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Figure 1: Dendry is a locally computable procedural function that generates branching patterns at various scales. One applica-
tion is terrain synthesis.

ABSTRACT
We introduce Dendry, a procedural function that generates den-
dritic patterns and is locally computable. The function is controlled
by parameters such as the level of branching, the degree of local
smoothing, random seeding and local disturbance parameters, and
the range of the branching angles. It is also controlled by a global
control function that defines the overall shape and can be used,
for example, to initialize local minima. The algorithm returns the
distance to a tree structure which is implicitly constructed on the
fly, while requiring a small memory footprint. The evaluation can
be performed in parallel for multiple points and scales linearly with
the number of cores. We demonstrate an application of our model
to the generation of terrain heighfields with consistent river net-
works. A quad core implementation of our algorithm takes about
ten seconds for a 512 × 512 resolution grid on the CPU.

CCS CONCEPTS
• Theory of computation→ Generating random combinato-
rial structures; • Computing methodologies→ Shape analysis.

KEYWORDS
Procedural Modeling, Geometric Modeling, Dendritic Patterns, Ter-
rain Modeling
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1 INTRODUCTION
Procedural models generate large and detailed virtual content. Pro-
cedural modeling in computer graphics encompasses texture (wood,
stone, marble) and geometry synthesis (terrains, buildings, facades,
clouds, vegetation). Among procedural approaches, locally com-
putable procedural functions, i.e., functions that can be evaluated at
a spatial position without requiring the knowledge of the context
of the procedural function are of particular interest. Such functions
can generate large models with a small memory footprint, and can
be trivially evaluated in parallel. Locally computable procedural
functions can be combined with other procedural functions or they
can be evaluated at different scales to add details.

Previous work has shown successful examples of procedural
functions such as noises [Lagae et al. 2010, 2009; Perlin 1985; Wor-
ley 1996] which are extensively used in large number of applications
and industry. Noise functions are generally defined as basis func-
tions that return a scalar value over Rn . By construction, their
output exhibits either no or only local structure patterns, which
are useful for synthesizing textures or geometric models because
they resemble random structures commonly found in nature.

We introduce Dendry; a locally computable procedural function
that generates branching patterns commonly needed in computer
graphics applications to model, for instance, cracks over glass or
ceramic material, drying patterns on mud, snowflakes, Lichten-
berg figures, or drainage systems with small creeks converging
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Figure 2: Overview of our method. The procedural function f is controlled by a set of parameters and by a control function c.
The value of f (p) is defined as the distance of the point p to the tree structure T . It can be evaluated in parallel for multiple
points, and we show how it can generate consistent terrains with drainage areas.

to large rivers. Branching patterns can be computed procedurally
by using L-systems [Prusinkiewicz and Lindenmayer 1990] or by
application-dependent algorithms where the branching structure is
an emergent phenomenon from the simulation, such as diffusion-
limited aggregation [Witten and Sander 1983] or river generation
from erosion [Génevaux et al. 2013; Musgrave et al. 1989].

Previous approaches either require the simulation of a physically-
based system or a context-dependent function evaluation. Our pro-
cedural scalar function generates globally consistent branching
patterns while still being locally computable, on the contrary to
the previous work. Our model depends on a set of intuitive param-
eters, including a scalar function that controls the overall shape of
the branching structure. The key idea consists of seeding pseudo-
random seed positions on a regular cell lattice and linking them
together to generate the underlying branching structure.

We show that our algorithm scales almost linearly on 64 CPU
cores and Figure 1 shows an example of generating terrains with
branching ridge and river networks with an increasing level of
detail. Each subdivision level adds more detail and the overall shape
is inherited through the iterations.

2 RELATEDWORK
The generation of branching structures has been studied for decades
for particular applications. Previous works include the generation
of cracks due to aging, drying or weathering processes, plant mod-
eling, and simulation of erosion. In most of the previous work,
the hierarchical branching patterns are an emergent phenomenon
resulting from the simulation.

Cracks and fracture simulations have been used for the cre-
ation of breaking objects into pieces and generating branching
impacts [O’Brien et al. 2002; Pfaff et al. 2014]. A procedural fracture
pattern generation model was developed in [Desbenoit et al. 2005].
Fractures models are mapped onto the surfaces of objects, and are
procedurally carved using a volumetric representation difference
to remove material.

Ice growth using a phase field method inspired by computational
physics was proposed in [Kim and Lin 2003]. The method gener-
ates branching ice structures. The simulation is controlled by a
seed crystal and a freeze temperature. It can be refined by using a
geometric sharpening algorithm. Glondu et al. gave a physically-
based fracture model whose parameters are found using a Bayesian
optimization [Glondu et al. 2012].

Plant models have distinct branching structures that have been
generated by forward simulations of branching [Holton 1994],
inverse modeling [Pirk et al. 2012; Št́ava et al. 2014], L-systems
[Prusinkiewicz et al. 1994], Diffusion Limited Aggregation [Witten
and Sander 1983], or by Path Planning [Xu and Mould 2007]. Simu-
lation methods can also generate the branching structures of plants
competing for resources as described in [Honda 1971; Runions et al.
2007]. Vegetation branching patterns have also been generated in-
teractively [Lintermann and Deussen 1999] and various approaches
attempted to simulate venation patterns in leaves [Hong et al. 2005;
Runions et al. 2005]. Most of these methods rely on underlying
biological models based on bud growth and competition for space
to mimic the branching of trees.

Terrains contain branching structures such as mountains ridges
and river networks. Authors have used noise functions [Lagae et al.
2010] and fractal processes such as the fractional Brownian mo-
tion [Fournier et al. 1982] (fBm) to generate fractal-like landforms.
Using additional noises allows for modeling the underlying struc-
ture locally e.g., they behave like a function which guarantees that
the noise is computed context-free at any position. This makes these
algorithms attractive for real-time applications. Unfortunately, be-
cause of its lack of structuring landforms, fBm cannot generate
hydrologically consistent terrains.

Kelley et al. proposed an algorithm to subdivide a drainage area
to create river networks and terrains simultaneously [Kelley et al.
1988]. Prusinkiewicz et al. introduced a model derived from a fractal
curve that produces a river path and adapts a mid-point displace-
ment subdivision scheme to produce a terrain [Prusinkiewicz and
Hammel 1993]. Constrained subdivisions that respect a river net-
work’s or ridge network’s constraints were introduced in [Belhadj
and Audibert 2005]. Procedural planets with river networks have
been created in [Derzapf et al. 2011]. The generation first defines the
coarse altitudes and the base river network is refined in real-time
by a subdivision process.

An alternative solution to generate hydrologically consistent
terrains was proposed in [Génevaux et al. 2013]. The river network
is generated using a grammar-like growth algorithm which com-
putes nodes of a graph and their corresponding altitudes. Erosion
algorithms can generate rivers [Benes et al. 2006; Krištof et al. 2009;
Musgrave et al. 1989] and the combination of uplift and fluvial
erosion was used to generate large scale terrains with dendritic
river and ridge patterns in [Cordonnier et al. 2016].
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By-example terrain generation [Guérin et al. 2017; Zhou et al.
2007] and interactive editing tools [Hnaidi et al. 2010] are addi-
tional options to capture branching networks and terrains, but they
usually fail to guarantee consistent water flow.

We are not aware of a method capable of creating branching
drainage structures at a local scale, i.e., without relying on a more
global simulation process.

3 OVERVIEW
Our procedural algorithm generates a two dimensional tree struc-
ture denoted by T (Figure 2). The input to our algorithm is a
point p ∈ R2 and the output is the real number value of the proce-
dural function: f : R2 → R. The value of the procedural function is
the distance of the point p to the underlying branching structure T .
An important property of our approach is that the procedural func-
tion does not explicitly generate the entire structure. It builds T
only locally and computes the Euclidean distance:

f (p) = d(p,T). (1)

An immediate benefit of this approach is that the function has a
small memory footprint at the expense of being more computation-
ally demanding. In facts, it needs to construct T on-the-fly at each
evaluation.

Control: The function is controlled by a set of fixed parame-
ters. The number of iterations n (n ∈ [1, 6] in our implementation)
defines the amount of branching, where higher number brings
more details. The seed of the pseudo random generator s is an inte-
ger value that guarantees that the generated structure will always
remain the same for a given s . The limit of the random number
generator 0 ≤ ε ≤ 0.5 defines the bias of the generated numbers
and is further explained in Section 4. The displacement 0 ≤ ∆ ≤ 1
controls the overall curvature of the generated structure by defining
the maximum displacement of segments. This parameter can be
either a constant or can vary at every iteration and we denote it
by ∆i , i = 0, 1, . . . ,n − 1. The shape of T is affected by a control
function c : R2 → [0, 1], which can be thought of as an underlying
environment that provides initial height-values at certain positions
(Section 4.1). The control function can be either a constant, a pro-
cedural noise function, a user-defined pattern, or an interpolation
of existing data such as an elevation map.

Efficiency: The evaluation at each point does not depend on other
points and can be done in parallel in constant time. It is a CPU-
intensive algorithm with a small memory footprint, that implies
low cache misses, and does not require any synchronization.

4 PROCEDURAL FUNCTION
The function f computes the distance of a point p to the tree struc-
ture T . Although T is not constructed on the whole domain but
only locally in the neighborhood of p, we describe the global con-
struction first.

The tree structure T is constructed incrementally in n iterations
(Figure 3). Initially, a few coarse branches, denoted by B0, are gener-
ated. At each further iteration, smaller branchesBk ,k = 1, . . . ,n−1
are iteratively added. Thus the incremental construction is defined
as Tk = Tk−1 ∪ Bk . Note that the higher level branches can be

added to any previously generated level: a branch from Bi can
be connected to any branch from Bk , with k < i . The final tree
structure is defined as the union of all branches:

T =

n−1⋃
k=0

Bk , (2)

T2

B2

T1

B0 B1

T0

k=0 k=1 k=2

Figure 3: At each iteration k , the branches Bk are generated.
The final tree T is the union of all previously generated
structures.

The shape of the generated structure is affected by the control
function c , but only B0 uses the values from the control function as
explained in Section 4.1. In our experiments, using the control func-
tion at all levels over constrained the generated structure because
higher levels tend to grow in the direction of the local minima of c .
The control function c is also used to calculate the slope at a given
point of a terrain and it is used for all levels of k (Section 5).

4.1 Point evaluation
In order to calculate the value of f at each given point p we need
to find the closest local segment of T . This segment is calculated
only locally. At every iteration Bk , k ∈ [0,n − 1], we overlay the
entire domain by a grid Gk , with grid cells Gk (i, j) (Figures 4-5).
The initial resolution of the grid G0 is a user-defined parameter
(Table 2) that defines the space between branches in B0.

Every grid cell Gk (i, j) at each level k stores a corresponding
random key-point qk (i, j) that is generated by a deterministic jitter-
ing function [Cook 1986]. Moreover, key-points from lower levels
are replicated to the higher levels of resolution, so that only the
key-points for the highest resolution need to be stored.

The shape of the tree T is affected by c . This is achieved by
sampling the control function c at the locations of key-points -
which, again, is done only at the lowest level c(q0(i, j)) (Figure 4).
This value can be interpreted as color, altitude, or any other space
varying scalar parameter, depending on the application, as shown
in Section 5.

4.1.1 Tree initialization. In order to determine the value of f (p) for
a given input point p, we need to find the closest point onT . We first
construct the tree T0 locally around p. We find the corresponding
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Figure 4: Generation of T0 = B0; only some grid cells G0 and
points q0 are shown for clarity. For a given point p only the
local tree structure is reconstructed and the distance to the
closest segment is computed and returned as f (p).

grid cell G0(i, j) for p. Then we construct the tree by connecting all
key-points in the local neighborhood (7 × 7 in our implementation)
for B0. We start at the grid cell G0(i, j) and connect it to the key-
point with the minimal value f (q0(i + 1, j + 1)) in the calculated
Moore neighborhood (Figure 4). This process is repeated for all
key-points in the considered neighborhood. The distance to T0 is
then the distance to the closest segment from the constructed set.

4.1.2 Generation of the higher-level branching structure. The com-
putation of Tk , (k > 0) is performed by adding branches Bk that
are connected to the previous tree Tk−1 and to the set of new key-
points {qk }. Note that while on the lowest level the value of the c
function is used to determine the branch, on the higher levels we
do not sample the control function c , instead we use the distance to
the key-points.

1G (i,j)

p
f (p)

0Tree T

1Branches B

Figure 5: Generation of B1 on top of T0.

Here we describe the construction of T1 (Figure 5) which allows
to compute the function f for T1. The value for higher levels is
calculated in the same way from the corresponding grids. Figure 6
shows the generation of the successive levels of the underlying
structure with an increasing number of iterations.

n = 0 n = 1 n = 2 n = 3

Figure 6: Increasing levels of iteration from T0 (left) to T3.

The resolution of the grid G1 is twice the resolution of G0 and
reuses the previously generated key-points q0 of the higher level in
the hierarchy. The reused points depend on their location within the
cell as shown in Figure 7, where the green key-points are generated
for the grid G1 and the white ones are inherited from G0.

G (i,j)0

Grid G at level 00 Grid G at level 11

G (i+1,j)0

q (i,j)0

q (i+1,j)0

q (2i+1,2j)1

q (2i,2j) = q (i,j) 1 0

Figure 7: Point sharing between two grid levels.

The key-points are then connected to the closest segments from
all previous levels (T0, . . . ,Tk−1 for Tk ). Figure 5 shows that only
a smaller neighborhood is required for higher levels because the
structure only needs to be refined around the point p.

At the higher levels (k > 0), because the jittering guarantees
that points are tightly-packed, key-points connect to segments that
are only up to two cells away. Hence, the evaluation neighborhood
for Tk must be at least 5 × 5 cells. Because there is a variation
of resolution between each consecutive level, we need to ensure
that the neighborhood for all previous levels are large enough so
that key-points always connect to their actual nearest segment.
Let Nk be the size of the neighborhood at level k ; the relationship
between Nk−1 and Nk is:

Nk ≥ 2 ×
⌊

1 + Nk−1
4

⌋
+ 3. (3)

Compared to cellular noise and Gabor noise that require 3 × 3
neighborhood, we need Nk = 5 for all levels in our implementation.
If the neighborhood was not sufficiently large, some artifacts would
arise because when connecting a new point to the existing tree, its
actual nearest segment would not be correctly found.

4.2 Segment smoothing and bending
The segments of the underlying structure T are improved by subdi-
viding and smoothing them. We replace every segment by a cubic
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spline curve defined by four control points {p0, . . . , p3} yielding a
smooth curve from p1 to p2 whose shape is defined by the tangent
vectors v01 = p1 − p0 at p1 and v23 = p3 − p2 at p2. Points p1 and
p2 are defined as the endpoints of the segment, and are part of T .
We define the points p0 = p1 − (p2 − p1) so that p1 is the midpoint
of the line segment p0, p2.

p0 p1
p2

p3v01
v23

Similarly, in order to de-
fine the outgoing tangent
vector v23 in p2, we need
to find the location of p3.

Recall that all the local segments were constructed as the closest
segments (Figure 5). Therefore, the point p3 is defined as the end
point of the segment leaving the grid cell in which p2 is located.

4.3 Control Parameters
The procedural function is controlled by the global parameters ε
and ∆ and by the control function c .

} 𝜀

𝑞

The parameter ε controls the randomness
of the generated structure by constraining the
distribution of the key-points q within the grid
cells relatively to their size. Choosing ε = 0
allows the key-point to be generated randomly
anywhere within the current grid cell G, while an increasing value
constrains the generation towards its center. Choosing ε = 0.5
makes the structure regular, although still affected by the control
function c as shown in Figure 8.

e = 0 e = 0.125 e = 0.250 e = 0.5

Figure 8: Constraining the randomization of the key-
points q by increasing ε = 0 (left; no constraint) to ε = 0.5
(right; key-points are exactly in the center of each grid cell).

D = 0 D = 0.025 D = 0.05 D = 0.075

Figure 9: Increasing segment randomization.

The parameter ∆ (Figure 9) increases the randomization of a seg-
ment by subdividing it into equal parts and perturbing the distance
of the intermediate points to the initial segment by a random value
defined as ∆ × l , where l is the length of the segment. The initial
segment endpoints remains unmoved. High values of ∆ may cause
unwanted segment intersections and yield topological changes (e.g.,
in the structure outlined by the red circle in Figure 9). We use a
maximum value of ∆ = 0.08.

Figure 10: Control function c (bottom) significantly affects
the generated structure (top). We show structures for a Per-
lin noise, Euclidean distance to the top middle point, Perlin
noise on an inclined plane, and a user sketch.

The control function c was given as an image in our examples,
but could be also generated procedurally. It is sampled during the
generation of B0 and it is also further used for slope calculation
of terrain as described in Section 5. Figure 10 shows how differ-
ent control functions affect the generation of T . Notice that the
branching pattern tends to migrate to lower (darker) areas.

5 TERRAIN GENERATION
A fundamental feature of mountain ranges is the branching of
ridges and river networks. By using an initial coarse height field
as the control function for our procedural function, we are able to
straightforwardly generate such branching structures. This method
needs the minimum slope of a river segment for each level of itera-
tion for converting the generated river network into a height-map.
Figure 11 shows a terrain that was generated using a coarse sketch.

Sketch Generated terrain

Figure 11: A U-shaped user sketch (left) and the generated
terrain with enhanced rivers (right).

At the k-th iteration, we consider a grid cell Gk (i, j) with the
corresponding key-point qk (i, j). The closest segment [ab] to the
key-point qk (i, j) is also known and we want to find the point q
on [ab] and to generate the subdivided and smoothed connected
segment between qk (i, j) and q. The main difference in generating
river segments is we should take the terrain elevation given by
the control function c into account. More precisely, c should affect
the bending of the river segment as seen from above to follow the
direction of the gradient of the elevation.

Because river segments bend and we need some space to accom-
modate it, we assume that the key-point qk (i, j) is connected to the
nearest point among a, b, or to the midpoint m = (a + b)/2. Note
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that by construction from the previous iteration, the segment ab
has a gradient so that h(a) ≤ h(m) ≤ h(b). After computing the
connecting point x ∈ {a,m, b}, we set the altitude of the key-point
as h(qk (i, j)) = c(qk (i, j)). We also know that qk (i, j) must be lo-
cated at a higher altitude than the connecting point x. Therefore,
we compute a minimum slope with the simplified Flint’s equation
from [Flint 1974] and [Kelley et al. 1988]. S = ρ(2µ − 1)β , where
S is the slope of a river of magnitude µ (Shreve stream order), ρ
is the average length of a tributary, and β is a negative exponent
equal to −0.6. Because our algorithm is greedy, ρ is constant and
µ depends only on the resolution level k of a river segment. In
fact, we cannot predict in advance the length of the tributaries, as
they are computed during the next iterations; µ = 1 at the highest
resolution level and is multiplied by three at each subsequent level.
We can then bend the generated spline in the direction of the flow
(Section 4.2). The actual connecting angle α of the tributary joins is
computed as in [Howard 1971], using cos(α) = Sm/Sn , where Sm is
the slope of the main river and Sn is the slope of the added segment.

The tree T does not span the entire domain of definition so we
need to assign heights to areas where the tree T is not defined i.e.,
zones around rivers where f (p) > 0. Inspired from [Génevaux et al.
2013], we compute constant height primitives on the terrain at a
higher resolution than the tree T and average their contributions
weighted by the inverse distance to point p.

q      (i-1,j-1) q      (i,j-1)

q     (i-1,j) q     (i,j)

𝑑𝑑(𝐩𝐩,𝐪𝐪𝑘𝑘+3(𝑖𝑖, 𝑗𝑗))

k+3 k+3

k+3 k+3

p

Figure 12: Calculation ofh(p) from the height primitives cen-
tered in points qk+3.

To generate the higher resolution set of points around which the
constant height primitives are centered, we subdivide the grid Gk
three more times, thus centering each primitive at a point qk+3(i, j).
See Figure 12. We then assign the elevation to these:

h(qk+3(i, j)) = hTk (qk+3(i, j)) + tanθ f (qk+3(i, j)), (4)
where hTk (qk+3(i, j)) is the altitude of the nearest point on Tk
to qk+3(i, j). In otherwords, each primitive centered at point qk+3(i, j)
is placed on a θ degree slope around rivers. We merge all heights
from the primitives centered at points qk+3 using the mean:

h̄(p) =

∑
α(i, j)h(qk+3(i, j))∑

α(i, j)
(5)

weighted by a smoothly decreasing function д of the distance be-
tween p and the points qk+3(i, j).

α(i, j) = д ◦ d(p, qk+3(i, j)/2k+2) д(r ) =
(
1 − r2)3 (6)

In our implementation, we clamp the neighborhood to the 5 × 5
nearest primitives to p because farther distances have insignificant
influence.

The slope tanθ around rivers depends on hTk (qk+3(i, j)), the
height of the nearest point on the tree T . It makes the landscape
more interesting. Valleys are wider near to the global minimum
of the control function and narrower near to the global maximum
of the control function. Let hmin and hmax be respectively the
minimum and maximum of the control function. The angle θ is
calculated as a smooth-step sigmoid-shaped function:

tanθ = σ (hmin ,hmax ,hTk (qk+3(i, j))
β ). (7)

We introduce a new parameter affecting the slope 0 ≤ β ≤ 2
(Table 2 and Figure 13). With β ≈ 0 the slopes are uniform, and
increasing β adds more valleys. A high value (β > 1) creates sharp
ridges similar to cliffs. We found that high values (β > 1) are more
suited to small terrains whereas small values better captures large
terrains (Table 2 reports the values used for the different figures in
the paper). Figure 13 shows the effect of increasing β on the terrain.

b = 0 b = 0.5

b = 1.5b = 1.0

Figure 13: The effect of β on the generated terrain.

6 RESULTS
We implemented our algorithm in C++ and we generated results
on a laptop computer equipped with an Intel i5-6300U clocked at
2.90GHz and 16GB of DDR3 RAM running Windows 10. Moreover,
we tested the parallelization on a system equipped with an Intel
Xeon Phi 7210 processor with 64 cores (hyper-threaded to 256) at
1.30GHz (Turbo Frequency 1.50GHz), 32 MB L2 cache, 16GB of
MCDRAM, 96GB of DDR4-2133 on 6 channels, running CentOS 7.3.
The performance and the parameters for all results in this paper
are reported in Table 2.

0
8

16
24
32
40
48
56
64

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Sp
e
e
d
u
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Number of threads

Our algorithm

Identity

Figure 14: Our parallel algorithm scales almost linearlywith
increasing number of cores.
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Original Down-sampled 16× Amplified 16×

Figure 15: An example of a real DEM terrain 8×8 km2 fromAlps (left) that has been down-sampled (middle) and used as control
function c and amplified to the original resolution by our algorithm (right).

Figure 14 shows the scalability of our algorithm. We executed
the program on Intel Xeon Phi on 1, 2, . . . , 64 cores, and compared
the measured speedup to the ideal one. The speedup in Figure 14
is reported by forcing each core to run exactly one instance of
the algorithm. The speedup for 64 cores was 51.4. The Xeon Phi
architecture is capable of hyper-threading of up to four threads per
core, but there is a performance hit per thread. By using hyper-
threading the speedup for 256 threads was 106.6.

Figure 16: The terrain from the center of Figure 1 with a
texture showing the logarithm of the drainage area in every
cell.

A drainage network generated by our algorithm is shown in Fig-
ure 16. By construction, our algorithm guarantees that water flows
towards the borders of the terrain, provided that the control func-
tion c does not include too low local minima. Every river segment
has a consistent slope in the direction of the root of the tree T .
The control function has a high visual impact on the resulting river
network. If it is convex, it will avoid depression formation. Our
method to transform the river network into a heightmap may in-
troduce some high frequency noise, which is why there are still
some local minima. While we could generate hydrology consistent
graph without any local minima and thus depressions, this would
over-constrain the elevation and result into less natural terrains as
slopes around rivers would then be perfectly flat and ridges would
not be continuous.

We compare the hydrological consistency of our method to other
procedural generation algorithms. The flow of water is simulated

on the terrain as if it were an impervious surface: any depression
in the terrain is filled with water. The more depressions, the worse
the drainage is. Depressions are computed using the Priority-flood
algorithm from [Barnes et al. 2014]. We use a D-Infinity Flow algo-
rithm to compute the drainage area in every cell of the terrain as
shown in Figure 16. To evaluate the different methods, we compute
the number and relative surface area of depressions (we measured
the ratio of surfaces because most of the procedurally generated ter-
rains we compare to are dimensionless). We compared our method
to other procedural functions (Figure 18). For our method, we av-
eraged 10 different terrains generated from 10 different seeds. For
reference, we evaluated the statistics for a real 30 × 30 km2 DEM
in the Alps, Europe. Results can be found in Table 1 and show
that our method generates significantly less depressions than other
procedural methods which produce many local minima.

Table 1: Hydrology statistics.

Method Depression surface # of depressions
Multifractal Fig 17 35.9 % 1352
Ridged Fig 17 24.5 % 2058
Ours (average of 10 seeds) 0.8 % 52
Alps 3.3 % 798

Amplification: Figure 15 shows a real digital elevation model
(DEM) of a terrain from Alp 7.7 × 7.7 km2 at 256 × 256 resolution
corresponding to approximately 30 m per cell. The same terrain has
been down-sampled to 16× 16 resolution (middle) and amplified by
our algorithm. Our algorithm adds more details than were present
in the original while preserving overall appearance.

Comparison: We compared Dendry to methods that generate de-
tails on an initial coarse terrain, in particular hydraulic erosion and
sparse amplification [Guérin et al. 2016] (Figure 17). Our function
has the property of being fully local. Hydraulic erosion allows the
carving of channels that guarantee consistent water flow, but at a
high computational cost (several minutes in this example). Sparse
amplification allows generation of realistic details that are pro-
vided by a real-data source, but lacks of global coherency especially
in terms of flowing consistency. In comparison, our method adds
branching channels to the initial terrain while preserving the con-
sistency of water flow and is more effective since it can be evaluated
locally.
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Table 2: Statistics for different images show throughout the paper: model, terrain resolution, grid size, random number gener-
ator seed, number of sub-trees n, randomness factor ε .

Model Resolution Grid Seed n ε ∆ c Slope Power β Runtime (s)
Fig 1 left 512 × 512 4 × 4 0 1 0.25 0.075 Perlin Noise 0.5 47

Fig 1 center 768 × 768 4 × 4 0 2 0.25 0.075 Perlin Noise 0.5 96
Fig 1 right 1024 × 1024 4 × 4 0 3 0.25 0.075 Perlin Noise 0.1 269

Fig 2 768 × 768 4 × 4 0 2 0.25 0.075 Perlin Noise 0.5 96
Fig 6 512 × 512 3 × 3 5 1 - 4 0.25 0.05 Radial ramp N.A. 12, 24, 38, 46
Fig 8 512 × 512 3 × 3 5 3 0 - 0.5 0 Radial ramp N.A. 38
Fig 9 512 × 512 3 × 3 5 3 0.25 0 - 0.075 Radial ramp N.A. 38
Fig 13 512 × 512 4 × 4 1 2 0.25 0.08 Perlin Noise 0 - 1.5 31
Fig 11 1024 × 1024 8 × 8 0 2 0.15 0.025 Sketch 0.5 216
Fig 16 768 × 768 4 × 4 0 2 0.25 0.075 Perlin Noise 0.5 96
Fig 15 256 × 256 16 × 16 0 1 0.10 0.05 Real Terrain (Alps) 0.75 25
Fig 17 512 × 512 4 × 4 0 2 0.25 0.08 Real Terrain (Alps) 1.5 64
Fig 18 1024 × 1024 4 × 4 0 3 0.25 0.075 Perlin Noise 0.1 269

Original Dendritic function

Sparse amplificationHydraulic erosion

Figure 17: Comparison of synthesized details produced by
different amplification methods: the original terrain (top
left) had a coarse resolution of 32 × 32. We compare our den-
dritic function (top-right) to hydraulic erosion (bottom-left)
and sparse amplification (bottom-right), at 512 × 512 resolu-
tion, i.e., an amplification factor of 16.

We also compared our dendritic function to other procedural
functions that are locally computable (Figure 18). Traditional noises
provide locally realistic landform features such as crests but fail to
generate a coherent drainage.

7 CONCLUSIONS AND FUTUREWORK
Wehave introduced a novel procedural function that is controlled by
a few intuitive parameters which returns a distance to an underlying
branching structure and is evaluated locally. We demonstrated its
application to the generation of terrains with river networks.

While our method is straightforward and lends itself for parallel
implementation, it has several limitations. First the regular grid
causes a fixed density of branches. They could be avoided by using
a non-regular grid. Targeting a small memory footprint also comes
with its counterpart: many local branches are repeatedly calculated.
It would be possible to increase the memory footprint by caching
some of the already calculated structures. One strategy would be to

Worley Ridged

Multifractal Dendritic function

Figure 18: Comparison of our dendritic function (right) with
different noise functions to generate synthetic terrains: cel-
lular noise (left), ridged noise (center-left), multi-fractal
noise (center-right).

use lazy evaluation and storing the intermediate results in each cell.
Another limitation is the dependence of the random parameters
on the size of the grid. Unwanted crossing between segments can
occur in the generated tree structure when values of parameters
are too high. As explained in Section 4.3, it happens mostly with ∆
and ϵ , and it is slightly amplified when segments are smoothed.

There are several possible extensions to our work. We could
apply the function to other examples. In particular, we think about
Lichtenberg figures because the density of branches is almost con-
stant. It would be interesting to see how the function could return
two or, in general, multiple closest points to T in order to compute
more complex functions. Using non-regular grids would probably
alleviate the problem of having a constant density of branches. Two
other ways of mitigating this effect could be: modifying the slope
around segments according to a slope map or combining this pro-
cedural function with other functions that are better at modeling
different reliefs. Although we did not implement a non-local version
on the CPU, it could be interesting to compare its run time with the
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local version. Another straightforward extension is the implemen-
tation on the GPU. Because of the local property of the model and
its grid-based computation, it could be implemented as a shader.
Finally, interesting patterns could be generated by extending our
algorithm to 3D, at the expense of more demanding computations.
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