
Pacific Graphics 2010
P. Alliez, K. Bala, and K. Zhou
(Guest Editors)

Volume 29 (2010), Number 7

Feature based terrain generation using diffusion equation

Houssam Hnaidi1, Eric Guérin1, Samir Akkouche1, Adrien Peytavie1, Eric Galin2

1LIRIS - CNRS - Université Lyon 1, France 2LIRIS - CNRS - Université Lyon 2, France

Abstract
This paper presents a diffusion method for generating terrains from a set of parameterized curves that characterize
the landform features such as ridge lines, riverbeds or cliffs. Our approach provides the user with an intuitive
vector-based feature-oriented control over the terrain. Different types of constraints (such as elevation, slope
angle and roughness) can be attached to the curves so as to define the shape of the terrain. The terrain is generated
from the curve representation by using an efficient multigrid diffusion algorithm. The algorithm can be efficiently
implemented on the GPU, which allows the user to interactively create a vast variety of landscapes.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—

Keywords: Terrain modeling, vector graphics, gradient and height field diffusion.

1. Introduction

There are numerous applications that make use of syn-
thetic terrain: landscape design, flight simulators, battle-
ground simulations, feature film special effects and com-
puter games. Very often the terrain is either the dominant
visual element or plays a central part in the application.

Over the years, researchers have made considerable
progress towards developing efficient methods for generat-
ing and editing synthetic terrains. There are different ap-
proaches to generating synthetic terrains. Fractal landscape
modeling and physical erosion simulation methods can au-
tomatically generate realistic terrain models, but often lack
intuitive tools for controlling the placement and the shape of
the landforms features. In contrast, terrain generation tech-
niques from features [RME09] or images [ZSTR07] as well
as sketching approaches [GMS09] provide a better and more
intuitive control over the resulting terrain.

Existing constraint based editing techniques have several
weaknesses however. In general, the characterization of the
height field in the vicinity of the constraints is either random
or difficult to control [GMS09, RME09] or depends on the
characteristics of another terrain image [ZSTR07].

In this paper, we present a compact vector-based model to
efficiently and accurately control the terrain generation pro-
cess. The terrain is characterized by a set of control curves

Figure 1: A complex terrain generated with our method

representing landform features such as ridge lines, cliffs or
river beds. The control curves define the local elevation and
slope of the terrain, as well as some parameters characteriz-
ing the roughness of its surface. The terrain is generated to
match the elevation and gradient constraints attached to the
curves using a multigrid diffusion equation [OBW∗08]. De-
tails are created by a parameterized noise function controlled
by the diffused amplitude and roughness attributes. There-
fore, our method allows to finely tune the parameters of the
terrain by setting tangent, elevation and noise constraints in
the neighborhood of user-controlled feature curves.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

Figure 2: Generating the terrain requires: the rasterization of the vector based constraints into roughness, elevation and
gradient maps, the diffusion of elevation, gradient and noise parameters, the synthesis of the noise and smooth height fields and
the final combination of the two elevation maps.

Our paper makes the following major contributions.
Firstly, we describe a compact representation to control
the procedural terrain generation (Section 3). Secondly, we
present an automatic generation algorithm based on a multi-
grid diffusion algorithm (Section 4). The generated terrain
fits the elevation and gradient constraints attached to the
featured curves. Moreover our approach allows us to cre-
ate landform features without ridge lines such as hills. We
show that our method can be accelerated by implementing
the multigrid parameter and elevation diffusion algorithm on
the GPU (Section 5). Finally, we show that our approach
provides a seamless framework for authoring and generating
terrains at different resolutions (Section 6). Our vector-based
representation of control curves allows us not only to sketch
terrains with a very limited number of curves, but also to in-
crementally add as many details as needed by refining and
adding new constraints to the curves.

2. Related work

There are different approaches to generating synthetic ter-
rains: fractal landscape modeling, physical erosion simula-
tion and terrain synthesis from landform features or sample
terrain patches.

Fractal based methods: Several stochastic subdivision
techniques, such as random midpoint displacement [FFC82]
or square-square subdivision schemes [Mil86, Lew87] were
first proposed to generate artificial terrains. Those methods
produce realistic terrains but suffer from a lack of control.
[ST89] addressed this problem by combining deterministic
splines and stochastic fractals into constrained fractals. An
overview may be found in [EMP∗98]. A midpoint displace-
ment based method was introduced in [Bel07] with several
techniques to set local constraints and generate the terrain.
With the recent advances in algorithms and graphics hard-
ware, GPU methods for real-time editing and rendering of
procedural terrains have been proposed [SBW06].

Erosion simulation: Erosion simulation is another ap-
proach to synthesizing terrains based on models of landscape

formation and stream erosion. It is often used as a refinement
step after a height field is generated. With appropriately-
tuned parameters, these techniques can generate realistic
terrains. Early methods adapted the fractal rules with spe-
cific changes to produce eroded terrains [KMN88, PH93].
Physically-based erosion approaches approximate natural
terrain formation by simulating the erosion of stream net-
works. Some material is dissolved and transported by the
water flow, and finally deposited at another location. The wa-
ter movement is determined by the local gradient of the ter-
rain in a simple diffusion algorithm [RPP93, Nag98, BF02].

Those methods are based on a simple diffusion model
which is not accurate enough to describe the water move-
ment and sediment transportation. More complex and accu-
rate fluid simulation methods were integrated into the ero-
sion process [CMF98]. Recently, hydraulic erosion simula-
tion techniques have been optimized so as to take full advan-
tage of the high parallel computing power offered by today’s
graphics processing units [NWD05, MDH07, SBBK08].

Controlled editing and sketching techniques: both proce-
dural and physical erosion techniques require complex pa-
rameter tuning to obtain specific terrains. Therefore, several
image-based editing [Lew84, PV95] and constraint based
techniques have been proposed to provide the user with more
intuitive control over the synthesized terrain. Material maps
were also proposed to sculpt three-dimensional terrains fea-
turing arches, overhangs or even caves [PGMG09].

An example-based system for terrain synthesis was pro-
posed in [ZSTR07]. By combining patches from a sample
image and a user-sketched feature map, the method can syn-
thesize realistic terrains mixing the desired terrain features
with the details of the sample height field. Another sketch-
ing method was introduced in [GMS09] to interactively gen-
erate a terrain that matches the sketched constraints using
multi resolution surface deformation. [RME09] presented an
original terrain synthesis method based on the computation
of distances in a weighted graph. The height field is com-
puted by a least-cost path algorithm in a weighted graph

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

from a set of generator nodes. Terrain features such as moun-
tains, hills or craters are specified by monotonically decreas-
ing profile curves which define their cross-sections.

3. Terrain modeling primitives

In this section, we present the control curves that are used
to describe and control the shape of landforms in the scene.
There is a vast variety of landforms in nature, which makes
them difficult to model in a consistent way. We propose to
use vector-based control curves as a generic modeling prim-
itive for representing a vast variety of landform features, in-
cluding single or multiple ridge lines, riverbeds, hills, cracks
and cliffs. Given a set of control curves with the correspond-
ing elevation, gradient and noise constraint parameters at-
tached to them, the overall generation process proceeds as
follows (Figure 2):

• Computation of the elevation, gradient, noise amplitude
and roughness constraint maps by a rasterization step.
• Diffusion of the noise, gradient and elevation constraints

in the maps using Laplace diffusion.
• Computation of a smooth elevation map using a guided

diffusion controlled by the diffused gradient map.
• Generation of the detail map of the terrain using the dif-

fused noise parameters.

The final height field representing the terrain is obtained
by adding the smooth elevation map and the detail map.

3.1. Feature curves

Feature curves, denoted as C, are defined as two-dimensional
vector-based piecewise Bézier cubic splines (Figure 3). We
attach a set of constraint points Pi to every curve C. Every
constraint Pi is defined by the following attributes:

Pi = ((hi,ri),(ai,bi,θi,ϕi),(Ai,Ri),ui) i ∈ [1,m]

ui denotes the linear coordinate along the spline. It is not
compulsory to attach all the types of constraints to a curve.
Constraints are grouped into three categories: elevation con-
straints (hi,ri), angle constraints (ai,bi,θi,ϕi) and noise
constraints (Ai,Ri). θi and ϕi refer to the slope angle
whereas ai and bi denote the extent of the slope constraint
on both sides of the curve (Figure 3). hi represents the height
constraint and ri denotes the radius of the plateau on both
sides of the feature curve. Noise constraints are used to
control the noise generator parameters. Our noise generator
is controlled by two parameters: amplitude denoted A and
roughness denotedR.

The user can choose to attach only one category, or two or
all the categories of constraints to the curve. Figure 3 shows
an example of a feature curve defined in (x,y) plane with
four control points. The first and the last control points of
the curve are constraint points and we have put another con-
straint point along the curve at u = 0.3. The Bézier spline

curve is used to define the projection of a ridge line or a
riverbed on the (x,y) plane whereas constraints are used to
define elevations, gradients, and noise parameters along it.

Figure 3: Control curve and associated geometric con-
straints (elevation and angle)

Two constraint points at least are attached to a curve, at
extremities. Between constraint points, each attribute is lin-
early interpolated along the curve except for elevation hi
which is interpolated with a cubic spline to avoid unnatural
piecewise linear ridge lines.

3.2. Terrain modeling

Feature curves provide the user with a generic and efficient
modeling tool for defining and controlling the landforms of
the terrain (Figure 4).

Figure 5: Ridge line feature curve (left) and multiple ridge
lines (right)

Ridge line: A ridge line can be obtained by a single feature
curve (Figure 5 left). Elevation constraints indicate altitudes
on the ridge line while slope angle constraints describe the
degree of inclination at each side. Small elevation constraint
radius are often chosen in this case.

Figure 6: Riverbed (left) and cliff (right) feature curves

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

Figure 4: Different kinds of landscapes (lake, mountain and desert) created with 45, 59 and 26 control curves respectively.

Multiple ridge line: Sometimes, a mountain does not have
a single ridge line. In our system, it is possible to combine
multiple ridge lines that have a common peak point with the
same elevation constraint and whose direction and slope an-
gle constraints are different (Figure 5).

Riverbed: A riverbed can also be obtained by a single fea-
ture curve (Figure 6 left). Elevation constraints have a small
range and elevation constraint radius indicates the width of
the riverbed. Slope angle constraints are slightly upwards
with a small associated radius.

Cliff: A cliff is formed with a single feature line combining
two radically opposite slope angle constraints at each side
(Figure 6 right).

Hill: A hill is obtained by setting horizontal slope angle
constraints at each side of the feature curve (Figure 7 left).
This constraint implies a null gradient and thus forces points
in the neighborhood to be at the same elevation.

Cracks: A crack is obtained by setting two rising slope an-
gle constraints at each side of the feature curve (Figure 7
right). In this case, there is no need for setting strict eleva-
tion constraint.

Figure 7: Hill (left) and crack (right) feature curves

Noise control: Two parameters allow the definition of con-
straints on amplitude and roughness of the noise. Figure 8
shows the influence of the amplitude parameter (left) and
the roughness one (right). In this example, only noise con-
straints have been used.

Figure 8: Amplitude and roughness control of noise

4. Terrain generation algorithm

In this section, we present the generation of the height field
from the set of user-defined feature curves.

4.1. Rasterization

User-defined feature curves are vector graphics that are
resolution-independent. The diffusion method relies on a
raster representation of data. Therefore, a rasterization pre-
processing is compulsory to represent constraints (elevation,
noise parameters, slope angle) onto images.

The curve is first discretized along it and approximated
into piecewise linear parts. At each linear coordinate, the
whole parameter set is linearly interpolated from constraints
points except for the elevation constraint where a cubic in-
terpolation is used to avoid unnatural piecewise linear ridge
lines on mountains. Then, at each side, quadrangles are gen-
erated in the direction of the normal whose lengths are set
from the interpolated radii values r, a and b.

The colors on the vertices of the quadrangles are drawn
from the interpolated constraint values. For strict constraints,
quadrangles are painted with uniform values of h, A andR.
For slope angle primitives, the vertex color is set to its corre-
sponding interpolated value along the curve and is set to 0 at
the end of the quadrangle so as to avoid gradient discontinu-
ities and artifacts. Gradient information is represented as a
combination of the normal direction to the feature curve and
the norm of the gradient. These values are inverted when the
feature curve does not contain strict elevation constraints. In
this way, the propagation of the gradient behaves better and
requires less iterations in the multigrid solver.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

Feature curves can be placed anywhere so they can in-
tersect themselves. Strict constraints (noise parameters and
elevation) intersection can be solved automatically by aver-
aging all the constraint values. However, gradient intersec-
tion is a more complex problem because conflicting gradi-
ents can have completely antagonistic directions. This prob-
lem is even harder when the number of intersecting gradients
increases.

Figure 9: Gradient intersection problem resolution

In order to have a generic solution to this problem, we
leave intersecting areas empty and perform a Laplace diffu-
sion to fill in holes. Figure 9 illustrates the intersection prob-
lem when two feature curves C j and Ck are intersecting. The
diffusion method naturally tends to smooth the gradient field
(Figure 9 right) and eliminates discontinuities.

4.2. Diffusion

Our diffusion method is based on [OBW∗08]. Other diffu-
sion methods for image editing were introduced in [MP08,
PGB03]. Although these methods offer very effective im-
age editing tools, they use a pixel based representation not
suitable in the context of terrain generation. As the meth-
ods cited above, our method uses a multigrid solver to solve
diffusion equation with an intensive use of the GPU capabil-
ities. Several papers present such techniques for exploiting
the GPU in this context [GWL∗03, BFGS03].

Partial differential equations: We use several types of
equations: Laplace (order 2), gradient (order 1) and identifi-
cation (order 0). The first one is used when no information
on gradient is provided. The Laplacian of the field F is sim-
ply vanishing: ∆F = 0, where F is a scalar field defined in
R2. This equation is used to express that the field is smooth.

When we want to guide the diffusion by a gradient di-
rection drawn from the slope angle constraints, we use this
gradient equation: ∇F = G, where G = (Gx,Gy) is the gra-
dient vector field we want to impose. Note that we do not
use Poisson partial differential equations because this would
require the computing of the divergence of the gradient. This
operation induces the loose of the gradient direction and is
not suitable in our case. Additionally, Poisson equation sim-
plifies to a Laplace equation when we set a null gradient
constraint and thus forbids the creation of horizontal angle
constraints.

When we want to set directly a constraint on the value of
F we use a direct identification equation: F = F .

To solve diffusion equations, we need firstly to discretize
them on a rectangular 2D grid. For this end we use a forward
Euler integration scheme.

Because we want a tight control over the result, several
equations can be concerned at the same point. This over-
constrained system is solved using a combination of Jacobi
relaxations terms in the iterative solver (see section 5.2).

4.3. Noise generation

Any kind of noise generator can be plugged into our system
provided that it can be driven by two scalar fields: ampli-
tude A(x,y) and roughness R(x,y). Mapping the roughness
parameter directly on a Perlin noise generator through the
frequency and feature size parameters breaks the continuity
and gives unnatural ring effects. In our method we generate
a multi fractal noise based on a Perlin noise S(x,y):

N(x,y) = A(x,y)
n

∑
k=0

1
rk(1−R(x,y)) S(rkx,rky)

where n + 1 determines the number of octaves and r is
the lacunarity. In our implementation, we use a 4 octaves
multi fractal noise generation (n = 3 and r = 2). Our Perlin
noise is based on a procedural deterministic noise generator.
The roughness coefficient R does not influence the differ-
ent scales of the multi fractal combination, it only changes
the way they are blended. When setting R = 1, the different
scales are blended equally, whereas lower values of R will
damp the blending coefficient of higher frequencies.

5. Implementation details

In order to reach interactive generation performances, our
implementation makes intensive use of the GPU. This sec-
tion explains how we represent data with textures and the
different shaders we use.

5.1. Data representation

All the data involved in our method after rasterization can
be represented by images. These images are processed as
textures by fragment shaders.

Several constraint maps can be multiplexed on a single
texture using the different components. Elevation and noise
parameters constraints are gathered into the RGB compo-
nents of a single RGBA texture image. The last alpha com-
ponent of the texture is used to indicate which constraints
have been set on the different areas.

In the remainder in this paper n = (nx,ny) will refer to
the normalized normal direction to the feature curve. The
components of n and the gradient norm are stored in the red,
green and blue components of another RGB texture.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

Figure 10: Incremental editing of a canyon, with 15, 30, and 74 control curves.

5.2. Multigrid implementation

We use a multigrid algorithm to solve the linear system ob-
tained by discretization. Method from [OBW∗08] is used
and adapted to our problem for solving the multigrid. This
algorithm is computed in interactive time for a square grid at
a resolution range from 5122 to 20482 with the aid of GPU
capabilities. Multigrid method consists in solving a coarse
version of the system and obtaining low frequency solution
components, and refining the domain to adjust higher fre-
quency components. A Jacobi relaxation is used to solve
each multigrid level, and we limit the number of relaxation
iterations to reach good performances. Let l denote the num-
ber of grid levels in the multigrid structure, 0 will refer to
the coarsest level and l− 1 the finest level. At each level i,
we make 5(l− i) iterations in the Jacobi relaxation process
as advocated in [OBW∗08].

Let 0≤ α≤ 1, 0≤ β≤ 1 and 0≤ α +β≤ 1. The Jacobi
relaxation term is calculated by a weighted combination of
the three types of equations:

Fk+1(i, j) = αFk+1
L (i, j) + βFk+1

G (i, j)
+ (1−α−β)Fk+1

I (i, j)

Where each term is calculated as follows:

1. Laplace equation. This equation is locally linearized by
averaging the neighborhood points:

Fk+1
L (i, j) = 1

4

(
Fk(i+1, j)+Fk(i, j +1)

+Fk(i−1, j)+Fk(i, j−1)
)

2. Gradient equation. The norm of the gradient is added to
the gradient direction neighbor:

Fk+1
G (i, j) = Fk

N(i, j)+G(i, j)

The neighbor value FN is calculated by combining the
two points in the normal direction of the feature curve:

FN(i, j) = n2
xFk(i− sign(nx), j)+n2

yFk(i, j− sign(ny))

3. Identification. This is the simplest equation:

Fk+1
I (i, j) = F(i, j)

Sometimes, points in the grid can be concerned by sev-
eral equations simultaneously. For example, in gradient con-

straint areas, we set α = β = 1/2. In this way, Jacobi it-
erations tend to satisfy both the gradient equation and the
Laplace equation at the same time. In strict elevation con-
straint areas, we set α = β = 0. If we want to approximate
(and not interpolate) elevation constraints, we can set α > 0
and the solution will be smoother. But this breaks edges on
features and not suitable in our case. Everywhere else, we
set α = 1 and β = 0.

Five scalar fields have to be calculated with a standard
Laplace diffusion algorithm: the amplitude of the noise A,
the roughness of the noiseR, the gradient norm and the com-
ponents of n. The scalar field that represents the altitude h is
calculated by using a guided diffusion algorithm. α and β

values are determined by feature curves and constraints po-
sitions.

We first diffuse the gradient norm and the components of
n in order to fill in holes in intersecting gradient areas. Then
the diffused gradient is used to diffuse the altitude h. The
noise parameters R and A are diffused in the same shader
for performance issue because they are algorithmically iden-
tical. The only difference is that the guided diffusion has to
calculate the gradient direction neighbor. Altitude and noise
parameters are multiplexed on the different components of a
single texture image.

5.3. Noise generation

The input signal generator is based on a bilinearly interpo-
lated Perlin noise generated procedurally on the GPU. To
guarantee that this signal is deterministic and gives always
the same result on a given (x,y) input, we compute pseudo-
random numbers with bit operations on x and y.

6. Results

We have implemented our method into a modeling applica-
tion coded in C++. All the images shown throughout the
paper were created using this application. Renderings were
performed using Mental Ray on the procedurally textured
meshed produced by our technique.

Realism Our method creates realistic landscapes and com-
pares favorably in terms of efficiency and quality to re-
cent existing editing and sketching techniques [GMS09,

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

Figure 11: Final mountain, lake and desert scenes rendered with procedural textures.

RME09]. The main reason for this is that our approach
provides a good control over the landform features. More-
over, control curves are a generic tool which can be used to
create a vast variety of different kinds of terrains, such as
volcanic islands (Figure 12), mountain and desert sceneries
(Figure 11), canyons with complex riverbeds (Figure 1) and
even hilly landscapes.

Model Features Size

Mountain 59 2.89

Lake 45 2.26

Canyon 74 4.48

Hills 55 2.25

Volcanic Island 48 2.95

Desert 26 1.30

Table 1: Terrain statistics: number of feature curves and
data structure size (in kB).

Control A very interesting and powerful aspect of our ap-
proach is its simplicity and control. Our vector based model
provides the user with a compact and resolution independent
representation which can be edited and manipulated easily.
Table 1 reports some statistics corresponding to the terrains
shown throughout the paper.

Another interesting feature of our method is that is pro-
vides a seamless framework that bridges the gap between
sketching and accurate editing for authoring complex ter-
rains. Figure 10 illustrates this ability with three different
steps in the creation of a canyon. The first sketch was created
in less than 3 minutes. It took almost 45 minutes to carefully
edit all the details needed to produce the final model. In that
particular case, most of the time was spent tuning the noise
parameters to adapt the roughness of the terrain to the slope.
A straight forward improvement to speed up the design of
the scene would consist in directly computing the amplitude
and roughness parameters from the slope constraints.

Efficiency We implemented our algorithms as GLSL shader
on an NVidia 8800 GTS graphic card. In terms of memory,
our algorithm requires 10 grids of size n×n. In our system,

those grids are stored as 32 bits floating point textures. Thus,
for a 1024× 1024 grid size, we use 40MB of GPU mem-
ory. Table 1 and 2 report various statistics as well as tim-
ings for generating terrains at different resolutions. Figures
demonstrate that the number of feature curves has a small
influence over the overall terrain generation time, whereas
the grid size has a strong influence over the generation time.
Timings show that our method runs at interactive rates, even
for large grid sizes.

Model Computing Time

Grid resolution 5122 10242 20482

Mountain 0.187 0.270 0.670

Lake 0.185 0.261 0.690

Canyon 0.216 0.339 0.811

Hills 0.188 0.266 0.611

Volcanic Island 0.168 0.275 0.675

Desert 0.171 0.253 0.635

Table 2: Timings (in seconds) for generating the terrain at
5122, 10242 and 20482 resolution.

All the rendered sceneries were generated with a 1024×
1024 grid resolution.

Comparison with other techniques Compared to
[GMS09], the terrain characteristics are incrementally
edited but not stored. In contrast, our method relies on an
underlining vector based representation and generation al-
gorithms which enable us to create original features such as
rivers or multiple ridge lines. Moreover, our multigrid GPU
implementation compares favorably to existing methods.

7. Conclusion

In this paper we introduced a new method based on a multi-
grid diffusion of constraints for procedurally generating re-
alistic terrains. Our approach provides the user with simple,
intuitive and efficient tools for controlling the landforms of
the terrain with a reduced number of feature curves. Re-
markably, feature curves can handle the definition of ridge

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, E. Galin / Feature based terrain generation using diffusion equation

Figure 12: A volcanic island and the corresponding feature curves.

lines as well as river beds, lake and sea shores in a consis-
tent and generic ways. Moreover, our method can also gener-
ate smooth hills and valleys very easily. Our optimized GPU
implementation allows the generation of complex terrains in
interactive time, even at large resolutions (2048×2048). Our
technique lends itself for both real time sketching and edit-
ing of highly detailed terrain models.

References

[Bel07] BELHADJ F.: Terrain modeling: a constrained fractal
model. In Afrigraph (2007), pp. 197–204. 2

[BF02] BENES B., FORSBACH R.: Visual simulation of hydraulic
erosion. In Journal of WSCG (2002), vol. 10, pp. 79–86. 2

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖDER P.:
Sparse matrix solvers on the GPU: conjugate gradients and multi-
grid. ACM Trans. Graph. 22, 3 (2003), 917–924. 5

[CMF98] CHIBA N., MURAOKA K., FUJITA K.: An erosion
model based on velocity fields for the visual simulation of moun-
tain scenery. Journal of Visualization and Computer Animation
9, 4 (1998), 185–194. 2

[EMP∗98] EBERT D., MUSGRAVE K., PEACHEY D., PERLIN
K., WORLEY S.: Texturing and Modeling: A Procedural Ap-
proach. Academic Press Professional, 1998. 2

[FFC82] FOURNIER A., FUSSELL D. S., CARPENTER L. C.:
Computer rendering of stochastic models. Commun. ACM 25,
6 (1982), 371–384. 2

[GMS09] GAIN J., MARAIS P., STRASSER W.: Terrain sketch-
ing. In Proceedings of the 2009 symposium on Interactive 3D
graphics and games (2009), pp. 31–38. 1, 2, 6, 7

[GWL∗03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUE-
BKE D. P., HUMPHREYS G.: A multigrid solver for bound-
ary value problems using programmable graphics hardware. In
Graphics Hardware (2003), pp. 102–111. 5

[KMN88] KELLEY A., MALIN M., NIELSON G. M.: Terrain
simulation using a model of stream erosion. In Proceedings of
SIGGRAPH (1988), pp. 263–268. 2

[Lew84] LEWIS J.-P.: Texture synthesis for digital painting. In
Proceedings of SIGGRAPH (1984), pp. 245–252. 2

[Lew87] LEWIS J. P.: Generalized stochastic subdivision. ACM
Trans. Graph. 6, 3 (1987), 167–190. 2

[MDH07] MEI X., DECAUDIN P., HU B.: Fast hydraulic erosion
simulation and visualization on GPU. In Pacific Graphics (2007),
pp. 47–56. 2

[Mil86] MILLER G. S. P.: The definition and rendering of terrain
maps. In SIGGRAPH (1986), pp. 39–48. 2

[MP08] MCCANN J., POLLARD N. S.: Real-time gradient-
domain painting. ACM Trans. Graph. 27, 3 (2008). 5

[Nag98] NAGASHIMA K.: Computer generation of eroded valley
and mountain terrains. The Visual Computer 13, 9-10 (1998),
456–464. 2

[NWD05] NEIDHOLD B., WACKER M., DEUSSEN O.: Interac-
tive physically based fluid and erosion simulation. In Eurograph-
ics Workshop on Natural Phenomena (2005), pp. 25–32. 2

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H.,
BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: a vector
representation for smooth-shaded images. ACM Trans. Graph.
27, 3 (2008). 1, 5, 6

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image
editing. ACM Trans. Graph. 22, 3 (2003), 313–318. 5

[PGMG09] PEYTAVIE A., GALIN E., MERILLOU S., GROS-
JEAN J.: Arches: a Framework for Modeling Complex Terrains.
Computer Graphics Forum (Proceedings of Eurographics) 28, 2
(2009), 457–467. 2

[PH93] PRUSINKIEWICZ P., HAMMEL M.: A fractal model of
mountains with rivers. In Graphics Interface (1993), pp. 174–
180. 2

[PV95] PERLIN K., VELHO L.: Live paint: painting with proce-
dural multiscale textures. In Proceedings of SIGGRAPH (1995),
pp. 153–160. 2

[RME09] RUSNELL B., MOULD D., ERAMIAN M. G.: Feature-
rich distance-based terrain synthesis. The Visual Computer 25,
5-7 (2009), 573–579. 1, 2, 6

[RPP93] ROUDIER P., PEROCHE B., PERRIN M.: Landscapes
synthesis achieved through erosion and deposition process simu-
lation. Computer Graphics Forum 12, 3 (1993), 375–383. 2

[SBBK08] ST́AVA O., BENEŠ B., BRISBIN M., KŘIVÁNEK J.:
Interactive terrain modeling using hydraulic erosion. In ACM
Siggraph / Eurographics Symposium on Computer Animation
(2008), pp. 201–210. 2

[SBW06] SCHNEIDER J., BOLDTE T., WESTERMANN R.: Real-
time editing, synthesis, and rendering of infinite landscapes on
GPUs. In Conference on Vision, Modeling, and Visualization
(2006), pp. 153–160. 2

[ST89] SZELISKI R., TERZOPOULOS D.: From splines to frac-
tals. In Proceedings of SIGGRAPH (1989), pp. 51–60. 2

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J. M.: Terrain
synthesis from digital elevation models. IEEE Trans. Vis. Com-
put. Graph. 13, 4 (2007), 834–848. 1, 2

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.


