
Computational Complexity of Games

Kyle Burke

October 23, 2017

The Big Question

I Does Left have a winning move going first?

I i.e. G ∈ N ∪ L?
I CS: Fastest algorithm to answer this for entire ruleset?

The Big Question

I Does Left have a winning move going first?
I i.e. G ∈ N ∪ L?

I CS: Fastest algorithm to answer this for entire ruleset?

The Big Question

I Does Left have a winning move going first?
I i.e. G ∈ N ∪ L?
I CS: Fastest algorithm to answer this for entire ruleset?

Computational Counting

I Count time as algorithmic steps.

I Cheat: use Big-O notation
I 10n2 + 37.4n + 124→ 10n2 → n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)

Computational Counting

I Count time as algorithmic steps.
I Cheat: use Big-O notation

I 10n2 + 37.4n + 124→ 10n2 → n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)

Computational Counting

I Count time as algorithmic steps.
I Cheat: use Big-O notation

I 10n2 + 37.4n + 124

→ 10n2 → n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)

Computational Counting

I Count time as algorithmic steps.
I Cheat: use Big-O notation

I 10n2 + 37.4n + 124→ 10n2

→ n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)

Computational Counting

I Count time as algorithmic steps.
I Cheat: use Big-O notation

I 10n2 + 37.4n + 124→ 10n2 → n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)

Computational Counting

I Count time as algorithmic steps.
I Cheat: use Big-O notation

I 10n2 + 37.4n + 124→ 10n2 → n2

I O(101n2) = O(n2)

I O(n3 + n2 + n + 50) = O(n3)

Computational Counting

I Count time as algorithmic steps.
I Cheat: use Big-O notation

I 10n2 + 37.4n + 124→ 10n2 → n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).

I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �

I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �

I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)

I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).
I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P (EXPTIME)

Note: No fixed-size rulesets!

Some Games are Easy!

I Brussels Sprouts

I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges

I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges
I P ⇔ n is even

I O(1) steps
I Nim

I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim

I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.

I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.

I O(n log(m)) steps.

Some Games are Easy!

I Brussels Sprouts
I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.

Some Initial Positions Are Easy!

I Chomp

I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1

I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start

I O(nm) otherwise
I Cram

I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram

I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.

I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start

I O(4nm) = O(nm) otherwise
I Sprouts (maybe)

I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)

I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P

I O(log(n)) if I know it’s a start
I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start

I (otherwise unknown)

Some Initial Positions Are Easy!

I Chomp
I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)

General Algorithm (A) for Short Games

For any G , A(G):

I Draw the Game Tree
I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .
I Return whether G ∈ N ∪ L.

Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.

General Algorithm (A) for Short Games

For any G , A(G):
I Draw the Game Tree

I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .
I Return whether G ∈ N ∪ L.

Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.

General Algorithm (A) for Short Games

For any G , A(G):
I Draw the Game Tree
I All the leaves are in P.

I Use CGT rules to outcome classes all the way back up the
tree until you evaluate G .

I Return whether G ∈ N ∪ L.
Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.

General Algorithm (A) for Short Games

For any G , A(G):
I Draw the Game Tree
I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .

I Return whether G ∈ N ∪ L.
Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.

General Algorithm (A) for Short Games

For any G , A(G):
I Draw the Game Tree
I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .
I Return whether G ∈ N ∪ L.

Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.

General Algorithm (A) for Short Games

For any G , A(G):
I Draw the Game Tree
I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .
I Return whether G ∈ N ∪ L.

Worst case: have to evaluate all nodes of the game tree.

... so A
uses exponential time.

General Algorithm (A) for Short Games

For any G , A(G):
I Draw the Game Tree
I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .
I Return whether G ∈ N ∪ L.

Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.

Completeness

Problems where the best algorithm both:

I Runs in at most exponential time ("inclusion": in EXPTIME)
and

I Requires exponential time in the worst cases ("hardness":
EXPTIME-hard)

... are EXPTIME-complete.

Completeness

Problems where the best algorithm both:
I Runs in at most exponential time ("inclusion": in EXPTIME)

and

I Requires exponential time in the worst cases ("hardness":
EXPTIME-hard)

... are EXPTIME-complete.

Completeness

Problems where the best algorithm both:
I Runs in at most exponential time ("inclusion": in EXPTIME)

and
I Requires exponential time in the worst cases ("hardness":

EXPTIME-hard)

... are EXPTIME-complete.

Completeness

Problems where the best algorithm both:
I Runs in at most exponential time ("inclusion": in EXPTIME)

and
I Requires exponential time in the worst cases ("hardness":

EXPTIME-hard)
... are EXPTIME-complete.

EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!

I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!
How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/

EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!
I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!
How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/

EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!
I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!
How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/

EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!
I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!
How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/

EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!
I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!

How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/

EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!
I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!
How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable

I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N

I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction.

... and Banane is EXPTIME-hard!

How does this show hardness?

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?

Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?

Hardness Follows a Reduction

Reduction f : Chess→ Banane

I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard

I Proof-by-contradiction
I Assume Banane solvable in faster-than-exponential time by

some algorithm A
I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))

I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!

I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!

I Now Chess is not EXPTIME-hard →←

Hardness Follows a Reduction

Reduction f : Chess→ Banane
I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←

What about Short Games?

I Assume longest game has polynomial turns.

I ... and polynomial options.
I E.g. Domineering.
I Let’s do 3x3 case:

What about Short Games?

I Assume longest game has polynomial turns.
I ... and polynomial options.

I E.g. Domineering.
I Let’s do 3x3 case:

What about Short Games?

I Assume longest game has polynomial turns.
I ... and polynomial options.
I E.g. Domineering.

I Let’s do 3x3 case:

What about Short Games?

I Assume longest game has polynomial turns.
I ... and polynomial options.
I E.g. Domineering.
I Let’s do 3x3 case:

What about Short Games?

I Assume longest game has polynomial turns.
I ... and polynomial options.
I E.g. Domineering.
I Let’s do 3x3 case:

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,

↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,

↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,

↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options

∈ R ∪ P (Right wins)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

,
↓ Right’s potentially-winning options X
So... previous move not a winner for Left. Back up and try the
next one.

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

No Right move! (Left wins) Go back and change Right’s last
move...

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

No Right move!

(Left wins) Go back and change Right’s last
move...

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

No Right move! (Left wins)

Go back and change Right’s last
move...

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, , ,
↓ Left’s potentially-winning options

No Right move! (Left wins) Go back and change Right’s last
move...

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,

I Continue to decide G ∈ L ∪N
I How many rows of boards do I need? (polynomial)
I How many boards in a row? (polynomial)
I How much "workspace" do I need? (polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N

I How many rows of boards do I need? (polynomial)
I How many boards in a row? (polynomial)
I How much "workspace" do I need? (polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N
I How many rows of boards do I need?

(polynomial)
I How many boards in a row? (polynomial)
I How much "workspace" do I need? (polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N
I How many rows of boards do I need? (polynomial)

I How many boards in a row? (polynomial)
I How much "workspace" do I need? (polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N
I How many rows of boards do I need? (polynomial)
I How many boards in a row?

(polynomial)
I How much "workspace" do I need? (polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N
I How many rows of boards do I need? (polynomial)
I How many boards in a row? (polynomial)

I How much "workspace" do I need? (polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N
I How many rows of boards do I need? (polynomial)
I How many boards in a row? (polynomial)
I How much "workspace" do I need?

(polynomial)

What about Short Games?

↓ Left’s potentially-winning options

, , , , ,
↓ Right’s potentially-winning options

, ,
I Continue to decide G ∈ L ∪N
I How many rows of boards do I need? (polynomial)
I How many boards in a row? (polynomial)
I How much "workspace" do I need? (polynomial)

PSPACE

PSPACE: All problems solvable with a polynomial amount of
space.

I P (EXPTIME
I P ⊆ PSPACE ⊆ EXPTIME
I P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

PSPACE

PSPACE: All problems solvable with a polynomial amount of
space.

I P (EXPTIME

I P ⊆ PSPACE ⊆ EXPTIME
I P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

PSPACE

PSPACE: All problems solvable with a polynomial amount of
space.

I P (EXPTIME
I P ⊆ PSPACE ⊆ EXPTIME

I P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

PSPACE

PSPACE: All problems solvable with a polynomial amount of
space.

I P (EXPTIME
I P ⊆ PSPACE ⊆ EXPTIME
I P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

PSPACE-hard Problems

PSPACE-hard: Problems at least as hard as the hardest
problem(s) in PSPACE

I Everything EXPTIME-hard.
I Games: Amazons, Geography, Hex, Konane, Node

Kayles, Snort, Toads and Frogs, etc.
I Non-Games: Deadlock detection, periodic scheduling, etc.

PSPACE-complete: Both PSPACE-hard and in PSPACE.

PSPACE-hard Problems

PSPACE-hard: Problems at least as hard as the hardest
problem(s) in PSPACE

I Everything EXPTIME-hard.

I Games: Amazons, Geography, Hex, Konane, Node
Kayles, Snort, Toads and Frogs, etc.

I Non-Games: Deadlock detection, periodic scheduling, etc.

PSPACE-complete: Both PSPACE-hard and in PSPACE.

PSPACE-hard Problems

PSPACE-hard: Problems at least as hard as the hardest
problem(s) in PSPACE

I Everything EXPTIME-hard.
I Games: Amazons, Geography, Hex, Konane, Node

Kayles, Snort, Toads and Frogs, etc.

I Non-Games: Deadlock detection, periodic scheduling, etc.

PSPACE-complete: Both PSPACE-hard and in PSPACE.

PSPACE-hard Problems

PSPACE-hard: Problems at least as hard as the hardest
problem(s) in PSPACE

I Everything EXPTIME-hard.
I Games: Amazons, Geography, Hex, Konane, Node

Kayles, Snort, Toads and Frogs, etc.
I Non-Games: Deadlock detection, periodic scheduling, etc.

PSPACE-complete: Both PSPACE-hard and in PSPACE.

PSPACE-hard Problems

PSPACE-hard: Problems at least as hard as the hardest
problem(s) in PSPACE

I Everything EXPTIME-hard.
I Games: Amazons, Geography, Hex, Konane, Node

Kayles, Snort, Toads and Frogs, etc.
I Non-Games: Deadlock detection, periodic scheduling, etc.

PSPACE-complete: Both PSPACE-hard and in PSPACE.

Example: Impartial Col is PSPACE-hard

Impartial Col: 2-coloring placement game

Example: Impartial Col is PSPACE-hard

Impartial Col: 2-coloring placement game

Example: Impartial Col is PSPACE-hard

Impartial Col: 2-coloring placement game

Example: Impartial Col is PSPACE-hard

Impartial Col: 2-coloring placement game

Example: Impartial Col is PSPACE-hard

Impartial Col: 2-coloring placement game

Example: Impartial Col is PSPACE-hard

We’ll reduce from Node Kayles (known to be PSPACE-hard.)

Node Kayles: (Impartial) Each turn, place a token on an empty
vertex not adjacent to another token.

Example: Impartial Col is PSPACE-hard

We’ll reduce from Node Kayles (known to be PSPACE-hard.)
Node Kayles: (Impartial) Each turn, place a token on an empty
vertex not adjacent to another token.

Example: Impartial Col is PSPACE-hard

We’ll reduce from Node Kayles (known to be PSPACE-hard.)
Node Kayles: (Impartial) Each turn, place a token on an empty
vertex not adjacent to another token.

Example: Impartial Col is PSPACE-hard

We’ll reduce from Node Kayles (known to be PSPACE-hard.)
Node Kayles: (Impartial) Each turn, place a token on an empty
vertex not adjacent to another token.

Example: Impartial Col is PSPACE-hard

We’ll reduce from Node Kayles (known to be PSPACE-hard.)
Node Kayles: (Impartial) Each turn, place a token on an empty
vertex not adjacent to another token.

Example: Impartial Col is PSPACE-hard

We’ll reduce from Node Kayles (known to be PSPACE-hard.)
Node Kayles: (Impartial) Each turn, place a token on an empty
vertex not adjacent to another token.

Example: Impartial Col is PSPACE-hard

Proof: reduction from Node Kayles to Impartial Col.

Reduce!

Example: Impartial Col is PSPACE-hard

Proof: reduction from Node Kayles to Impartial Col.

Reduce!

Example: Impartial Col is PSPACE-hard

Proof: reduction from Node Kayles to Impartial Col.

Reduce!

Example: Impartial Col is PSPACE-hard

Proof: reduction from Node Kayles to Impartial Col.

Reduce!

Example: Impartial Col is PSPACE-hard

Proof: reduction from Node Kayles to Impartial Col.

Reduce!

Example: Snort is PSPACE-hard

Snort: Can’t play adjacent to opponent.

Example: Snort is PSPACE-hard

Snort: Can’t play adjacent to opponent.

Example: Snort is PSPACE-hard

Snort: Can’t play adjacent to opponent.

Example: Snort is PSPACE-hard

Snort: Can’t play adjacent to opponent.

Example: Snort is PSPACE-hard
Reduce from Bigraph Node-Kayles (known to be hard).

Bigraph Node-Kayles: Kayles on Bipartite Graph where each
player gets one side.

Example: Snort is PSPACE-hard
Reduce from Bigraph Node-Kayles (known to be hard).
Bigraph Node-Kayles: Kayles on Bipartite Graph where each
player gets one side.

Example: Snort is PSPACE-hard
Reduce from Bigraph Node-Kayles (known to be hard).
Bigraph Node-Kayles: Kayles on Bipartite Graph where each
player gets one side.

Example: Snort is PSPACE-hard
Reduce from Bigraph Node-Kayles (known to be hard).
Bigraph Node-Kayles: Kayles on Bipartite Graph where each
player gets one side.

Example: Snort is PSPACE-hard
Reduce from Bigraph Node-Kayles (known to be hard).
Bigraph Node-Kayles: Kayles on Bipartite Graph where each
player gets one side.

Example: Snort is PSPACE-hard

Reduce Bigraph Node Kayles to Snort

Reduce!

Example: Snort is PSPACE-hard

Reduce Bigraph Node Kayles to Snort

Reduce!

Example: Snort is PSPACE-hard

Reduce Bigraph Node Kayles to Snort

Reduce!

Example: Snort is PSPACE-hard

Reduce Bigraph Node Kayles to Snort

Reduce!

Example: Graph NoGo is Hard

Graph NoGo: Go, without capture moves.

Example: Graph NoGo is Hard

Graph NoGo: Go, without capture moves.

Example: Graph NoGo is Hard

Graph NoGo: Go, without capture moves.

Example: Graph NoGo is Hard

Graph NoGo: Go, without capture moves.

Example: Graph NoGo is Hard

Reduce: Col→ NoGo

Col: Can’t play adjacent to yourself.

Example: Graph NoGo is Hard

Reduce: Col→ NoGo
Col: Can’t play adjacent to yourself.

Example: Graph NoGo is Hard

Reduce: Col→ NoGo
Col: Can’t play adjacent to yourself.

Example: Graph NoGo is Hard

Reduce: Col→ NoGo
Col: Can’t play adjacent to yourself.

Example: Graph NoGo is Hard

Reduce: Col→ NoGo
Col: Can’t play adjacent to yourself.

Example: Graph NoGo is Hard

Reduce from Col

Separate "gadgets" to replace vertices and edges.
Here’s the gadget for each vertex:

x Reduce!

x ′

Example: Graph NoGo is Hard

Reduce from Col
Separate "gadgets" to replace vertices and edges.

Here’s the gadget for each vertex:

x Reduce!

x ′

Example: Graph NoGo is Hard

Reduce from Col
Separate "gadgets" to replace vertices and edges.
Here’s the gadget for each vertex:

x Reduce!

x ′

Example: Graph NoGo is Hard

Reduce from Col
Separate "gadgets" to replace vertices and edges.
Here’s the gadget for each vertex:

x

Reduce!

x ′

Example: Graph NoGo is Hard

Reduce from Col
Separate "gadgets" to replace vertices and edges.
Here’s the gadget for each vertex:

x Reduce!

x ′

Example: Graph NoGo is Hard

Reduce from Col
Separate "gadgets" to replace vertices and edges.
Here’s the gadget for each vertex:

x Reduce!

x ′

Example: Graph NoGo is Hard

Here’s the reduction for each Col edge:

x y

Reduce!

x ′ y ′

Example: Graph NoGo is Hard

Here’s the reduction for each Col edge:

x y

Reduce!

x ′ y ′

Example: Graph NoGo is Hard

Here’s the reduction for each Col edge:

x y

Reduce!

x ′ y ′

Example: Graph NoGo is Hard

Here’s the reduction for each Col edge:

x y

Reduce!

x ′ y ′

Example: Graph NoGo is Hard

Here’s the reduction for each Col edge:

x y

Reduce!

x ′ y ′

Locality is Tougher

For some games, we have to play adjacent to other moves.

I Geography
I Slimetrail
I Constraint Logic

Some of the first PSPACE-hard games were these, proven from
QSAT.

Locality is Tougher

For some games, we have to play adjacent to other moves.
I Geography

I Slimetrail
I Constraint Logic

Some of the first PSPACE-hard games were these, proven from
QSAT.

Locality is Tougher

For some games, we have to play adjacent to other moves.
I Geography
I Slimetrail

I Constraint Logic

Some of the first PSPACE-hard games were these, proven from
QSAT.

Locality is Tougher

For some games, we have to play adjacent to other moves.
I Geography
I Slimetrail
I Constraint Logic

Some of the first PSPACE-hard games were these, proven from
QSAT.

Locality is Tougher

For some games, we have to play adjacent to other moves.
I Geography
I Slimetrail
I Constraint Logic

Some of the first PSPACE-hard games were these, proven from
QSAT.

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability

I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

I Play: create an assignment of variables.
I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0

I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1

I Left: x2, etc
I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true;

Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise

I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!

I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒

∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :

(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

QSAT (is a game)

I QSAT: Quantified Boolean Satisfiability
I 3CNF: (x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)
I Play: create an assignment of variables.

I Left assigns to x0
I Right assigns to x1
I Left: x2, etc

I Left wins if formula is true; Right otherwise
I Phrase winnability with quantifiers!
I G ∈ L ∪N ⇐⇒
∃x0 : ∀x1 : ∃x2 : ∀x3 : . . . : ∀x27 :
(x0 ∨ x1 ∨ x2) ∧ · · · ∧ (x27 ∨ x1 ∨ x12)

Sample Reduction: Geography

I Reduce QSAT to Geography

I Geography: Move around on a directed graph, but you
can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography

I Reduce QSAT to Geography
I Geography: Move around on a directed graph, but you

can’t visit a vertex twice.

Sample Reduction: Geography
I Reduce QSAT to Geography

I Variable Gadget:

x0

x0
true

x0
false

x1

Sample Reduction: Geography
I Reduce QSAT to Geography
I Variable Gadget:

x0

x0
true

x0
false

x1

Sample Reduction: Geography
I Reduce QSAT to Geography
I Variable Gadget:

x0

x0
true

x0
false

x1

Sample Reduction: Geography
I Reduce QSAT to Geography
I Variable Gadget:

x0

x0
true

x0
false

x1

Sample Reduction: Geography
I Reduce QSAT to Geography
I Variable Gadget:

x0

x0
true

x0
false

x1

Sample Reduction: Geography
I Reduce QSAT to Geography
I Variable Gadget:

x0

x0
true

x0
false

x1

Sample Reduction: Geography
After all variables are chosen, Right will choose a clause,

... then Left will choose a variable in that clause.

to all
clauses

x27 ∨ x1 ∨ x12

x27
true

x27
false

x1
true

x1
false

x12
false

x12
true

Sample Reduction: Geography
After all variables are chosen, Right will choose a clause,
... then Left will choose a variable in that clause.

to all
clauses

x27 ∨ x1 ∨ x12

x27
true

x27
false

x1
true

x1
false

x12
false

x12
true

Sample Reduction: Geography
After all variables are chosen, Right will choose a clause,
... then Left will choose a variable in that clause.

to all
clauses

x27 ∨ x1 ∨ x12

x27
true

x27
false

x1
true

x1
false

x12
false

x12
true

Sample Reduction: Geography
After all variables are chosen, Right will choose a clause,
... then Left will choose a variable in that clause.

to all
clauses

x27 ∨ x1 ∨ x12

x27
true

x27
false

x1
true

x1
false

x12
false

x12
true

Issues!

At this point, I expect you have some problems:

I NoGo is only played on grids! Not general graphs!
I Same with Snort!
I What about starting positions? What if we never reach these

positions in the range of the reduction?

Let’s address the starting positions problem first.

Issues!

At this point, I expect you have some problems:
I NoGo is only played on grids! Not general graphs!

I Same with Snort!
I What about starting positions? What if we never reach these

positions in the range of the reduction?

Let’s address the starting positions problem first.

Issues!

At this point, I expect you have some problems:
I NoGo is only played on grids! Not general graphs!
I Same with Snort!

I What about starting positions? What if we never reach these
positions in the range of the reduction?

Let’s address the starting positions problem first.

Issues!

At this point, I expect you have some problems:
I NoGo is only played on grids! Not general graphs!
I Same with Snort!
I What about starting positions? What if we never reach these

positions in the range of the reduction?

Let’s address the starting positions problem first.

Issues!

At this point, I expect you have some problems:
I NoGo is only played on grids! Not general graphs!
I Same with Snort!
I What about starting positions? What if we never reach these

positions in the range of the reduction?

Let’s address the starting positions problem first.

Starting Positions

I Just determining winnability, not strategy.

I Some are known (e.g. Chomp, Hex)
I Some are conjectured (e.g. Sprouts, Cram)
I Reason: parameterized by number (e.g. 13× 13 Cram)

I Can describe with logarithmic information.
I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Starting Positions

I Just determining winnability, not strategy.
I Some are known (e.g. Chomp, Hex)

I Some are conjectured (e.g. Sprouts, Cram)
I Reason: parameterized by number (e.g. 13× 13 Cram)

I Can describe with logarithmic information.
I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Starting Positions

I Just determining winnability, not strategy.
I Some are known (e.g. Chomp, Hex)
I Some are conjectured (e.g. Sprouts, Cram)

I Reason: parameterized by number (e.g. 13× 13 Cram)
I Can describe with logarithmic information.
I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Starting Positions

I Just determining winnability, not strategy.
I Some are known (e.g. Chomp, Hex)
I Some are conjectured (e.g. Sprouts, Cram)
I Reason: parameterized by number (e.g. 13× 13 Cram)

I Can describe with logarithmic information.
I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Starting Positions

I Just determining winnability, not strategy.
I Some are known (e.g. Chomp, Hex)
I Some are conjectured (e.g. Sprouts, Cram)
I Reason: parameterized by number (e.g. 13× 13 Cram)

I Can describe with logarithmic information.

I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Starting Positions

I Just determining winnability, not strategy.
I Some are known (e.g. Chomp, Hex)
I Some are conjectured (e.g. Sprouts, Cram)
I Reason: parameterized by number (e.g. 13× 13 Cram)

I Can describe with logarithmic information.
I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Starting Positions

I Just determining winnability, not strategy.
I Some are known (e.g. Chomp, Hex)
I Some are conjectured (e.g. Sprouts, Cram)
I Reason: parameterized by number (e.g. 13× 13 Cram)

I Can describe with logarithmic information.
I Drawing the board is exponential in that description.

I Usually, starting positions are easy.

Specific Board Geometry

"Snapping to a grid" is difficult.

I Usual progression: General → more specific → · · · → Grid
I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished

Specific Board Geometry

"Snapping to a grid" is difficult.
I Usual progression: General → more specific → · · · → Grid

I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished

Specific Board Geometry

"Snapping to a grid" is difficult.
I Usual progression: General → more specific → · · · → Grid
I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished

Specific Board Geometry

"Snapping to a grid" is difficult.
I Usual progression: General → more specific → · · · → Grid
I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished

Specific Board Geometry

"Snapping to a grid" is difficult.
I Usual progression: General → more specific → · · · → Grid
I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished

Specific Board Geometry

"Snapping to a grid" is difficult.
I Usual progression: General → more specific → · · · → Grid
I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished

Supersets
Supersets of hard sets are hard.

Let f be our NoGo reduction.

Range(f)

hard

Also hard

All Graph NoGo Boards (hard)

grids

Hard?

Supersets
Supersets of hard sets are hard. Let f be our NoGo reduction.

Range(f)

hard

Also hard

All Graph NoGo Boards (hard)

grids

Hard?

Supersets
Supersets of hard sets are hard. Let f be our NoGo reduction.

Range(f)

hard

Also hard

All Graph NoGo Boards (hard)

grids

Hard?

Supersets
Supersets of hard sets are hard. Let f be our NoGo reduction.

Range(f)

hard

Also hard

All Graph NoGo Boards (hard)

grids

Hard?

Supersets
Supersets of hard sets are hard. Let f be our NoGo reduction.

Range(f)

hard

Also hard

All Graph NoGo Boards (hard)

grids

Hard?

Supersets
Supersets of hard sets are hard. Let f be our NoGo reduction.

Range(f)

hard

Also hard

All Graph NoGo Boards (hard)

grids

Hard?

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)

I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)

I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)

I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X

I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X

I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness

I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none

I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)

I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)

I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none
10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
https://www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.

I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.

I Is this game even competetive?
I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.

I Hard games are better for competition.
I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.

I Limits to NP-approximation algorithms. Maybe to PSPACE
as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.

Thank you!

Thanks to Eric and GAG for hosting us!
Extra thanks to Dan Burgess and Matt Ferland for proof-watching
early versions of this talk.

Thank you!

Thanks to Eric and GAG for hosting us!

Extra thanks to Dan Burgess and Matt Ferland for proof-watching
early versions of this talk.

Thank you!

Thanks to Eric and GAG for hosting us!
Extra thanks to Dan Burgess and Matt Ferland for proof-watching
early versions of this talk.

