IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

OXFORD IMA Journal of

UNIVERSITY PRESS Numerical Anq]ysis

Finite element analysis of a static fluid-solid interaction

problem

Journal:

IMA Journal of Numerical Analysis

Manuscript ID:

IMAJNA-ES-2009-011.R1

Manuscript Type:

Original Manuscript

Keywords:

fluid-solid interaction, biomechanical brain model, finite elements, a
priori and a posteriori error estimates, adaptive scheme

& scholarone"

Manuscript Central

IMA Journal of Numerical Analysis




Page 1 of 27 IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1

2

3

o

5

6

7

8 . .

9 IMA Journal of Numerical Analysis (2005) Page 1 of 27

10 doi: 10.1093/imanum/dri000

11

12 . . . . . s ys .

13 Finite element analysis of a static fluid-solid interaction problem

1451 RODOLFO ARAYAx

16 CPMA, Departamento de Ingenieria Matemdtica, Universidad de Concepcion, Casilla

17 160-C, Concepcion, Chile

18 GABRIEL R. BARRENECHEAT

19 Department of Mathematics, University of Strathclyde, 26 Richmond Street Glasgow G1 IXH,

20 Scotland

21

22 FABRICE JAILLET]

23 Université de Lyon, CNRS UMR 5205, LIRIS - SAARA team, F-69622 Villeurbanne cedex,

24 France

25 AND

26

27 RODOLFO RODRIGUEZ$§

28 CI>MA, Departamento de Ingenieria Matemdtica, Universidad de Concepcién, Casilla

29 160-C, Concepcion, Chile

30
This paper deals with a fluid-solid interaction problem inspired by a biomechanical brain model. The
problem consists of determining the response to prescribed static forces of an elastic solid containing a

32 barotropic and inviscid fluid at rest. The solid is described by means of displacement variables, whereas

33 displacement potential and pressure are used for the fluid. This approach leads to a well posed symmetric

34 mixed problem, which is discretized by standard Lagrangian finite elements of arbitrary order for all the

35 variables. Optimal order error estimates in H'! and L2 norms are proved for this method. A residual

36 a posteriori error estimator is also proposed, for which efficiency and reliability estimates are proved.

37 Finally, some numerical tests are reported to assess the performance of the method and that of an adaptive

38 scheme based on the error estimator.

39 Keywords: fluid-solid interaction, biomechanical brain model, finite elements, a priori and a posteriori

40 error estimates, adaptive scheme.

41

42 1. Introduction

43 The need for computing fluid-solid interactions arises in many important engineering and biomedical

44 . . . L. .. . .

45 problems. This paper deals with a specific problem of this kind arising from image-guided neurosurgery,

which can be seen from the mechanical viewpoint as a static source coupled problem involving an elastic

46 material containing a nearly incompressible fluid.

47 Current medical imaging devices (magnetic resonance, computed tomography, etc.) facilitate the

48 preoperative planning (see Bucholz er al. (1997); Paulsen et al. (1999)) and enable the surgeon to lo-

49 cate neuroanatomical structures of interest (see Hill ef al. (1998); Maurer et al. (1998)). However, the

50

51 *Email: raraya@ing-mat.udec.cl

52 TEmail: grb@maths.strath.ac.uk

53 tEmail: fjaillet@liris.cnrs.fr

54 YEmail: rodolfo@ing-mat.udec.cl

55 . . . o 4

56 IMA Journal of Numerical Analysis © Institute of Mathematics and its Applications 2005; all rights reserved.

57

58

59

IMA Journal of Numerical Analysis



©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

2 of 27 R. ARAYA, G.R. BARRENECHEA, F. JAILLET, R. RODRIGUEZ

correspondence between preoperatively acquired data and current patient anatomy is typically not very
accurate. In fact, it suffers from significant position and shape changes of the brain tissue, usually known
as brain shift, occurring during neurosurgery (see Bucholz et al. (1997); Hill et al. (1998)).

In order to predict brain deformation, and thus to correct the preoperatively acquired images ac-
cording to intraoperative effects, many biomechanical models of the human head have been developed
(see, for instance, Fung (1993)). Classical models simulate the mechanical behavior of the different
anatomical structures just by varying their physical parameter values (see, for instance, Hagemann et al.
(1999)). However, such simplification generally leads to non accurate simulations, particularly in case
of combined elastic and fluid-filled structures, as it happens, for instance, with the cerebrospinal fluid
contained in the brain ventricular system (see Hagemann (2001)).

Recently, Hagemann et al. (2002) introduced a biomechanical brain model including fluid-solid in-
teractions, based on linear elasticity for the brain tissue coupled with the Stokes equation for the fluid.
Our approach is simpler but, as will be shown below, allows for more efficient solution strategies. We
consider a homogeneous fluid at rest, for which its reference density is constant. Therefore, neither vis-
cous effects nor convective terms have to be taken into account. In its turn, since the solid displacements
are small, we can suppose a linear response, although some hints about the extension of the analysis to
a nonlinear case are also given.

A large amount of work has been devoted during the last years to fluid-solid vibration problems. A
survey including several alternative formulations can be found in Bermiidez et al. (2008), which include
further references. In particular, formulations describing the fluid by means of displacements have been
shown to be very efficient for this kind of problems. However, they lead to singular stiffness matrices,
unless some irrotational constraint is imposed (see Gastaldi (1996)).

In this paper, we consider a formulation where the fluid is described redundantly by means of two
scalar variables, pressure and displacement potential, whereas the standard description in terms of dis-
placements is used for the solid. This leads to a symmetric weak formulation for the coupled problem.
One advantage is the possibility of using equal order interpolation spaces for all the variables, without
the need to introduce any further unknown in the form of a Lagrange multiplier to treat the transmis-
sion conditions. This approach has been originally proposed by Morand & Ohayon (1995) for vibration
problems, who named it the stiffness coupling formulation, and was analyzed by Bermudez et al. (2003).

The plan of the paper is as follows. In Section 2, we give the problem statement and prove a well-
posedness result for the weak problem. A conforming finite element scheme is introduced in Section 3,
where stability and convergence results are also settled. In order to design an adaptive procedure, we
propose in Section 4 a residual a posteriori error estimator and prove its reliability and efficiency. Finally,
the method and the estimator are tested in Section 5.

2. The model problem

We consider the problem of determining the response to prescribed static forces of an elastic solid
containing a barotropic and inviscid fluid at rest.

We denote by Q2 and Qg the reference domains for the fluid and the solid, respectively. More
precisely, let Qp C RV, N =2 or 3, be a bounded open set (for simplicity we will suppose 2F connected)
with Lipschitz polyhedral boundary I7. Let I;!,...,I; be the planar parts of I7, so that I; = Ul}":l Iy.
Let Qg be an ‘annular’ region surrounding 27 with Lipschitz polyhedral outer boundary I" = Ip U Iy,
where |Ip| # 0. Let n be the normal vector to I pointing towards the exterior of Qp and Vv the unit
outward vector to I (see Fig. 1 for a sketch of the domains).
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FIG. 1. Sketch of the domains.

Given volumetric force densities fg € L?(Qs)" and fr € L?>(Qr)V (fy being a gradient) and a
surface force density g € L>(Iy)", the classical elastoacoustics model for small-amplitude motions
(see Morand & Ohayon (1995)) leads to the following static problem: find the solid displacement u,
the variation p of the fluid pressure and a scalar potential ¢ for the fluid displacement (i.e., the fluid
displacement is given by V@), satisfying:

Vp=fr in Qf, 2.1

1 .
WP-FA(piO IHQF, 2.2)
—divo(u) = fs in Qg, (2.3)
a—(p =u-n on Iy, 2.4

on

o(u)n=—pn onIj, (2.5)
cuyv=g on Iy, (2.6)
u=0 onlp. 2.7)

In the equations above, pr and ¢ denote the density and the sound speed of the fluid, respectively.
We assume that the stress and the strain tensors are related by the usual linear constitutive Hooke’s law:

o(u):=2ne(u)+Atre(u)l, (2.8)

where A, 1t > 0 are the Lamé coefficients, &(u) := % (Vu+Vu') is the linearized strain tensor and I is
the RV*¥ identity matrix. An extension to more general materials is sketched in Appendix A.

The forthcoming analysis will be valid even for an incompressible fluid, in which case ¢ = c. Be-
cause of this, all the physical parameters will be treated as fixed constants, except for the sound speed
¢, and in what follows we will obtain estimates with positive constants C, C’, etc., not necessarily the
same at each occurrence, but always independent of ¢ > ¢¢ (co being a fixed positive number).

REMARK 2.1 If the fluid is supposed to be incompressible, then equation (2.2) is replaced by A¢ =0
in .QF.
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Throughout this paper we will use standard notation for Sobolev spaces. Moreover, we denote
H}D (s) the subspace of functions in H'!(£g) with a vanishing trace on I. We will also use, as above,
boldface symbols to denote vector and tensor fields.

In order to obtain a weak formulation of this problem, let us multiply (2.1) by Vy, with y €
H'(Qr)/R, and integrate over Q, which leads to

| vpvu=[ frvy  vyeH' (@R, 2.9)
QF Qr
Next, (2.2) is tested against g € H'(£F) to obtain

1 ae
Y “Lg=0,
/QFchzpq /QF ¢ q+/rlanq

which, after application of the transmission condition (2.4) leads to

: 1
/ V(p-qu/ qu'nf/ >pq=0 Vg € H' (Qr). (2.10)
JQF JIp Qp PFC

Finally, testing (2.3) against v € HII—D(.QS)N and applying the transmission conditions (2.4)—(2.5) we
obtain (recall that n points towards £2s)

/Qsd(u):a(v)—/rlpv-n:/gsfs-v—i-/mg-v W € HY (Qs). @.11)

Collecting (2.9), (2.10) and (2.11) we arrive at the following weak form of (2.1)—(2.7):
Find (u,9,p) € Hf, (Qs5)V x H'(QF) /R x H' (QF) such that

O'(u):s(v)—i—/QFVu/-Vp—/Flpv-n:/sts-v—i-/FNg-v—i-/QFfF-Vy/, (2.12)

Qg
1
Vo-V —/ u-n—/ =0, 2.13
/QF 9:Va- | 4 o, pra2 (2.13)

forall (v, y,q) € HE (Q5)V x H'(QF) /R x H' (QF).

REMARK 2.2 If the fluid is supposed to be incompressible, we obtain a problem similar to (2.12)—(2.13),

but without the term || o # pq, since the latter is already not present in (2.10).

REMARK 2.3 The variational problem (2.12)—(2.13) is well posed even for f not being a gradient. In
such a case, a solution of this problem would only satisfy Vp equal to the gradient part of a Helmholtz
decomposition of f.

Problem (2.12)—(2.13) may be written in an equivalent mildly coupled way. In fact, if we split
p=po+cp, with pg € H'(QF) := {q €HY (Qr): [o,q9= O} and ¢, € R, then, from (2.9) we see that
po satisfies

| vmve= [ vy vyed @, 2.14)
QF QF
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and this equation may be solved independently. Once pg is computed, (2.11) may be rewritten as
follows:

/ G(u):e(v)—/cpv-n:/ fs-v—i—/ g-v+/pov-n W € H (25)V.
Qs I Qs Iy I;

This equation is undetermined. To be able to solve it, we need another equation which allows us to find
the constant c,,. With this aim, we test the equation (2.10) with g = 1 to obtain

Hence, we are lead to the following mixed problem for (u,c)):

/ O‘(u):e(v)—/ c,,v-n:/ fS-v+/ g-v+/ pov-n VVEHII—D(.QS)N,
J Qs I; J Qg JIy JI;
o (2.15)
— [ dpu-n— —=d,c, =0 vd, € R.
[ 2 vy P

It is immediate to show that this mixed problem is well posed. Finally, once u and ¢, are computed, we
can obtain ¢ as the solution of (2.10) for test functions belonging to H' (Qr)/R, namely,

/ V(p~Vq:/qu~n+/ 12(p0+C,,)q Vg € H'(QF)/R. (2.16)
QF I; Qr PFC
This is a well posed Neumann problem, by virtue of the second equation of (2.15).

In principle, any of the formulations, (2.12)—(2.13) or (2.14)—(2.16) can be discretized by standard
finite elements. It is simple to show that the resulting discrete problems are also equivalent, provided
the same elements are used in both formulations for each variable. The mildly coupled formulation
(2.14)—(2.16) leads, of course, to a less expensive implementation. In fact, this is the formulation we
have used for our numerical experiments. However, for the error analysis of the finite element method,
we will use the coupled formulation (2.12)—(2.13), which avoids dealing with non-conforming terms in
the right-hand sides of (2.15) and (2.16). Such approach makes it easier to obtain higher order a priori
error estimates in L norm (cf. Subsection 3.1) and, particularly, it allows us to derive a posteriori error
estimates (cf. Section 4).

To analyze the coupled formulation, consider the Hilbert spaces 2" := HILD (Q5)N x H'(QF)/R and
M =H! (QF), equipped with their natural norms, the continuous bilinear forms a : 2" x 2" — R,
b: 2 x M —Randd: M x M — R, respectively defined by

al(w.0).(v,) = | o(w):e) (.9).(v¥) € 2

Qs ’
b((Vﬂ[f),q) ::/Q VWV - qu'nv (V,V’)G%JIGJ/A
F I
1
d(p,q) ::/QFWM, p.q€ M,

and the linear functional F € 2" given by

F(V"I/)iz'LSfS'VJr/FNg'VJr/QFfF'Vllh (vy)e 2.

IMA Journal of Numerical Analysis
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Then, the weak problem (2.12)—(2.13) reads as follows:
Find ((u,9),p) € Z x M such that

a((u,9),(v,y))+b((v,y),p) =F(v,y) Viv,y) e 2, (2.17)
b((u, 9),q) —d(p,q) =0 Vge . (2.18)

To analyze this problem we define the kernel
Z={(v,y) € Z: b((v,y),q) =0 Vqe.4}

:{(v,l//)eﬁi”:/ Vw~Vq—/qv~n:0 VqG///}. (2.19)
QF I
LEMMA 2.1 The bilinear form a is 2 -elliptic in 2, namely, there exists a constant & > 0 such that

a(v,w), (v, ¥) > a|v )y Yy ez

Proof. Let (v,y) € Z. From the definition of a and Korn’s inequality it follows that, for all (v, y) € &,
a((. ). ) = [ 6(v):6(v) >Clvli g (2.20)
RN

Next, from the definition of 2 we observe that, choosing ¢ = yp in (2.19), Yy being the element of
the equivalence class of y satisfying fﬂp yo = 0, applying the trace theorem in Qg and QF, and the
Poincaré-Friedrichs inequality, we obtain

2
Vi o = /Fz vov-n < [[Wollo; [v-nllon <Clwol o HVHI,QS’

which together with (2.20) yield the result. 0
The inf-sup condition for b is stated in the next result.

LEMMA 2.2 There exists a constant 8 > 0 such that

sp 2V gy e,

wez\joy [V W)l o

Proof. Let g € .# . First, we easily see that

. Vy-V
sup b((v. ¥).q) > sup M =lql; 0, - 221
(v,¥)e 2 \{0} (v, ¥)ll o veH! (Qr)/R\{0} W’\l,ap

On the other hand, let 2 be the vector field defined by 2(x) := xje;, where e; := (1,0) in R? and

e; :=(1,0,0) in IR3.7A150, let x be a cutoff function belonging to €;° (2 U Qs) such that y = 1 in an
open set containing 5. Then, z:= xZ|o, € HII-D(QS)N and

/z-n: Z-n= divz =|Qr| > 0.
I; I QF
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Hence, the linear form defined by f(q) := [;; gz n belongs to H '(QF)’ (thanks to the trace theorem)
and is such that f(1) # 0. Hence, applying the generalized Poincaré’s inequality (cf. (Ern & Guermond,
2004, Lemma B63)), there exists a constant C > 0, depending only on £ and z such that, for all
qeH 1 (.QF),

Jrqv-n
Cllgl qp < ldli g, + (@] <l4ly o, + 2l o sup IV
vert, (Mo} V105

b((v,¥),q)
< g +liz o T,
| |1,QF [ Hlﬂs (v.y)e2\{0} ICA21P%

which together with (2.21) yield the inf-sup condition with a constant 8 := C/(1 + ||z, o,)- O

THEOREM 2.1 There exists a unique ((#, @), p) € £ x .4 solution of problem (2.17)—(2.18) and there
exists a constant C > 0, independent of ¢, such that

lull 0 + 1011 0, + 1211 0, <€ (Ifslloqy + £ N0, + Igllos,) -

Proof. By virtue of Lemmas 2.1 and 2.2, it is enough to take into account that the bilinear form d is
positive definite in .# and satisfies the assumptions of Case 3 from (Brezzi & Fortin, 1991, p. 47), to
apply Theorem 1.2 from the same reference. |

REMARK 2.4 The existence and uniqueness result given above is also valid if the fluid is incompressible,
i.e., if d(p,q) =0, in which case it is a direct consequence of the classical theory for mixed problems
(cf. Brezzi & Fortin (1991)).

REMARK 2.5 Let us define the bilinear form & : (2" x #) x (Z x .#) — R given by

Z((u,9),p),((v,¥),9)) := a((u,9), (v, ¥)) +b((v,¥), p) + b((4,¢), p) — d(p,q)-

Then (cf. (Braess & Blomer, 1990, Lemma B.1)), there exists a constant C4, independent of ¢, such
that, for all ((v,y),q) € " x .4,

" Z((v,v),9),(w,8),r))
”((V’W)’Q)”%X{///gc'@((w,é)A,r)Zé’&EXE///\{O} (W 8) )l owr @22

3. The finite element scheme

Let {7} o0 and {7},
and Qg, respectively, which may be chosen independently. In particular, they do not need to match
on the common boundary I;. Given a couple of meshes, ﬂhF and le , the mesh-size is defined by
h:=maxg_ FFUTS hg, with hg being the diameter of K. From now on, the generic constants C, C’, etc,

be regular families of triangulations (tetrahedral meshes, if N = 3) of QF

will not only be independent of ¢ > co, but also independent of the mesh-size h.
Let k,I,m > 1 and let us define the following finite element spaces:

= {Vh S %O(ES)N : Vh|]( S ]P)k(K)N VK € eZlS} ﬂHII—D(Qs)N7
Vi ={w € €°(Qr): wilx €eP(K) VK€ T},
.//h = {qh S %O(EF) : qh|K S Pm(K) VK € ZLF}

IMA Journal of Numerical Analysis



©CoO~NOUTA,WNPE

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

8 of 27 R. ARAYA, G.R. BARRENECHEA, F. JAILLET, R. RODRIGUEZ

For reasons that will become clear in what follows, we take [ > m. Defining 2, := J), x ¥,/R, the
finite element scheme associated to (2.17)—(2.18) reads as follows:
Find ((up, @p), pn) € 2y X My, such that

a((un, @n), (Vs Wi)) +b((Vi, W), pn) = F (Vi W) Vv, W) € Zns (3.1
b((un: @n),qn) —d(pn,gn) =0 Yagn € M. (3.2)

We obtain the following result by repeating the arguments used to prove Lemma 2.1.

LEMMA 3.1 Let
Zn={nwn) € X (v, Wh),qn) =0 Van € My}

Then, for the same constant & > 0 from Lemma 2.1 (independent of %), there holds
al(vi, W), Vi, W) = || (v, W) 1 Y(vi, Vi) € 2
The discrete inf-sup condition for the bilinear form b is proved next.

LEMMA 3.2 There exists B, > 0, independent of 4, such that

sup b((vi, Wn),qn)

> Bulqnll Van € M.
ez nfor va vl o “

Proof. Let g, € M), Since | > m, we proceed as in the proof of Lemma 2.2 to obtain

b((vi, W),
sup (( h "V/) CIh) > |qh|1_QF-
ez oy (Ve W)l o

On the other hand, considering Z and z as in the proof of Lemma 2.2, we have

Cllaally o, < |qh\1,QF+\/thz~n
1

Next, let z;, € ), be the Scott-Zhang interpolant of z (see Scott & Zhang (1990); Brenner & Scott
(1994)), where the interpolation is taken component-wise. Then, since z|;; = 2|r; is an affine func-
tion, we have that z|; = z|; and, moreover, from the approximation properties of this interpolant (cf.
Brenner & Scott (1994); Ern & Guermond (2004)) we obtain

Izlly o5 < C'llzll g4

where C’ > 0 does not depend on 4. We then arrive at

Jr;anzn-n b((va, Vi) qn
/th'n:/ anzn-n = |zally o5 T < C' 2l o sup M,
by I 1zl g S ez oy 1 win)ll -
and the result follows with B :=C/(1+C'||2]|, o,)- O

REMARK 3.1 We stress the fact that the constant B, depends only on QF, Qg and z, but, thanks to the
choice made for the latter, it does not depend on the mesh-size h.
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10 As a consequence of the above lemmas, we obtain the main result of this section.

1;‘ THEOREM 3.1 There exists a unique solution ((uy, @), py) € 24 X A, of problem (3.1)—(3.2) and
13 there exists a positive constant C > 0, independent of / and c, such that

o lu— il o, + 19— @aly 0, + = palls o

16 <C|( inf |ju— inf |¢@— inf |p—

17 <vhlenffh lu=vhllso5+ inf 10 =vil1 g, + inf llp=ailq |-

ig where ((u,9),p) € 2 X . is the unique solution of problem (2.17)—(2.18).

20 Proof. It is enough to apply Proposition 2.11, from (Brezzi & Fortin, 1991, Chap. II). d
g;' REMARK 3.2 The previous result provides an error estimate which is robust with respect to large values
23 of the bulk modulus prc? and covers the incompressible case in which d(p,q) = 0.

24 REMARK 3.3 Although in practice the most usual is to take equal order elements for all variables, the
25 choice of interpolation spaces is arbitrary. In principle, the only constraint is the one used in Lemma 3.2:
26 [ > m. However, even this can be avoided. In fact, Theorem 3.1 can be alternatively proved without
27 assuming / > m by analyzing the discretization of the mildly coupled problem (2.14)—(2.16). Finally
28 notice that, since the meshes for the fluid and the solid do not need to satisfy any compatibility condition
29 on the interface, completely independent refinement procedures may be considered in each domain.

30

31 3.1 An error estimate in the L* norms

gé The purpose of this section is to obtain higher order error estimates in the L? norm for all the variables.
34 To do this, let ((u, @), p) and ((u;,, @1), pr) be the solutions of (2.17)—(2.18) and (3.1)—(3.2), respectively,
35 where we have fixed representatives of ¢ € H' (Qr)/R and ¢, € #;,/R, still denoted ¢ and ¢y, satisfying
36 Jap ¢ = Jo, ¢n = 0. Next, let (w,§),r) € 2" x . be the solution of the dual problem:

37

38 aw ) vy b)) = [ w=w)ve [ (o—p)y  Vewez, 63
39 i S F

40 b(w.8).q) ~d(na) = [ (p=p)a vged. G4
41 o

42 The same arguments used in the proof of Theorem 2.1 allow us to show that (3.3)—(3.4) admits a unique
ji solution ((w, &), r) satisfying

P 1l 0y +Ela, + 17l o, <€ (lu=wlo.0, + 10— 9llog, +IP=Pilog, ), G5
47 where C > 0 is again independent of c.

48 Now, considering v = 0 in (3.3), we obtain that » € H' (Qr) is a solution of the compatible Neumann
‘51’8 problem

51 —Ar=@—@, inQp,

52 ar

53 I 0 onI;.

54

55

56

57

58

59

il
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Hence (cf. Grisvard (1985)), there exists s > % such that r € H'™(Qp) and IVrllsor <CllO—@nllo.q
which together with (3.5) show that

17l1sr < € (1= wnllo 0, +110 = @ullo.a +11p—Pillgy ) - (3.6)

On the other hand, taking y = 0 in (3.3), we have that w is the weak solution of

—dive(w) =u—uy, in Qg,
c(w)n=rn on I7,
oc(w)v=0 on Iy,

w=0 onIp

Hence (cf. Grisvard (1985)), since rn € H%(Flj)N, j=1,...,M, there exists t > 0 such that w €
H'"(Qg)N and

M
1114105 <c(|u—uh|o,gs+ > ||m|1/2_f,-> <€ (lu=willo.gg + 7l 0, )

<C(u=wllo g+ 10~ oilloo, + 12~ pallogy ) G3.7)

the last inequality because of (3.5).
Finally, (3.4) implies that & satisfies

1 .
SAE=sr (o) inQr,
d
—gzw-n on Iy,
don

and, sincew-n € H%(F,j), j=1,...,M, & € H'*(Qr)/R (cf. Grisvard (1985)) and

1 N
v <C r+(p— + w-n -
1981, (H sarto-m X |1/2_,F1,>
<C (H“—“hHo,QS +19 = oullo.q + HP—PhHO,QF) ) (3.8)

the latter again from (3.5). Notice that C is independent of ¢ (of course, for ¢ > ¢p). From these
considerations we may state the following result.

THEOREM 3.2 There exist constants C > 0, s > % and r > 0, all independent of % and c, such that
[ —unllo. o0 + 10 — @ullo.qp + 12— Prllo.q,
< cpmintst) (”u_uhHl‘.QS +1@—only o, + Hp_thl,Qp) :

Proof. Let ((w,&),r) € & X . be the solution of the dual problem (3.3)-(3.4) and wy,, &, and ry,
the respective Scott-Zhang interpolants (cf. Scott & Zhang (1990)). Then, considering ((v,y),q) =
((u—up, @ — @), p— py) in (3.3)—(3.4), using the Galerkin orthogonality, the continuity of a, b and d,

IMA Journal of Numerical Analysis
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9
10 and the approximation properties of the Scott-Zhang interpolation (cf. Scott & Zhang (1990); Ern &
11 Guermond (2004)), we arrive at
12 2 2 2
13 (|0 — w5 o5 + 10— Pnllo.p + 1P —Pullo g
14 =2 ((w,8),r),((u—up, @ —on),p—pn))
I = 2 (=, @~ ). p— p), (W= Wi, & &), =)
17 <C||u—uply o [w—wil) o + ([W=will o, +18 = &il1.q, ) 1P —Pill g
18 S S S
19 (=il o +10 - 01l1.0, ) =l =z I = rallg o 1P~ Pl
20 1,Qg 1,Qp 1,Qp PFC2 QF $2r
21 i 2 2 2 2 2 2 2 3
22 < (Ju—wf o, +190 = 0l o, + =Pl 0, ) (Wl 0y + 1€ gy + 1 iar)
23
24 and the result follows by using (3.6), (3.7) and (3.8). O
25
26 4. A residual a posteriori error estimation
gg 4.1 Preliminaries
29 In this section, for simplicity, we will suppose that the prescribed force densities, fg, fr and g, are
30 all piecewise polynomial functions. Also for simplicity, we will mainly use two-dimensional notation.
31 However, the definition of the estimator and the properties proved in Theorem 4.1 below hold in the
32 three-dimensional case, as well.
33 We restrict the analysis of this section to meshes in £r and g matching on the common boundary
34 I;. The definition of the estimator introduced in the following subsection holds for non-matching grids
35 too. However, some of the preliminary results which will be used in the sequel are not valid for general
36 non-matching grids, for instance, the first inequality in (4.2) below.
37 We use the following notation:
— &5 and &F': sets of edges (faces, if N = 3) of .75 and ZF, respectively,
38 h h h h
ig - gth and é?hF : sets of inner edges (faces) of ﬂhs and ., respectively,
j; — &N and &P: sets of edges (faces) of .7, lying on I, and Iy, respectively,
43 - é”,{ : set of common edges (faces) of le and th lying on I7,
jg — &k: setof edges (faces) of K € 75U FF,
46 - w,S(::U{K’er: gK/ﬁ€K¢®},forK€%S,
j; —w,f::U{Ke%S:éeéaK},foréeé”hS.
49 We define in an analogous way the neighborhoods w,‘? and coép forK € Zf and ¢/ € @“’hF . Moreover, we
50 will write @wx and @y when it is not necessary to distinguish the medium. Furthermore, for ¢ € é‘}f , We
51 denote K € 7" and K} € 75 the elements in each medium such that £ = K/ N K.
50 For K € 7;° U }F, let by be the classical bubble function in K:
gj bg == (N+ 1N AF,
55
56
57
58
59

il
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where A, ..., A% stand for the barycentric coordinates of K. For £ € &5 U &, let by be the piecewise
quadratic (cubic, if N = 3) continuous function defined in @, as follows:

bylg = NNI_I;V:IAJK, K C wy,

with 2K, ..., A% being the barycentric coordinates of K associated to the vertices of £.
By using standard scaling arguments (cf. Verfiirth (1996)) it can be proved that there exists a constant
C > 0 such that

Cllsi < [ brs® < sl x ¥s € By(K). @
Cllslls, < [ bus? < sl Vs € Ba(0). @2)

The constant C depends on the degree n of the polynomial function and on the shape ratio of the element,
but not on the mesh-size h.
We will also use a lifting operator P; : P, (¢) — P,(cy) such that, for all s € P,,(¢), Py(s)|, = s and

1
[16ePe(5)Mlo,e0, < Che[bePe(s)y 0, < CR] Isllg e (4.3)

hy being the diameter of £ (see Verfiirth (1998) for a construction). Finally, for s = (s1,...,sy) € P,(£)",
we denote

Py(s) := (Py(s1),-- -, Pe(sw))-

4.2 The estimator

By integrating by parts, we arrive at the following residual equation:

B (((u—up, @ — @), p—pi), (v,¥),9))
—/ fs- V+/gV+/ fr-Vy— / (up) (V)_/QFVW'VP}L"‘/FIP}LV'”

—/ V(ph-Vq+/quh-n+/ 5 Phd
prc

=Y /R’,‘{ vt Y /Jf v+ Y / (RRw+Rgq)+ Y, / (y+I1fq), 4.4)

KeZS" e&s” KegF" tesf

forall (v, ¥),q) € Z x .4, where the element and edge (face) residuals are defined as follows:

[o(un)n],, if ¢ € &5,
i —o(up)v+8llp, ifte &N,

R?( = fS|K +d1VO'(uh‘K)7 le = [ ( h) g”é’ ‘ hI
[o(up)n+ppnll,, iflcé,
0, if (e &P,
[[ gﬁ"+fp-ng]] . ifledf,

P ; D . ¢ 14

Ry == —div(frlk) + A(palk); JY =

2
(_ a’if+fp~n) .

. ifeed],

IMA Journal of Numerical Analysis



Page 13 of 27 IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

i

FE analysis of a static fluid-solid interaction problem 13 of 27

©CoO~NOUTA,WNPE

Io ) T
10 , | [52]. if e &F,
11 RK = A((ph|K)—|—7C2 ph‘K, JZ = 5

12 PF (% +uh-n) ,

, ifte &,

where ny denotes a unit vector normal to £ € gth u @Z}f and [-], the jump across the edge (face).
15 The residual equation above leads us to define the following residual a posteriori error estimator:

17 =Y R+ Y [+ g1, 4.5)
18 ke Ke7!

20 where

2 2
22 (M) = hg IR 5+ Y, Sche I7¢110.¢ Ke 7,
lebk

24 RP = IR F ol ke T
leéy

26 @) =g [[RE o+ X kel |l K€ T,
27 tedy

29 with
30 & = {

We prove in the following theorem the efficiency and reliability of this estimator.

L ifre&Sudf,
1, iftesfusPudl.

34 THEOREM 4.1 There exist positive constants C; and C;, not depending on / or ¢, such that

36 u—unlly o + 19— nli o, + 1P —pull 0 <Cin (4.6)
and

39 1&<QOW¢W@+Q@ VK € F5, “.7)
41 Nk < Calp = pily of VK € 7!, 4.8)
43 aNe <|(P_(Ph|l,a)1§+%||p_l7h“0,w,f+51<u> VK € 7, 4.9)
45 where

47 S

K

0, it &xN&l =0,
r= { Sicaxnat (IP=pilloxr +hxlp—pilir ), 6N £0,
49 0, if & N& =0,

Su = { Yrcsns! (\Iu*uh|\o,xg+hlf|“*“h|1,1<g)v if & N& 0.

Proof.  For ((v,¥),q) € Z x M, let v, ¥, and g, be the Scott-Zhang interpolants of v, ¥ and ¢,
respectively. Then, using the residual equation (4.4), the Galerkin orthogonality, Cauchy-Schwarz’s
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inequality and the properties of the interpolant we obtain:

ﬁ(((u_uhv(p_ (Ph)vl’—Ph)v((Vv W)7q))
=B ((u—up,®—@n),p—pn), (V=V0, ¥ = Vi), g —qn))

= Z /KRI"(-(V—Vh)-ﬁ- Z/ZJZ-(v—Vh)-i- Z /K[Rﬁ(ly—y/h)q-[el‘g(q_qh)]

KeZS te&s KeTF
+ ) /[]g(W_Wh)+JZP(‘I_Qh)]
teer !
h

<C| ¥ IR+ X e+ X (IRE]S o+ IR )
ke sy K
2

+ X e (19110 + I8 0.) | 1000l
tesf

Hence, using (2.22) we arrive at

[l — ”hHLQS +10—only o =il g
gC% sup ‘@(((uiuhv(P*(Ph)7p7ph)7((vvll/)aq))
(vW).g)e2 .\ {0} KCAIR P
<.

Thus we conclude the reliability estimate (4.6).
To prove the efficiency, we will treat each term of the estimator separately.

1. Forall K € 5
h%(HR?(H(Z)K < C|“—“h‘ik- (4.10)

Let vk := bgR¥%. Taking ((v,¥),q) = ((vk,0),0) in (4.4) and using (4.1) and an inverse inequality,
we arrive at

HR%H(Z),K <C/KR?('VK =C/Kc(u—uh) 1&(vk) < Clu—up|, g vkl
< Ch;?‘ |“—“h|1,1< HRHO,K,
which yields (4.10).
2. Forall{ € &)

2 : 2
|ufuh|1"m€57 ifte&fusy,

hﬂw%j<6{ (4.11)

2 2 2 .
|u - uh|1,’w[,5 =+ Hp _thO,Kf +h%( |p - ph‘LK[F s if{ e (g;ql

First, consider ¢ € z;“v}ls U&N. Defining vy := bePy(J¥), using (4.2), ((v¢,0),0) in the residual
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10 equation (4.4), and (4.3), we obtain

13 e <c [rve=c| [ ow-w)ew)- ¥ [ REov
c<c| I

Y Kco}”

16 <C| |u— uh|1w5|W‘1wS+ Yy 1R Mo & [vello.x
17 Kcws

19 SC| Ju—unly sty ZHJ(;HOﬁ Y hzllR llo.sc M2 110,
20 Kca)[
21 i

2
_1
23 <C| |u— uh|1 w?‘*‘ Z hi HRKHOK By * 197 lo.¢ -
24 Kca)l
25 Therefore, the first part of (4.11) follows from (4.10).

Next, consider £ € &'. Let K := Kg and v, := byPy(J}}), where the extension is taken in @) = K.
Proceeding as above we arrive at

gg HJFHM C/Je vi=C U o(u—uy):€(vy)— /(P Ph)ve /R“ Vz}

32 <C (‘" - “hh,K |W|1,K +llp _PhH().ﬁ [vello,+ HRHOK HW”()K)

2_,

34 <C(‘“ unlt i+ e | p— pallg o+ hx | R% HOK) hy ¢ lo.e

and hence 5
el ¢ < € (1w =wil} i+ hellp = pald o+ 1 IRE G ) -

38 Finally, we use the local trace inequality

40 o= pallge <C(h21 ||P_Ph||(2)71([+hé |P_Ph|i[<{) (4.12)
42 and (4.10) to obtain the second part of (4.11). Thus, (4.7) follows from (4.10) and (4.11).

43 3. ForallK € ZF

h%(HRfé”g_Kgﬂp—phﬁ’K, 4.13)
46 and for all £ € &F

p 921, <Clo—rafor- i

49 The proofs of (4.13) and (4.14) are essentially identical to those of (4.10) and the first estimate in
50 (4.11), respectively. Thus (4.8) follows.

4. Forall K € ﬂhF

hZ
53 1% ||REo 4 < \<p—<ph|%,K+ﬁHp—th%,K : (4.15)

PFc
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and for all £ € é}f

¢ — (ph|la)F+ p[-C Hp Ph”ova ifte&F,

he[l78 s

o, <€

\‘P-‘Phh,w[+ﬁ”P—PhHo,wf (4.16)

+ ||u—u/,||(2)1K[S +h}<|u—uh|iK[s7 if € &

The proof of (4.15) is essentially identical to that of (4.10), whereas, for £ € g”{ , (4.16) follows by
using the same arguments as in (4.11). Thus, there only remains to consider £ € éj{ .LetK := K[
and g, = bePy(J]), where the extension is taken in @ = K. Using ((v,¥),q) = ((0,0),¢;) in
(4.4), we have

2 1
H‘IlprO,fgc/é‘]/(,pW:C{/}(V((P—(Ph)'V‘Ik—/[(“_uh)'m]/.‘F/KW(P_Ph)W_/KR;gW]

1

2 2 1
s o= B+ R IRE |t

h
<Cllo= ol el il + 15

which using (4.15) leads to
02 2 2 h 2
hZ”Jg HO,Z <C |‘P—(Ph|1,1<+h€H“—uhHo,e"‘i(pFCz)z lp—prullok|-

Therefore, (4.16) follows by using a local trace inequality for u — u, similar to (4.12). The proof
is finished by noting that (4.9) follows from (4.15) and (4.16).

O

REMARK 4.1 The coupling terms &, p and S,u, as well as — %5 [|p — py||o of > Are very likely negligible

p 2
in the reliability estimates (4.7) and (4.9). Indeed, all of them involve either the seminorm |- |; x of some
error times /g, or the norm || - || x. (Recall that, according to Theorem 3.2, the norm || - || of the errors

are globally of higher order than the corresponding seminorm |- |;.)

5. Numerical Experiments

In this section we present three series of numerical experiments illustrating the theoretical results of
the previous sections, the performance of the method and that of an adaptive scheme based on the a
posteriori error estimator.

5.1 A problem with a known analytical solution

The aim of this first test is to validate the computational code and to confirm the theoretical convergence
results. To do this, we adopt the configuration shown in Fig. 2.
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10 0.1) % 4 % m

Iy

21 FIG. 2. Problem with analytical solution: sketch of the domains.

28 A piece Ir of the fluid domain boundary is taken as a perfectly rigid wall, which leads to the
29 boundary condition ‘3—2 =0 on Ir. The other boundary conditions remain as above, # = 0 on I and
30 ov=gonly Wesetpr=1,¢c=1,A=0.5and p =0.25. The data f, f and g are chosen so that
31 the exact solution to the problem is given by

45 REMARK 5.1 We have taken the physical parameters so that A +2u = prc?, to ensure that the trans-
46 mission condition (2.5) is satisfied.

a7 REMARK 5.2 The analysis carried out in the previous sections may be adapted, with minor modifica-
48 tions, to cover this problem too, so that all the results from Sections 2—4 hold. In particular, since the
49 solution of this test is infinitely smooth, according to Theorem 3.1, the H I norm of the errors must be
50 O (h). Furthermore, the constants s and ¢ in Theorem 3.2 are both equal to 1, so that the L norm of the
51 errors must be & (h?).

We depict in Figs. 3 and 5 the convergence of the error in each variable on uniform meshes as i
53 . .
tends to 0. The figures show a perfect agreement with the theoretical results.
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‘
—— [lu—unll10s

Ch

0.001 F - 5

error

0.0001 | L 1
1e-05 | e 1

1e-06 | o E

1e-07 L L
0.001 0.01 0.1 1

h

FIG. 3. Problem with analytical solution: convergence history for [lu —uy | o, and || —up|; o, with uniform meshes.

0.1

0.001 |

0.0001 | v < ]

error

1e-05 | o 1

1e-06 | o ]

1e-07 L L
0.001 0.01 0.1 1

FIG. 4. Problem with analytical solution: convergence history for [|¢ — @y[o o, and [¢ — @], o, with uniform meshes.
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11 —— lp—pulle
Ch :

R L ]
0.01

0.001 | ]

[N
~

error
X

19 0.0001 L , E

21 1e-05 | X ]

23 1e-06 ' ‘ ‘
24 0.001 0.01 0.1 1

27 FIG. 5. Problem with analytical solution: convergence history for ||p — pillo o, and ||p — pall; o, With uniform meshes.

29 Next, denoting

3 n= | X me? . wt= | X PP nt= | X
KegS KegF KegF
34 we show in Table 1 the effectivity indices for each variable:
35 6" L ‘r’“ 0. n‘P 91’ a rll’
36 L _ 9 L _ bl Ll _ ]

(| “h”uzs 10— Puly 0, P =il g
38 and the global effectivity index
39 0:= 1 .

2 2 2

40 V=l g +10 =01 o, + 1= palf o,

43 Table 1. Problem with analytical solution: effectivity indices on uniform meshes.

45 d.of. 0" 0% 0r 0
46 32 2.5567 25581 3.3067 3.1921
47 92 2.8298 3.5696 3.6714 3.5435
308 29748 3.8921 3.8398 3.7082
1124 3.0487 3.9977 3.9209 3.7880
4292 3.0857 4.0352 3.9606 3.8273
16772 3.1042 4.0499 3.9804 3.8468
66308 3.1134 4.0563 3.9902 3.8565
283684 3.1180 4.0592 3.9951 3.8613
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Note that all the indices converge towards constants, even though this fact is not predicted by the
theory presented in the last section. In this table and thereafter, d.o.f. denote the total number of degrees
of freedom for the three variables.

5.2 An L-shaped vessel filled with a compressible fluid

Next, we test the method in a problem without a known analytical solution. In this test (and in the
following one), we are particularly interested in assessing the performance of an adaptive procedure
guided by the error indicators

ng, KeJp,
"K'_{ (g +mP?)t,  Ke g
The basic scheme of the adaptive procedure is as follows:
1. Solve (3.1)~(3.2) in an initial mesh % := 7; U " and compute ng VK € .
2. If ng > S maxgre g N (where 0 < 8 < 1 is fixed in advance), then K is subdivided.
3. The process is repeated until 1 is smaller than a prescribed tolerance.

The meshes are generated with Triangle (cf. Shewchuck (2002)) and we have implemented the
case in which the meshes for the fluid and the solid match on the common interface. We have used the
value 6 = 0.75 in all the experiments.

The domain and boundary conditions are described in Fig. 6 (left). We have taken all the physical
parameters set to one: A = 4 = ps = pg = ¢ = 1. The external forces have been taken as follows:

* fS: (07_1)’

. =V r% sin20), where r := x — x|, and 6 and x are shown in Fig. 6 (left).
F 3

0.5 1.0 0.5 0.5 0.5

0.5

\4

FIG. 6. Sketch of the L-shaped domains (left) and initial mesh (right).
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9
10 Several singularities appear in this case, because of the reentrant angles of Qg and Qp, the definition
11 of fr and the change on the boundary conditions. In Fig. 6 (right) we depict the initial mesh used for
this test and in Fig. 7 the adapted meshes after 10 and 20 iterations.
g p
13
14
15 o
>k
16
17 7 SR8
P sl
18 ‘s'(‘""ﬂ"\‘
19 NRERIAX
< ey
AV
VA\ > K4
20 gﬁ{v e i
21 el viva g
SR
SRS AR e M R
22 s O
N XONCIIRES <,v1§$v N
24 I
25 8
26
27
28 FIG. 7. L-shaped domains: adapted meshes after 15 (left) and 25 iterations (right).
p p g
29
30
31 It can be seen that the indicator is able to capture all the singularities in the fluid and the solid
domains. In fact, Fig. 8 shows zooms of a highly refined adapted mesh in the vicinity of reentrant angles
32 y y
33 of the fluid (left) and the solid (right) domains.
34
35 AP A N
N X IR
S Y, et
37 N s e S
38 e SN
%0 g"‘y‘
IS AB
yas ek AV, g
39 R
40 KOsy Rk ~
Rt TN L o
41 DO SIS s
RO N RO SR
42 AP R SO TN
NI o S NV
43 YRR SR AN oy
2NN SIEHK K RIS
N AN A A s S st a s Ve
45 DA S N AN X i
SRR S VSRS Pl S .VAY
46 LRy & e SN
RIS SRR PG
47 PR RS 2N
RIS
48
49 FI1G. 8. L-shaped domains: zoom of an adapted mesh at reentrant angles of the fluid (left) and solid (right) domains.
50
51 L . . .
We do not report error curves in this case, because no analytical solution is available. Instead, we
52 P y
53 depict in Fig. 9 the estimated global error 1 (cf. (4.5)) versus the total number of degrees of freedom
for adapted and uniformly refined meshes.
54
55
56
57
58
59

il
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100 T T
n-uniform refinement ———
n-adaptive refinement ----> %--m-
slope —0.5 -
slope —0.27
10 F B
5
E
i e
E P
1k J
0'1 I I I
100 1000 10000 100000 le+06

d.of.

F1G. 9. L-shaped domains: convergence history for n vs. d.o.f. with uniform and adaptively refined meshes.

1/2

Let us remark that since 7 is an estimator of (||u—uh|\i_QS +|o— q)h\iQF + Hp—thiQF) and

in this case (HMH%QS + |(p|%QF + Hp||%‘_QF)1/2 ~ 112, the estimated errors shown in Fig 9 correspond to
relative errors ranging from 30% to 3% for the uniform meshes and from 30% to 1.4% for the adaptively
refined ones.

We have included in Fig. 9 two lines with slopes —0.27 and —0.5. The first one corresponds to the
theoretical order of convergence for the error with uniform meshes. The second one corresponds to the
optimal order that could be attained with piecewise linear elements. The orders of convergence for the
depicted estimated error curves have been also computed by means of a least squares fitting which yield
values —0.287 and —0.498, respectively. Both are very close to the expected ones for the error.

Because of the equivalence proved between the estimated and the actual global errors, both have the
same asymptotic dependence on the total number of degrees of freedom. Therefore, the estimated error
curve indicates that the error itself has to attain an optimal order, too, when the adaptive meshes are
used. This yields some evidence on the fact that the adaptively created meshes should be close to the
optimal ones.

5.3 A vessel filled with an ideal incompressible fluid

Finally, we test the method with a fluid which is modeled as perfectly incompressible. We have used
the same physical parameters as in the previous test, except for the sound speed which has been taken
¢ = oo; namely, d(p,q) = 0in (3.1)—~(3.2) (cf. Remark 2.2).

The domain and boundary conditions are described in Fig. 10 (left) and we have taken f¢ = (0,—1)
and fp = (0,—1), as well.
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0.25 05 0.25
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11 ov=0

0.25

0.5

23 v
24 F1G. 10. Incompressible fluid: sketch of the domains (left) and initial mesh (right).

28 In Fig. 10 (right) we depict the initial mesh used for this test and in Fig. 11 the adapted meshes after
29 7 and 15 iterations.

FIG. 11. Incompressible fluid: adapted meshes after 7 (left) and 15 iterations (right).

49 We observe that the indicator is able to capture all the singularities: one at each reentrant angle of
50 Qs and other two at the top and bottom left corners (because of the change on the boundary conditions).
51 Since the fluid domain is convex, no singularity appears in the fluid. This is recognized by the estimator,
52 since the elements in QF are refined only to preserve the compatibility of the meshes on the fluid-solid
53 interface. This can be clearly seen in Fig. 12, which shows a zoom of a highly refined adapted mesh in
the vicinity of one of the reentrant angles.
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F1G. 12. Incompressible fluid: zoom of an adapted mesh at a reentrant angle.

We depict in Fig. 13 the estimated global error 1 versus the total number of degrees of freedom.

10 T T
n—uniform refinement ——+—
n—adaptive refinement ---—-x--
slope —0.5 -
slope —0.27
1L i
5
]
£ s
= e
5}
0.1 F 4
001 1 1 1 1
10 100 1000 10000 100000 1e+-06

d.o.f.

FIG. 13. Incompressible fluid: convergence history for 1 vs. d.o.f. with uniform and adaptively refined meshes.

Once more, we have included in Fig. 13 two lines with slopes —0.27 and —0.5, which correspond to
the theoretical order of convergence for the error with uniform meshes and the optimal order attainable
with piecewise linear elements, respectively. It can be seen from this figure that, for sufficiently refined
meshes, the adaptive scheme yields an optimal order of convergence, again. In fact, the orders of
convergence for the depicted estimated error curves computed by a least squares fitting are in this case
—0.288 and —0.499, respectively.

Let us finally remark, that the performance of the method is not affected by the fact that the fluid is
incompressible.
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A. Appendix: A nonlinear elastic material

This section is devoted to present the main ideas about the extension of the framework described in
the previous sections to the nonlinear case. We still consider the system of equations (2.1)—(2.7), but
now, instead of the Hooke’s law (2.8), we suppose the following nonlinear constitutive law, called the
Henky-von Mises law (cf. Necas & Hlavacek (1981); Necas (1986)):

o(u):=[k—pu(deve(u))|tre(u)l +2u(deve(u))e(u),

devt:= <1:7 %tr(r)l) : (rf %tr(r)l) .

Here, K is a positive constant, called the bulk modulus, and g : Rt — R is a nonlinear Lamé function.
We assume that u € ' (R™) and that there exist constants i, i such that

where, for T € RV*N,

0<u <)<k and 0<p <p(r)+20p(r) < pia,

forallr € RT.

On the other hand, we will only consider the case in which the fluid is incompressible, i.e., d(p,q) =
0. The compressible case deserves further investigation since the theoretical results available for non-
linear problems with constraints (cf. Scheurer (1977)) do not apply to this situation.

Let 2 be the dual space of 2" and let {-,-) be the duality paring on 2~ x 2". We define the
mapping A : 2~ — 2" by

Aw,9).v.y) = [ olw):e)

Qg

:/Q‘{[K—u(deve(u))]tre(u)trs(v)+2u(dev£(u))£(u):£(v)}. (A1)

Using this mapping, the weak formulation of the problem is obtained by repeating exactly the same
steps from the linear problem and we arrive at:
Find ((u,9),p) € Z x M such that

(A(u,0),(v,y)) +b((v,¥),p) =F(v,y), (A2)
b((u,9),q) =0, (A3)
Sforall (v,y),q) € Z x M.

Also, we propose a finite element scheme analogous to (3.1)—(3.2):
Find ((up, n), py) € X X M), such that

(A(un, on), (i, W) +b((va, W), ) = F Vi, W), (A4)
b((un, On),qn) =0, (A.5)
for all ((vi, Wn),qn) € X n ¥ M.

THEOREM A.1 The nonlinear mapping A defined in (A.1) defines a Lipschitz continuous operator,
strongly monotone in 2 U %; namely, there exist strictly positive constants M and &, independent of
h, such that

[A(w, @) =AW, W)l 5 < A ||(u,0) = (v, ¥)l| o
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for all (u, @), (v,y¥) € Z and

(A, 0) ~AW. ), (u.9) — (v.y) > & (u.9) — v y) |
for all (u,9),(v,y) € ZUZ).
Proof. Following Gatica & Wendland (1997) we may prove:
<A(u7 (P) —A(V, W)v (u7 (P) - (V, l//))
1A(u, @) —A(v, )| 5

for all (u, ), (v, y¥) € 2. Hence, we proceed as in the proofs of Lemmas 2.1 and 3.1 to conclude the
theorem. U

~ 2
> aHu_le,st
<A u—vl o,

THEOREM A.2 There exist unique solutions ((u, @), p) and ((uy, @), ps) of problems (A.2)-(A.3) and
(A.4)—(A.5), respectively. Moreover, there exists a constant C > 0, independent of A, such that

[ —unlly o + 19— nly o, + 1P —Palli o,

<C| inf — inf |@ — inf — .
(vhlenji”;, [0 —wall; o + jnf 10— Wil q, + inf P thh,gp>
Proof. 1Tt is enough to apply the previous theorem, Lemmas 2.2 and 3.2 and (Scheurer, 1977, Theo-
rems 1.2 & 2.1) to conclude the existence and uniqueness of solution of both problems, (A.2)—(A.3) and
(A.4)-(A.5), as well as the error estimate. O
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