Rulesets for Beatty games

Lior Goldberg Aviezri S. Fraenkel

Games and Graphs Workshop, 2017

To appear in IJGT; online version: http://rdcu.be/wrcd

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Any game with the following properties:

- Subtraction game with two (symmetric) piles.
- Invariant game.
- The set of P-positions is {([αn], [βn]) : n ∈ Z_{≥0}}, for arbitrary irrationals 1 < α < 2 < β where 1/α + 1/β = 1.

イロト 不得 とくほ とくほ とうほう

Motivation: *t*-Wythoff

t-Wythoff ($t \in \mathbb{Z}_{\geq 1}$) is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k \ell| < t$ (Diagonal move).

The player first unable to move loses (normal play).

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Motivation: *t*-Wythoff

t-Wythoff ($t \in \mathbb{Z}_{\geq 1}$) is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k \ell| < t$ (Diagonal move).

The player first unable to move loses (normal play).

Properties:

• Subtraction game with two (symmetric) piles.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Motivation: *t*-Wythoff

t-Wythoff ($t \in \mathbb{Z}_{\geq 1}$) is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k \ell| < t$ (Diagonal move).

The player first unable to move loses (normal play).

Properties:

- Subtraction game with two (symmetric) piles.
- Invariant game.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Motivation: *t*-Wythoff

t-Wythoff ($t \in \mathbb{Z}_{\geq 1}$) is a generalization of Wythoff. It is played on two piles of tokens. Each player can either:

- Remove tokens from one pile (Nim move).
- Remove k tokens from one pile and ℓ tokens from the other, provided that $|k \ell| < t$ (Diagonal move).

The player first unable to move loses (normal play).

Properties:

- Subtraction game with two (symmetric) piles.
- Invariant game.
- The set of P-positions is $\{(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor) : n \in \mathbb{Z}_{\geq 0}\}$ where
 - $\alpha = [1; t, t, t, \ldots] \text{ and } \beta = \alpha + t. \text{ Note that } 1/\alpha + 1/\beta = 1.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Any game with the following properties:

- Subtraction game with two (symmetric) piles.
- Invariant game.
- The set of P-positions is {([αn], [βn]) : n ∈ Z_{≥0}}, for arbitrary irrationals 1 < α < 2 < β where 1/α + 1/β = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Existence of Beatty games

Conjecture (Duchêne and Rigo, 2010)

For every irrational $1 < \alpha < 2$ and β such that $1/\alpha + 1/\beta = 1$,

there exists a Beatty game.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Existence of Beatty games

Conjecture (Duchêne and Rigo, 2010)

For every irrational $1<\alpha<2$ and β such that $1/\alpha+1/\beta=1,$ there exists a Beatty game.

Proof (Larsson et al., 2011)

A ruleset can be constructed by applying the *-operator to the set of *P*-positions – taking the *P*-positions of the game whose moves are $\{(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor) : n \in \mathbb{Z}_{\geq 1}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Existence of Beatty games

Conjecture (Duchêne and Rigo, 2010)

For every irrational $1<\alpha<2$ and β such that $1/\alpha+1/\beta=1,$ there exists a Beatty game.

Proof (Larsson et al., 2011)

A ruleset can be constructed by applying the *-operator to the set of *P*-positions – taking the *P*-positions of the game whose moves are $\{(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor) : n \in \mathbb{Z}_{\geq 1}\}.$

Problem

This ruleset is not an explicit "one-line" ruleset (compare, for example, to Wythoff).

э

A ruleset for an arbitrary α

Theorem

Assume $\alpha < 1.5$. The following ruleset is a Beatty game for α :

- Nim moves.
- Remove k tokens from one pile and ℓ tokens from the other, provided that |k − ℓ| < ⌊β⌋ − 1. Except for the move (2, ⌊β⌋).
- Remove [αn] tokens from one pile and [βn] − 1 tokens from the other (n ∈ Z≥1).
- A finite set of additional moves.

For $1.5 < \alpha < 2$ the ruleset is slightly more complicated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modified *t*-Wythoff (MTW)

The ruleset in the theorem explicitly mentions α . Can we do better?

(日) (部) (E) (E) (E)

Modified *t*-Wythoff (MTW)

The ruleset in the theorem explicitly mentions α . Can we do better?

There are simpler rulesets in the literature for specific values of α :

Example

•
$$\alpha = [1; t, t, t, ...]$$
 (*t*-Wythoff).

2
$$\alpha = [1; 1, k, 1, k, ...]$$
 (Duchêne and Rigo, 2010).

イロン 不得 とくほ とくほ とうほう

Modified *t*-Wythoff (MTW)

The ruleset in the theorem explicitly mentions $\alpha.$ Can we do better?

There are simpler rulesets in the literature for specific values of α :

Example • $\alpha = [1; t, t, t, ...]$ (*t*-Wythoff). • $\alpha = [1; 1, k, 1, k, ...]$ (Duchêne and Rigo, 2010).

Definition

(i) A ruleset is said to be MTW (Modified *t*-Wythoff) if it is a **finite** modification of *t*-Wythoff for some $t \in \mathbb{Z}_{\geq 1}$. (ii) An irrational $1 < \alpha < 2$ is said to be MTW, if there exists an MTW ruleset for the corresponding Beatty game.

Modified *t*-Wythoff (MTW)

Theorem

Let $1 < \alpha < 2$ be irrational. Then, α is MTW if and only if

$$\alpha^2 + b\alpha - c = 0$$

for some $b, c \in \mathbb{Z}$ such that b - c + 1 < 0.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Forbidden subtractions

Direct

A move in the ruleset must not connect two P-positions. There are two types of such forbidden subtractions: Direct and Crossed.

For example, consider two *P*-positions: (4, 9) and (1, 3).

 $4 \xrightarrow{\text{Remove } 3} 1 \qquad 4 \xrightarrow{\text{Remove } 1} 3$ $9 \xrightarrow{\text{Remove } 6} 3 \qquad 9 \xrightarrow{\text{Remove } 8} 1$ $(3,6) \qquad (1,8)$

Crossed

イロト 不得 とくほ とくほ とうほう

9/19

Forbidden subtractions

Lior Goldberg, Aviezri S. Fraenkel Rulesets for Beatty games

Direct forbidden subtractions

A direct forbidden subtraction has the form:

$$(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor) - (\lfloor \alpha m \rfloor, \lfloor \beta m \rfloor) = (\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$$

where k = n - m and $a, b \in \{0, 1\}$.

The values of *a* and *b* are determined by the relative position of the points $p_k = (\{\alpha k\}, \{\beta k\})$ and $p_n = (\{\alpha n\}, \{\beta n\})$:

イロト 不得 トイヨト イヨト ニヨー

Direct forbidden subtractions

A direct forbidden subtraction has the form:

$$(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor) - (\lfloor \alpha m \rfloor, \lfloor \beta m \rfloor) = (\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$$

where k = n - m and $a, b \in \{0, 1\}$.

The values of *a* and *b* are determined by the relative position of the points $p_k = (\{\alpha k\}, \{\beta k\})$ and $p_n = (\{\alpha n\}, \{\beta n\})$:

Direct forbidden subtractions

A direct forbidden subtraction has the form:

$$(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor) - (\lfloor \alpha m \rfloor, \lfloor \beta m \rfloor) = (\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$$

where k = n - m and $a, b \in \{0, 1\}$.

The values of *a* and *b* are determined by the relative position of the points $p_k = (\{\alpha k\}, \{\beta k\})$ and $p_n = (\{\alpha n\}, \{\beta n\})$:

Direct forbidden subtractions

Given $k \in \mathbb{Z}_{\geq 1}$ and $a, b \in \{0, 1\}$: Is $(\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$ a direct forbidden subtraction?

イロト 不得 トイヨト イヨト ニヨー

Direct forbidden subtractions

Given $k \in \mathbb{Z}_{\geq 1}$ and $a, b \in \{0, 1\}$: Is $(\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$ a direct forbidden subtraction?

Is there a point p_n in the corresponding rectangle?

イロト 不得 トイヨト イヨト ニヨー

Direct forbidden subtractions

Given
$$k \in \mathbb{Z}_{\geq 1}$$
 and $a, b \in \{0, 1\}$:
Is $(\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$ a direct forbidden subtraction?

Is there a point p_n in the corresponding rectangle?

What is $\{p_n : n \in \mathbb{Z}_{\geq 0}\}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Direct forbidden subtractions

Given
$$k \in \mathbb{Z}_{\geq 1}$$
 and $a, b \in \{0, 1\}$:
Is $(\lfloor \alpha k \rfloor + a, \lfloor \beta k \rfloor + b)$ a direct forbidden subtraction?

Is there a point p_n in the corresponding rectangle?

What is $\{p_n : n \in \mathbb{Z}_{\geq 0}\}$?

Easier: What is the topological closure of $\{p_n : n \in \mathbb{Z}_{\geq 0}\}$?

Direct forbidden subtractions

What is the topological closure of $\{p_n : n \in \mathbb{Z}_{\geq 0}\}$?

Direct forbidden subtractions

What is the topological closure of $\{p_n : n \in \mathbb{Z}_{\geq 0}\}$?

Proving the impossibility result of the MTW theorem

Observation

Let $1 < \alpha < 2$ be irrational. Then, α satisfies

 $\alpha^2 + b\alpha - c = 0$, where $b, c \in \mathbb{Z}, b - c + 1 < 0$

if and only if

 $A\alpha + B\beta + C = 0$, where $A, B, C \in \mathbb{Z}$

has a solution with A = 1 and B < 0.

14/19

Proving the impossibility result of the MTW theorem

Observation

Let $1 < \alpha < 2$ be irrational. Then, α satisfies

 $\alpha^2 + b\alpha - c = 0$, where $b, c \in \mathbb{Z}, b - c + 1 < 0$

if and only if

 $A\alpha + B\beta + C = 0$, where $A, B, C \in \mathbb{Z}$

has a solution with A = 1 and B < 0.

Case I: $A \neq 1$ and B < 0. **Case II:** No solution or B > 0.

14/19

Case I: $A \neq 1$ and B < 0

Assume α is MTW with $A \neq 1$ and B < 0.

Lior Goldberg, Aviezri S. Fraenkel Rulesets for Beatty games

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Case I: $A \neq 1$ and B < 0

Assume α is MTW with $A \neq 1$ and B < 0.

<ロ> (四) (四) (三) (三) (三) (三)

Case I: $A \neq 1$ and B < 0

Assume α is MTW with $A \neq 1$ and B < 0.

Take a sequence $\{n_i\}_{i=1}^{\infty}$ such that $p_{n_i} \rightarrow (1/A, 0)$.

Consider the *N*-positions $(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1).$

Case I: $A \neq 1$ and B < 0

Nim move - not possible.

Crossed move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \beta m_i \rfloor, \lfloor \alpha m_i \rfloor) = (\lfloor \alpha n_i \rfloor - \lfloor \beta m_i \rfloor, \lfloor \beta n_i \rfloor - \lfloor \alpha m_i \rfloor - 1).$$

Difference is:

$$(\lfloor \beta n_i \rfloor - \lfloor \alpha m_i \rfloor - 1) - (\lfloor \alpha n_i \rfloor - \lfloor \beta m_i \rfloor) \approx (\beta - \alpha)(n_i + m_i) \to \infty.$$

Case I: $A \neq 1$ and B < 0

Nim move - not possible.

Crossed move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \beta m_i \rfloor, \lfloor \alpha m_i \rfloor) = (\lfloor \alpha n_i \rfloor - \lfloor \beta m_i \rfloor, \lfloor \beta n_i \rfloor - \lfloor \alpha m_i \rfloor - 1).$$

Difference is:

$$(\lfloor \beta n_i \rfloor - \lfloor \alpha m_i \rfloor - 1) - (\lfloor \alpha n_i \rfloor - \lfloor \beta m_i \rfloor) \approx (\beta - \alpha)(n_i + m_i) \to \infty.$$

 \Rightarrow At most finitely many n_i 's are solved by a crossed move.

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

Finitely many k_i 's and $\{\beta n_i\} \rightarrow 0$

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

Finitely many k_i 's and $\{\beta n_i\} \rightarrow 0$ \Rightarrow Eventually, p_n is below p_k

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

Finitely many
$$k_i$$
's and $\{\beta n_i\} \rightarrow 0$
 \Rightarrow Eventually, p_n is below p_k
 $\Rightarrow b_i = 1$

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

Finitely many
$$k_i$$
's and $\{\beta n_i\} \rightarrow 0$
 \Rightarrow Eventually, p_n is below p_k
 $\Rightarrow b_i = 1$
 $\Rightarrow a_i = 1$

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

Finitely many
$$k_i$$
's and $\{\beta n_i\} \rightarrow 0$
 \Rightarrow Eventually, p_n is below p_k
 $\Rightarrow b_i = 1$
 $\Rightarrow a_i = 1$
 $\Rightarrow 1/A < \{\alpha n_i\} < \{\alpha k_i\}.$

Case I: $A \neq 1$ and B < 0

Direct move:

$$(\lfloor \alpha n_i \rfloor, \lfloor \beta n_i \rfloor - 1) - (\lfloor \alpha m_i \rfloor, \lfloor \beta m_i \rfloor) = (\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$$

where $k_i = n_i - m_i$ and $a_i, b_i \in \{0, 1\}$.

Finitely many k_i 's and $\{\beta n_i\} \rightarrow 0$ \Rightarrow Eventually, p_n is below p_k $\Rightarrow b_i = 1$ $\Rightarrow a_i = 1$ $\Rightarrow 1/A < \{\alpha n_i\} < \{\alpha k_i\}.$ The move is $(\lfloor \alpha k_i \rfloor + 1, \lfloor \beta k_i \rfloor)$ which is a forbidden subtraction.

Case II: No solution or B > 0

Take a sequence $\{n_i\}_{i=1}^{\infty}$ such that $p_{n_i} \rightarrow (1,0)$.

As before, we have to consider the move: $(\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$

イロト 不得 とくき とくき とうせい

Case II: No solution or B > 0

Take a sequence $\{n_i\}_{i=1}^{\infty}$ such that $p_{n_i} \rightarrow (1,0)$.

As before, we have to consider the move: $(\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$

イロト 不得 とくき とくき とうせい

Eventually, $a_i = 0$ and $b_i = 1$.

Case II: No solution or B > 0

Take a sequence $\{n_i\}_{i=1}^{\infty}$ such that $p_{n_i} \rightarrow (1,0)$.

As before, we have to consider the move: $(\lfloor \alpha k_i \rfloor + a_i, \lfloor \beta k_i \rfloor + b_i - 1).$

イロト 不得 とくき とくき とうせい

Eventually, $a_i = 0$ and $b_i = 1$. This is impossible as this move is a *P*-position.

Questions?

Lior Goldberg, Aviezri S. Fraenkel Rulesets for Beatty games

<ロ> (四) (四) (三) (三) (三) (三)