Xavier Faure ${ }^{1,2}$ ，Florence Zara ${ }^{2}$ ，Fabrice Jaillet ${ }^{2,3}$ ，Jean－Michel Moreau ${ }^{2}$

${ }^{1}$ Financed by the PRRH（Rhône－Alpes Research Program on Hadrontherapy）for ETOILE（National French Hadrontherapy Centre）
${ }^{2}$ Université de Lyon，CNRS，Université Lyon 1，LIRIS，SAARA team，UMR5205，F－69622，Villeurbanne，France
${ }^{3}$ Université de Lyon，IUT Lyon 1，Computer Science Department，F－01000，Bourg－en－Bresse，France

Abstract

The realist and interactive simulation of deformable objects has become a challenge in Computer Graphics．For this，the Tensor－Mass model is a good candidate：it enables local solving of mechanical equations，making it easier to control deformations from collisions or tool interaction．In this paper，a GPU implementation is presented for the implicit integration scheme，permitting to achieve robustness of the simulation at interactive time for linear and non－linear mechanical behaviors．Results show a notable speedup，making the parallel Tensor－Mass model a true alternative to Mass－Spring or Finite Element Methods，especially in the case of complex scenes．

Simulation of a deformable object

三 Domain discretized into several elements
三 Mechanical equations solved locally
引 For each element（hexa，tetra，etc．）：
－Discretization of the displacement U_{E}
－Computation of the deformation energy W_{E}
－Derivation of W_{E} to obtain the elasticity force F_{E}
ミ Implicit integration scheme to obtain displacement
三 Conjugate Gradient method to solve linear system

Energy of deformation

ミ Element of initial volume Vol_{0}
引Strain－tensor according to common elasticity models， within the element，yields at X ： $\epsilon_{l}(X)=\frac{1}{2}\left(\nabla U^{T}(X)+\nabla U(X)\right) \quad$ Hooke $\epsilon_{n l}(X)=\frac{1}{2}\left(\nabla U^{T}(X)+\nabla U(X)+\nabla U^{T}(X) \nabla U(X)\right)$ St－Venant Kirchhoff
\equiv Deformation energy of elasticity models：
$W_{E}(X)=\frac{\lambda}{2}(\operatorname{tr} \epsilon(X))^{2}+\mu \operatorname{tr} \epsilon(X)^{2}$

Force computation on the GPU

$\{N$ ：number of elements $\}$
$\{m:$ total number of nodes $\}$
$\{n$ ：number of nodes per element $\}$
$\left\{N_{n}: \max \mathrm{nb}\right.$ of neighbor elements for a node $\}$
／／Task 1－Computation of partial forces
for e＝0 to $N-1$ do
／／Execution of N kernel1
for $\mathrm{v}=0$ to $n-1$ do PartialForce［ForceIndex［e］［v］］［index［e］［v］］＝Force（）；
end for
end for
／／Task 2 －Sum of partial forces
for $\mathrm{i}=0$ to m do
／／Execution of m kernel2
for $\mathrm{j}=0$ to $N_{n}-1$ do
TotalForce［i］＋＝PartialForce［i］［j］；
end for
end for

Speedup between GPU and CPU
三 Beam composed of 307,200 elements
引 CPU：Intel $®$ Xeon® $® 4$ cores＠3．07 GHz
ミ GPU：GeForce GTX 560， 2047 MB， 56 cores ＠1．620 GHz
引 Speedup of 25.5 for SOFA＇s FEM $[1,2]$
引 Speedup of 29.5 for our TM parallelization

a）Rendered beam for different materials
 b）Interactive deformation of a rabbit

Perspectives

\equiv Add more geometrical elements
\equiv Add more hyper－elastic behaviors
三 Optimize data structure for Tensor－Mass
ミ Implement multi－resolution and adaptive simulation
\Rightarrow Develop a complete simulation environment based on the Tensor－Mass model on the GPU

Bibliography

M．Nesme and Y．Payan，＂Efficient，physically plausible finite elements，＂Eurographics（short papers），pp．1－4， 2005.J．Allard，H．Courtecuisse，and F．Faure，＂Implicit FEM Solver on GPU for Interactive Deformation Simulation，＂in GPU Computing Gems Jade Edition，ch．21，NVIDIA／Elsevier，Sept． 2011.
S．Cotin，H．Delingette，and N．Ayache，＂A hybrid elastic model for real－time cutting，deformations，and force feedback for surgery training and simulation，＂The Visual Computer，vol．16，no．8，pp．437－452， 2000.

[^0]
[^0]: G．Picinbono，H．Delingette，and N．Ayache，＂Real－Time Large Displacement Elasticity for Surgery Simulation： Non－linear Tensor－Mass Model，＂in Proceedings of MICCAI＇OO，（London，UK），pp．643－652，Springer－Verlag， 2000
 G．Picinbono，＂Non－linear anisotropic elasticity for real－time surgery simulation，＂Graphical Models，vol． 65 pp．305－321，Sept． 2003.
 J．Schwartz，M．Denninger，D．Rancourt，C．Moisan，and D．Laurendeau，＂Modelling liver tissue properties using a non－linear visco－elastic model for surgery simulation，＂Medical Image Analysis，vol．9，no．2，pp．103－112，2005．

