-(\lfloor\alpha m\rfloor,\lfloor\beta m\rfloor)=(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)
$$

where $k=n-m$ and $a, b \in\{0,1\}$.
The values of a and b are determined by the relative position of the points $p_{k}=(\{\alpha k\},\{\beta k\})$ and $p_{n}=(\{\alpha n\},\{\beta n\})$:

Direct forbidden subtractions

Given $k \in \mathbb{Z}_{\geq 1}$ and $a, b \in\{0,1\}$:
Is $(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)$ a direct forbidden subtraction?

Direct forbidden subtractions

Given $k \in \mathbb{Z}_{\geq 1}$ and $a, b \in\{0,1\}$:
Is $(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)$ a direct forbidden subtraction?
Is there a point p_{n} in the corresponding rectangle?

Direct forbidden subtractions

Given $k \in \mathbb{Z}_{\geq 1}$ and $a, b \in\{0,1\}$:
Is $(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)$ a direct forbidden subtraction?
Is there a point p_{n} in the corresponding rectangle?
What is $\left\{p_{n}: n \in \mathbb{Z}_{\geq 0}\right\}$?

Direct forbidden subtractions

Given $k \in \mathbb{Z}_{\geq 1}$ and $a, b \in\{0,1\}$:
Is $(\lfloor\alpha k\rfloor+a,\lfloor\beta k\rfloor+b)$ a direct forbidden subtraction?
Is there a point p_{n} in the corresponding rectangle?
What is $\left\{p_{n}: n \in \mathbb{Z}_{\geq 0}\right\}$?
Easier: What is the topological closure of $\left\{p_{n}: n \in \mathbb{Z}_{\geq 0}\right\}$?

Direct forbidden subtractions

What is the topological closure of $\left\{p_{n}: n \in \mathbb{Z}_{\geq 0}\right\}$?

$$
A \alpha+B \beta+C=0, \quad \text { where } A, B, C \in \mathbb{Z} \quad(A>0)
$$

No solution

The set is dense in $[0,1] \times[0,1]$
\rightarrow

Direct forbidden subtractions

What is the topological closure of $\left\{p_{n}: n \in \mathbb{Z}_{\geq 0}\right\}$?

$$
A \alpha+B \beta+C=0, \quad \text { where } A, B, C \in \mathbb{Z} \quad(A>0)
$$

No solution
A=3,B=4

The set is dense in

$$
[0,1] \times[0,1]
$$

Proving the impossibility result of the MTW theorem

Observation

Let $1<\alpha<2$ be irrational. Then, α satisfies

$$
\alpha^{2}+b \alpha-c=0, \quad \text { where } b, c \in \mathbb{Z}, b-c+1<0
$$

if and only if

$$
A \alpha+B \beta+C=0, \quad \text { where } A, B, C \in \mathbb{Z}
$$

has a solution with $A=1$ and $B<0$.

Proving the impossibility result of the MTW theorem

Observation

Let $1<\alpha<2$ be irrational. Then, α satisfies

$$
\alpha^{2}+b \alpha-c=0, \quad \text { where } b, c \in \mathbb{Z}, b-c+1<0
$$

if and only if

$$
A \alpha+B \beta+C=0, \quad \text { where } A, B, C \in \mathbb{Z}
$$

has a solution with $A=1$ and $B<0$.

Case I: $A \neq 1$ and $B<0$.
Case II: No solution or $B>0$.

Case I: $A \neq 1$ and $B<0$

Assume α is MTW with $A \neq 1$ and $B<0$.

Case I: $A \neq 1$ and $B<0$

Assume α is MTW with $A \neq 1$ and $B<0$.

Case I: $A \neq 1$ and $B<0$

Assume α is MTW with $A \neq 1$ and $B<0$.

$$
\begin{aligned}
& \left\{p_{n}: n \in \mathbb{Z}_{\geq 0}\right\} \\
& A=2, B=-4
\end{aligned}
$$

Take a sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that $p_{n_{i}} \rightarrow(1 / A, 0)$.
Consider the N-positions $\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)$.

Case I: $A \neq 1$ and $B<0$

Nim move - not possible.
Crossed move:

$$
\begin{aligned}
& \left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\beta m_{i}\right\rfloor,\left\lfloor\alpha m_{i}\right\rfloor\right)= \\
& \quad\left(\left\lfloor\alpha n_{i}\right\rfloor-\left\lfloor\beta m_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-\left\lfloor\alpha m_{i}\right\rfloor-1\right) .
\end{aligned}
$$

Difference is:

$$
\begin{aligned}
& \left(\left\lfloor\beta n_{i}\right\rfloor-\left\lfloor\alpha m_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha n_{i}\right\rfloor-\left\lfloor\beta m_{i}\right\rfloor\right) \approx \\
& \quad(\beta-\alpha)\left(n_{i}+m_{i}\right) \rightarrow \infty
\end{aligned}
$$

Case I: $A \neq 1$ and $B<0$

Nim move - not possible.
Crossed move:

$$
\begin{aligned}
& \left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\beta m_{i}\right\rfloor,\left\lfloor\alpha m_{i}\right\rfloor\right)= \\
& \quad\left(\left\lfloor\alpha n_{i}\right\rfloor-\left\lfloor\beta m_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-\left\lfloor\alpha m_{i}\right\rfloor-1\right) .
\end{aligned}
$$

Difference is:

$$
\begin{aligned}
& \left(\left\lfloor\beta n_{i}\right\rfloor-\left\lfloor\alpha m_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha n_{i}\right\rfloor-\left\lfloor\beta m_{i}\right\rfloor\right) \approx \\
& \quad(\beta-\alpha)\left(n_{i}+m_{i}\right) \rightarrow \infty
\end{aligned}
$$

\Rightarrow At most finitely many n_{i} 's are solved by a crossed move.

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Finitely many k_{i} 's and $\left\{\beta n_{i}\right\} \rightarrow 0$

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Finitely many k_{i} 's and $\left\{\beta n_{i}\right\} \rightarrow 0$
\Rightarrow Eventually, p_{n} is below p_{k}

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Finitely many k_{i} 's and $\left\{\beta n_{i}\right\} \rightarrow 0$
\Rightarrow Eventually, p_{n} is below p_{k}
$\Rightarrow b_{i}=1$

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Finitely many k_{i} 's and $\left\{\beta n_{i}\right\} \rightarrow 0$
\Rightarrow Eventually, p_{n} is below p_{k}
$\Rightarrow b_{i}=1$
$\Rightarrow a_{i}=1$

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Finitely many k_{i} 's and $\left\{\beta n_{i}\right\} \rightarrow 0$
\Rightarrow Eventually, p_{n} is below p_{k}
$\Rightarrow b_{i}=1$
$\Rightarrow a_{i}=1$
$\Rightarrow 1 / A<\left\{\alpha n_{i}\right\}<\left\{\alpha k_{i}\right\}$.

Case I: $A \neq 1$ and $B<0$

Direct move:

$$
\begin{gathered}
\left(\left\lfloor\alpha n_{i}\right\rfloor,\left\lfloor\beta n_{i}\right\rfloor-1\right)-\left(\left\lfloor\alpha m_{i}\right\rfloor,\left\lfloor\beta m_{i}\right\rfloor\right)= \\
\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right) .
\end{gathered}
$$

where $k_{i}=n_{i}-m_{i}$ and $a_{i}, b_{i} \in\{0,1\}$.

Finitely many k_{i} 's and $\left\{\beta n_{i}\right\} \rightarrow 0$
\Rightarrow Eventually, p_{n} is below p_{k}
$\Rightarrow b_{i}=1$
$\Rightarrow a_{i}=1$
$\Rightarrow 1 / A<\left\{\alpha n_{i}\right\}<\left\{\alpha k_{i}\right\}$.
The move is $\left(\left\lfloor\alpha k_{i}\right\rfloor+1,\left\lfloor\beta k_{i}\right\rfloor\right)$ which is a forbidden subtraction.

Case II: No solution or $B>0$

Take a sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that $p_{n_{i}} \rightarrow(1,0)$.

As before, we have to consider the move: $\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right)$.

Case II: No solution or $B>0$

Take a sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that $p_{n_{i}} \rightarrow(1,0)$.

As before, we have to consider the move: $\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right)$.
Eventually, $a_{i}=0$ and $b_{i}=1$.

Case II: No solution or $B>0$

Take a sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that $p_{n_{i}} \rightarrow(1,0)$.

As before, we have to consider the move: $\left(\left\lfloor\alpha k_{i}\right\rfloor+a_{i},\left\lfloor\beta k_{i}\right\rfloor+b_{i}-1\right)$.
Eventually, $a_{i}=0$ and $b_{i}=1$. This is impossible as this move is a P-position.

Questions?

