An Indexing Structure for Automatic Schema Matching

SMDB 2007, Istanbul

Fabien Duchateau, Zohra Bellahsène, Mathieu Roche
LIRMM, Université Montpellier 2
France

Mark Roantree
ISG, Dublin City University
Ireland
Outline

- Motivations

- BtreeMatch: an index structure for accelerating schema matching
 - Semantic Aspect
 - Performance Aspect
 - Some Performance Results

- Conclusion and Future Work
Motivations

- Finding semantic correspondences between 2 schemas still a challenging issue

- Available semi automatic matchers focus on the quality aspect of matching

- More and more large schemas, especially on the Web
Our Approach

An Index Structure for Automatic Schema Matching

Semantic aspect
- terminological (Levenshtein and 3grams)
- structural (context based using cosine measure)

Performance aspect
- indexing structure (B-tree)
Context of node n

- represents the most *important* neighbour nodes of n
- each of them is assigned a weight depending on the relationship with n

$$\omega_1(n_c, n_i) = 1 + \frac{K}{\Delta d + |lev(n_c) - lev(n_a)| + |lev(n_i) - lev(n_a)|}$$

We define StringMatching as the average between

- Levenhstein distance
- n-grams
BtreeMatch: Semantic Aspect (2/4)

University

GradCourses

Professor

Faculty

Courses

FullProfessor

3grams(GradCourses, Courses) = 0.2
Lev(GradCourses, Courses) = 0.42

StringMatching(GradCourses, Courses) = 0.31
StringMatching(Professor, FullProfessor) = 0.38
StringMatching(Faculty, University) = 0.002

Context(University) = \{University, Courses, Professor\}
Context(Faculty) = \{Faculty, Courses, Professor\}
CosineMeasure(Context(University), Context(Faculty)) = 0.37
Acceptable quality of matching

- better than COMA++ in some scenarios

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMA++</td>
<td>1</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>BtreeMatch</td>
<td>0.62</td>
<td>0.89</td>
<td>0.73</td>
</tr>
</tbody>
</table>

- can be tuned
 - to restrict the context
 - to increase the similarity and replacement thresholds
B-tree indexing structure to restrict the search space because “most of similar labels share a common token”

Algorithm

- Labels are divided into tokens
- Each token is an index in the B-tree with references to all labels containing this token
- Match search of a label is limited to the labels referenced by the common tokens
- Else the whole B-tree may be searched using the cosine measure
Searching a match for GradCourses involves

- creation of an index for Grad
- only evaluating and discovering a similarity between GradCourses and Courses due to their common token
Comparison of the performance with and without the indexing structure, depending on the number of schemas using XCBL and OASIS schemas.
Comparison of the performance with and without the indexing structure, depending on the size of the schemas using XCBL and OASIS schemas.
Conclusion and Future Work

■ An automatic schema matching tool that
 ● handles many large schemas.
 ● provides an acceptable quality of matching.
 ● tuning is not automatic

■ Discovering complex mappings

■ Exploring other index structures (hashtables)