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The Big Question

I Does Left have a winning move going first?

I i.e. G ∈ N ∪ L?
I CS: Fastest algorithm to answer this for entire ruleset?
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Computational Counting

I Count time as algorithmic steps.

I Cheat: use Big-O notation
I 10n2 + 37.4n + 124→ 10n2 → n2

I O(101n2) = O(n2)
I O(n3 + n2 + n + 50) = O(n3)
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What is Tractible ("Easy")?

Runs in steps polynomial in input size (parameters).

I O(n2m) X

I O(n2m6p1.5) X

I O(n88) X

I O(2n) �
I O(4n) �
I O(n!) �

I Top 3: P (Not P)
I Bottom 3: EXPTIME (P ( EXPTIME)

Note: No fixed-size rulesets!
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Some Games are Easy!

I Brussels Sprouts

I n crosses, k edges
I P ⇔ n is even
I O(1) steps

I Nim
I n piles, each up to m sticks.
I P ⇔ Nim-sum is zero.
I O(n log(m)) steps.
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Some Initial Positions Are Easy!

I Chomp

I G ∈ N for any n ×m rectangle bigger than 1× 1
I O(1) if I know it’s start
I O(nm) otherwise

I Cram
I G ∈ P for any 2n × 2m rectangle.
I O(1) if I know it’s start
I O(4nm) = O(nm) otherwise

I Sprouts (maybe)
I Sprouts Conjecture: n mod 6 ≤ 2 ⇐⇒ P
I O(log(n)) if I know it’s a start
I (otherwise unknown)
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General Algorithm (A) for Short Games

For any G , A(G):

I Draw the Game Tree
I All the leaves are in P.
I Use CGT rules to outcome classes all the way back up the

tree until you evaluate G .
I Return whether G ∈ N ∪ L.

Worst case: have to evaluate all nodes of the game tree. ... so A
uses exponential time.
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Completeness

Problems where the best algorithm both:

I Runs in at most exponential time ("inclusion": in EXPTIME)
and

I Requires exponential time in the worst cases ("hardness":
EXPTIME-hard)

... are EXPTIME-complete.
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EXPTIME-complete Rulesets?

Yes, there are rulesets that require exponential time to solve!

I (Generalized) Chess1

I Unbounded Constraint Logic2

I Go (without Superko)3

Notice: All loopy games!
How do we know there’s no faster algorithm?

1Fraenkel, Lichtenstein -
http://www.sciencedirect.com/science/article/pii/0097316581900169

2Hearn, Demaine - http://erikdemaine.org/papers/GPC/
3Robson, "The Complexity of Go", IFIP Congress 1983

http://www.sciencedirect.com/science/article/pii/0097316581900169
http://erikdemaine.org/papers/GPC/
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Game Reductions!

Let’s say I want to prove a loopy game Banane is
EXPTIME-hard.

I I need to find a function
f : Chess positions → Banane positions

I f must be efficiently computable
I x ∈ L ∪N ⇔ f (x) ∈ L ∪N
I Now f is a reduction. ... and Banane is EXPTIME-hard!

How does this show hardness?
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Hardness Follows a Reduction

Reduction f : Chess→ Banane

I Chess EXPTIME-hard → Banane EXPTIME-hard
I Proof-by-contradiction

I Assume Banane solvable in faster-than-exponential time by
some algorithm A

I New Chess-solving algorithm, B(x): return A(f (x))
I B solves Chess!
I B solves Chess in faster-than-exponential time!
I Now Chess is not EXPTIME-hard →←
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I Same with Snort!
I What about starting positions? What if we never reach these
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I Can describe with logarithmic information.
I Drawing the board is exponential in that description.
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Specific Board Geometry

"Snapping to a grid" is difficult.

I Usual progression: General → more specific → · · · → Grid
I Hex: Graph4 → Hex-Grid5

I NoGo: Graph6 → Planar Graph7

I Snort: Graph8 → Planar Graph9

I This seems so backwards! Usually the general case is
strongest!

4Evans, Tarjan 1976
5Reisch 1981
6Few slides back.
7B., Hearn unpublished
8Schaefer 1978
9B., Hearn unpublished
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State of the Art
What is known to be hard now?

I Node Kayles: general graphs (Schaeffer, 197810)
I Snort: planar graphs (B, Hearn 11)
I Col: planar graphs (B, Hearn 12)
I Hex: hexagonal grid (Reisch, 198113) X
I Atropos: hexagonal grid (B,Teng 200714) X
I Arc Kayles: no known hardness
I Domineering: none
I Clobber: NP-hard on general graphs. (AGNW 200515)
I NoGo: planar graphs (B, Hearn 16)
I Sprouts: none

10www.sciencedirect.com/science/article/pii/0022000078900454
11Not yet published.
12Not yet published
13https://link.springer.com/article/10.1007/BF00288964
14https:

//link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
15https:

//www.emis.de/journals/INTEGERS/papers/a1int2003/a1int2003.pdf
16Not yet published.

www.sciencedirect.com/science/article/pii/0022000078900454
https://link.springer.com/article/10.1007/BF00288964
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
https://link.springer.com/chapter/10.1007%2F978-3-540-77105-0_49
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Why Classify?

"But... Deep Learning can solve all of this! Why should we bother
to classify all these games?"

I Deep Learning untested for many games.
I Deep Learning algorithms need huge data sets.
I Is this game even competetive?

I Not if it’s in P.
I Hard games are better for competition.

I Nature of P vs. PSPACE.
I Limits to NP-approximation algorithms. Maybe to PSPACE

as well.

Find the hardness, then use AI.
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