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Abstract

Given a large set of data, a common data mining problem is to extract the fre-
quent patterns occurring in this set. The idea presented in this paper is to extract a
condensed representation of the frequent patterns called disjunction-bordered con-
densation (DBC), instead of extracting the whole frequent pattern collection. We
show that this condensed representation can be used to regenerate all frequent pat-
terns and their exact frequencies. Moreover, this regeneration can be performed
without any access to the original data. Practical experiments show that the DBC
can be extracted very efficiently even in difficult cases and that this extraction and
the regeneration of the frequent patterns is much more efficient than the direct ex-
traction of the frequent patterns themselves. We compared the DBC with another
representation of frequent patterns previously investigated in the literature called
frequent closed sets. In nearly all experiments we have run, the DBC have been
extracted much more efficiently than frequent closed sets. In the other cases, the
extraction times are very close.
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1 Introduction

An important data mining problem is to extract efficiently the frequent pat-
terns occurring in a large data set. In this paper, we consider the extraction of
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Fig. 1. Baskets of customers.
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Fig. 2. Illustration of simple disjunctive rules.

frequent patterns called frequent itemsets which are commonly used to derive
efficiently another popular set of patterns called association rules [1].

The problem of the frequent itemset extraction can be shortly stated as follows
in the context of basket analysis, a typical data mining task. A collection of
purchases of customers is encoded in a table, where each row represents a
customer basket (i.e., a set of items purchased together). A toy example, with
four items A, B, C and D, and eight baskets (transactions) is depicted in
Figure 1. We use ’x’ to denote occurrences of the items in the baskets. Let
r be such a table and X be a set of items. The support of X in r denoted
Sup(r, X) is the number of baskets in r containing all items in X. Then the
frequent itemset mining problem is to find all pairs 〈X, Sup(r, X)〉 such that
Sup(r, X) exceeds a given threshold. In the following, every time we say that
we extract frequent itemsets, we mean extracting all frequent itemsets along
with their supports.

Example 1 If we consider the baskets represented in Figure 1 and a support
threshold value of 2, then the solution to the frequent itemset mining problem is
the collection of pairs 〈∅, 9〉, 〈{A}, 4〉, 〈{A, B}, 2〉, 〈{A, B, C}, 2〉, 〈{A, C}, 3〉,
〈{A, D}, 2〉, 〈{B}, 5〉, 〈{B, C}, 4〉, 〈{B, D}, 2〉, 〈{C}, 6〉, 〈{C, D}, 2〉 and 〈{D},
5〉.

We address the problem of frequent itemset extraction within data sets com-
posed of a single binary table, i.e. table where the attributes can take 1 of 2
different values: true or false (in the basket analysis context, the value states
if an item occurred).

The number of rows and the number of items in the binary data sets cor-
responding to real problems are rather large and näıve solutions can not be
used. Several different techniques have been proposed to perform this task on
large data sets (e.g., [2–6]). Dealing with data sets that are made up of multi-
ple tables has also been investigated, e.g., in [7,8]. The extraction of frequent
itemsets within data sets containing attributes other than binary (e.g. real)
may be accomplished by first binarizing the data — as pointed by Liu et al.
in [9], good techniques for this purpose may be found in [10,11].
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An alternative promising approach has been developed in [12–14], based on
the following idea: instead of mining all frequent patterns, it is sufficient to
extract a particular subset of the frequent pattern collection, such that we can
regenerate from this subset the whole collection. In this paper, we call such a
subset a condensed representation 1 of the frequent pattern collection.

Ideally, a condensed representation is much smaller than the original collection
and can be extracted more efficiently, while allowing a quick regeneration of
all frequent patterns without costly scan of the original data and new support
counting.

To our knowledge, two condensed representations have been proposed in the
literature for frequent itemsets: closed sets [12] and δ-free sets [13,14]. The
first framework allows regenerating exactly the collection of frequent patterns
and their frequencies. The second offers two possibilities: an exact or an ap-
proximate regeneration of the frequencies, corresponding respectively to δ = 0
and δ > 0. In the exact case, closed sets and δ-free sets (with δ = 0) present
similar benefits. δ-free sets with δ > 0 lead to a much smaller representation
and to a more efficient extraction, but at the cost of some uncertainty on the
frequencies of regenerated itemsets.

In this paper, we consider the exact regeneration of frequencies and we pro-
pose a new condensed representation called disjunction-bordered condensation
(DBC). This representation contains the same amount of information as the
full collection of frequent itemsets, but consists of a subcollection of the fre-
quent itemsets and can be extracted more efficiently. The core of the contri-
bution of this paper is the DBC representation and the elementary procedures
to extract it and to derive frequent itemsets and frequent closed sets. Several
experiments are presented and show the practical interest of the DBC to find
frequent patterns, especially in difficult cases. The experiments show that the
DBC is an interesting condensed representation of frequent itemsets but also
of frequent closed sets themselves. Thus DBC can be used to greatly reduce
the running time and the storage space requirement of the data mining pro-
cesses involving frequent itemsets and frequent closed sets. This immediately
enables useful applications of the DBC like more efficient association rule [1]
extraction or faster computation of rule summaries (e.g., [16]).

This paper is a major extension of [17], where preliminary results have been
presented.

Informal description of the DBC.

The condensation of the collection of frequent itemsets by the DBC is due to a

1 We borrow this term from [15].
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property that binds supports of some itemsets by equations. This property is
based on expressions called simple disjunctive rules. The general form of such
rules is A1 ∧A2 ∧ . . .∧An−2 ⇒ An−1 ∨An, where Ai represent different items
(with an exception on the last 2 items, i.e. An−1 and An, which are allowed
to be the same). This rule states that if A1, . . . , An−2 are set to true within a
row, then An−1 or An is set to true within the same row. The rule may hold in
a row or not. The latter case arises when An−1 and An are set to false in spite
of all A1, A2, . . . , An−2 being set to true. If one of the elements in the premise
(i.e., the left hand side) of the rule is not set to true then (as for implications
in propositional logic) the rule is also said to hold (since it is not violated).

Consider the table r′ depicted in Figure 2. The rule B ∧ C ⇒ A ∨ D holds
for example in the second and third row, but not in the first one. The DBC is
based on rules that hold in all rows of a table, as for instance A ⇒ C ∨ D in
r′.

Observe the rows with A true in Figure 2. Since A ⇒ C ∨ D holds in all
rows, there is no row with A true and both C and D false. Thus, the
support of A is simply equal to the sum of the supports of {A, C} and
{A, D} minus the support of {A, C, D} (because the support of {A, C, D}
has been counted in the support of both {A, C} and {A, D}). So if we know
the supports of {A}, {A, C} and {A, D}, then we can avoid the extrac-
tion and the support counting of {A, C, D} by simply using the equation
Sup(r′, {A, C, D}) = Sup(r′, {A, C}) + Sup(r′, {A, D}) − Sup(r′, {A}).

Moreover, if A ⇒ C∨D holds in all rows, then α ⇒ C∨D holds also in all rows
for any conjunction α containing A. Such a rule is for example, in Figure 2,
A ∧ B ⇒ C ∨ D, and we have Sup(r′, {A, B, C, D}) = Sup(r′, {A, B, C}) +
Sup(r′, {A, B, D}) − Sup(r′, {A, B}). This property is very interesting since
for the dataset of Figure 2 we can then skip the support counting of all proper
supersets of {A, C, D}, while still being able to compute their supports using
these relations between the itemset supports.

An itemset containing items that can be used to form a simple disjunctive
rule holding in all rows is called a non-disjunction-free set. The remaining
itemsets are called disjunction-free sets. In the previous example {A, C, D}
and {A, B, C, D} are non-disjunction-free, because of the rule A ⇒ C ∨ D.

A DBC is simply the collection of all frequent disjunction-free sets and of
all frequent and minimal (w.r.t. set inclusion) non-disjunction-free sets, along
with the corresponding support information.

The most interesting property of the DBC is that this collection of itemsets can
be extracted very efficiently and is sufficient to compute all frequent itemsets
and their supports.
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Organization of the paper.

The next section contains preliminary definitions used in this paper. In Sec-
tion 3, we define the notion of disjunction-free set, and show that these sets
can be used as a condensed representation for frequent itemsets. Section 4 de-
scribes an algorithm regenerating all frequent itemsets in an efficient manner.
The following section reports the size gain of the DBC over frequent item-
sets and frequent closed sets. In Section 6, we present both breadth-first and
depth-first algorithms to extract the DBC and we describe practical experi-
ments showing that the DBC can be extracted efficiently and, in fact, more
efficiently than frequent closed sets. In Section 7, we will show that, in most
cases, it is more efficient to mine the DBC and to convert it to frequent closed
sets than to directly mine frequent closed sets themselves. Finally, we conclude
with a summary.

2 Preliminary definitions

When possible, we follow the notational conventions and definitions of [15,18].
In particular, we use multisets to represent collections of rows and given such
a multiset r, we write t ∈ r to denote that a particular row t belongs to r.

Definition 1 (binary database) Let R be a set of symbols called items.
A row is a subset of R. A binary database r over R is a multiset of rows.
Additionally, we suppose that a linear order denoted ≺ is given over the set
of items R.

Example 2 Figures 1 and 2 present two binary databases over {A, B, C, D}.
The linear order ≺ can be simply A ≺ B ≺ C ≺ D.

Definition 2 (support and frequent itemsets) We note M(r, X) = {t ∈
r|X ⊆ t} the multiset of rows matched by the itemset X and Sup(r, X) =
|M(r, X)| the support of X in r, i.e., the number of rows matched by X. Let
σ be a support threshold (σ is an absolute number of rows), Freq(r, σ) =
{X|X ⊆ R and Sup(r, X) ≥ σ} is the set of all σ-frequent itemsets in r.

The following lemma is a fundamental property for the frequent itemset ex-
traction. It states that the functions M and Sup are anti-monotone w.r.t.
itemset inclusion. The anti-monotonicity of Sup has been demonstrated in [2]
as an efficient pruning criterion.

Lemma 1 Let r be a binary database over R, and X, Y be sets of items such
that Y ⊆ X ⊆ R. Then M(r, X) ⊆ M(r, Y ) and Sup(r, X) ≤ Sup(r, Y ).
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Proof. Let t be any row in r that belongs to M(r, X). From Definition 2, a row
t belongs to M(r, X) if and only if X ⊆ t. Y ⊆ X ⊆ t implies t ∈ M(r, Y ),
and thus M(r, X) ⊆ M(r, Y ). Consequently, Sup(r, X) ≤ Sup(r, Y ). !

Corollary 1 Let X, Y be the same as in the lemma. If X is σ-frequent in r,
Y is σ-frequent in r. If Y is not σ-frequent, so neither is X.

In this paper, to keep the presentation concise, we consider the following no-
tational conventions to handle a generalized form of itemsets.

Definition 3 (generalized itemsets) Let R be a set of symbols. The sym-
bols in R will be called positive items, and for each positive item A ∈ R we
consider a negative item noted A. Gen(R) = R ∪ {A|A ∈ R} is the set of
generalized items based on R and a subset X of Gen(R) is called a generalized
itemset based on R. We denote the items appearing positively and negatively
as follows, Pos(X) = {A ∈ R|A ∈ X} and Neg(X) = {A ∈ R|A ∈ X}.

We generalize in this context M and Sup.

Definition 4 (generalized support) Let r be a binary database over R and
X be a generalized itemset based on R. Then GenM(r, X) = {t ∈ r|Pos(X) ⊆
t∧Neg(X)∩ t = ∅} is the multiset of rows matched by X and the support of
X in r is GenSup(r, X) = |GenM(r, X)|.

Intuitively, the rows matched by a generalized itemset X are the rows that
contain all positive items in X but none of the items appearing under a neg-
ative form in X.

Example 3 In Figure 1 the generalized support of the three generalized item-
sets {A, B, C}, {A, B} and {A, B} is 2.

The matching and support functions are anti-monotone w.r.t. the generalized
set inclusion. This is stated by the following lemma.

Lemma 2 Let r be a binary database over R and X, Y be generalized itemsets
based on R. If Y ⊆ X then GenM(r, X) ⊆ GenM(r, Y ) and GenSup(r, X) ≤
GenSup(r, Y ).

Proof. Let t be any row in GenM(r, X). t ∈ GenM(r, X) implies Pos(X) ⊆ t
and Neg(X) ∩ t = ∅. Since Y ⊆ X then Pos(Y ) ⊆ Pos(X) and Neg(Y ) ⊆
Neg(X), and then we have Pos(Y ) ⊆ t and Neg(Y ) ∩ t = ∅. Thus, t ∈
GenM(r, Y ). The second conclusion is immediate. !
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3 Disjunction-free sets

The notion of disjunction-free set is based on a kind of dependency between
the items called simple disjunctive rules and defined as follows.

Definition 5 (simple disjunctive rule) Let X be a set of (positive) items,
a simple disjunctive rule based on X is an expression of the form Y ⇒ A∨B,
where Y ⊂ X and A, B ∈ X \ Y . Notice that A and B are single items
and also that a rule of the form Y ⇒ A ∨ A is a particular case of simple
disjunctive rule. Let r be a binary database over R, where X ⊆ R. The simple
disjunctive rule Y ⇒ A ∨ B is valid in r if and only if M(r, Y ) = {t ∈ r|t ∈
M(r, Y ∪ {A}) ∨ t ∈ M(r, Y ∪ {B})}.

Example 4 The following simple disjunctive rules are valid in the binary
database depicted in Figure 1: {A} ⇒ C ∨ D, ∅ ⇒ C ∨ D and also {A, B} ⇒
C ∨ C. In this binary database {D} ⇒ A ∨ C is not valid.

Now, we state three lemmas. They are fundamentals needed in the rest of the
paper.

Lemma 3 Let r be a binary database over R. Let A and B be single items in
R, and A, B be their corresponding negative items. Let Y be a set of items such
that Y ⊆ R \ {A, B}. Then the following three propositions are equivalent:
(1) Y ⇒ A ∨ B is a valid simple disjunctive rule in r,
(2) GenM(r, Y ∪ {A, B}) = ∅,
(3) GenSup(r, Y ∪ {A, B}) = 0.

Proof. From Definition 4 (2) is trivially equivalent to (3). Now, we show that
(3) implies (1) and later that (1) implies (2).

Suppose GenSup(r, Y ∪ {A, B}) = 0. By Definition 4, there is no t ∈ r such
that Y ⊆ t and {A, B} ∩ t = ∅. Thus, ∀t ∈ r, Y ⊆ t ⇒ A ∈ t ∨ B ∈ t. So,
M(r, Y ) = {t ∈ r|t ∈ M(r, Y ∪ {A}) ∨ t ∈ M(r, Y ∪ {B})} and finally, by
Definition 5, Y ⇒ A ∨ B is valid.

Suppose now that Y ⇒ A∨B is valid. By Definition 5, M(r, Y ) = {t ∈ r|t ∈
M(r, Y ∪ {A}) ∨ t ∈ M(r, Y ∪ {B})}. So, there is no row t ∈ r such that
Y ⊆ t and A 2∈ t and B 2∈ t. Thus, the multiset {t ∈ r|Y ⊆ t ∧ {A, B} ∩ t =
∅} = {t ∈ r|Pos(Y ∪ {A, B}) ⊆ t ∧ Neg(Y ∪ {A, B}) ∩ t = ∅} is empty. And
then, by Definition 4, GenM(r, Y ∪ {A, B}) = ∅. !

Lemma 4 Let r be a binary database over R, and X, Y be itemsets such that
Y ⊆ X ⊆ R. Let A, B ∈ Y . If Y \ {A, B} ⇒ A ∨ B is valid in r then
X \ {A, B} ⇒ A ∨ B is also valid in r.
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Proof. Suppose that Y \ {A, B} ⇒ A ∨ B is valid in r. By Lemma 3,
GenM(r, (Y \ {A, B}) ∪ {A, B}) = ∅. Then, since X is a superset of Y from
Definition 4 and Lemma 2 we deduce that GenM(r, (X \{A, B})∪{A, B}) =
∅. Whence, using again Lemma 3, we know that X \ {A, B} ⇒ A∨B is valid.
!

Lemma 5 Let r be a binary database over R, X ⊆ R be an itemset, and A, B
be items in X. Then there exists Y ⊂ X such that Y ⇒ A ∨ B is a valid
simple disjunctive rule based on X, if and only if Sup(r, X) = Sup(r, X \
{A}) + Sup(r, X \ {B}) − Sup(r, X \ {A, B}).

Proof. Consider Y ⇒ A∨B the valid simple disjunctive rule based on X and
Z = X \ {A, B}. By Definition 5, Y ⊆ Z and then from Lemma 4, we deduce
that Z ⇒ A ∨ B is valid.

We can partition the multiset of rows matched by Z into three multisets
GenM(r, Z ∪ {A}), GenM(r, Z ∪ {A, B}) and GenM(r, Z ∪ {A, B}). As
Z ⇒ A ∨ B is valid, using Lemma 3 we have GenM(r, Z ∪ {A, B}) = ∅.
Thus, Sup(r, Z) = GenSup(r, Z ∪ {A}) + GenSup(r, Z ∪ {A, B}). Because
GenM(r, Z ∪ {A, B}) = {t ∈ r|t ∈ M(r, Z ∪ {B}) ∧ t 2∈ M(r, Z ∪ {A, B})}
and M(r, Z ∪ {B}) ⊇ M(r, Z ∪ {A, B}), we have GenSup(r, Z ∪ {A, B}) =
Sup(r, Z ∪ {B}) − Sup(r, Z ∪ {A, B}), and finally Sup(r, X \ {A, B}) =
Sup(r, X \ {B}) + Sup(r, X \ {A}) − Sup(r, X).

Suppose now that Sup(r, X) = Sup(r, X \{A})+Sup(r, X \{B})−Sup(r, X \
{A, B}). Let Z = X \{A, B}. GenSup(r, Z∪{A, B}) = GenSup(r, Z∪{A})−
GenSup(r, Z ∪{A, B}) = (Sup(r, Z)−Sup(r, Z ∪{A}))− (Sup(r, Z ∪{B})−
Sup(r, Z∪{A, B})) = Sup(r, X\{A, B})−Sup(r, X\{B})−Sup(r, X\{A})+
Sup(r, X) = 0. Therefore, from the Lemma 3, we deduce that Z ⇒ A ∨ B is
valid, which proves the existence of the required rule. !

Now, we define the notion of disjunction-free sets.

Definition 6 (disjunction-free set) Let r be a binary database over R,
X ⊆ R is a disjunction-free set w.r.t. r if and only if no simple disjunctive rule
based on X is valid in r. The set of all disjunction-free sets w.r.t. r is noted
DFree(r).

Example 5 In the binary database of Figure 2 {A, C, D} is not a disjunction-
free set because the rule {A} ⇒ C ∨ D is valid, but {A, B} is disjunction-free
since there is no valid simple disjunctive rule based on {A, B}.

Anti-monotonicity of a property of itemsets w.r.t. itemset inclusion is helpful
for an efficient pruning, as the anti-monotonicity of supports (Lemma 1) was
in the APRIORI algorithm [2].

8



The anti-monotonicity of disjunction-freeness follows directly from the defini-
tion of disjunction-free sets and is stated by the following lemma.

Lemma 6 Let r be a binary database over R, and X be an itemset, X ⊆ R.
For all Y ⊆ X if X ∈ DFree(r) then Y ∈ DFree(r).

Definition 7 (frequent disjunction-free set) Let r be a binary database
over a set of items R, FreqDFree(r, σ) = Freq(r, σ)∩DFree(r) denotes the
set of all σ-frequent disjunction-free sets w.r.t. r.

We reuse the concept of negative border introduced in [18] and define it for
σ-frequent disjunction-free sets. Informally, the negative border consists of the
smallest itemsets (w.r.t. set inclusion) that are not σ-frequent disjunction-free
sets.

Definition 8 (negative border) Let r be a binary database over a set of
items R, the negative border of FreqDFree(r, σ) is noted Bd−(r, σ) and is
defined as follows: Bd−(r, σ) = {X|X ⊆ R, X 2∈ FreqDFree(r, σ) ∧ (∀Y ⊂
X, Y ∈ FreqDFree(r, σ))}.

Example 6 Let us consider again the binary database depicted in Figure 1.
Using the support threshold of 1 (row), the collection of all frequent disjunction-
free sets is S = {∅, {A}, {B}, {C}, {D}, {A, B}, {A, C}, {A, D}, {B, C}, {B,
D}}. The itemsets {A, B, C}, {A, C, D}, {B, C, D} and {C, D} are also fre-
quent, but not disjunction-free since the rules {A, B} ⇒ C∨C and ∅ ⇒ C∨D
are valid. {A, B, D} is disjunction-free but is not frequent. The negative border
of S (i.e., the smallest itemsets not in S) is the collection {{A, B, C}, {A, B, D},
{C, D}}.

Out of all itemsets of the negative border, we need only the frequent ones.
The definition follows.

Definition 9 (frequent itemsets of negative border) Let r be a bi-
nary database over a set of items R, the collection of all frequent item-
sets of negative border of FreqDFree(r, σ) is defined as FreqBd−(r, σ) =
Bd−(r, σ) ∩ Freq(r, σ).

Definition 10 (disjunction-bordered condensation) The disjunction-
bordered condensation is the collection of frequent itemsets that are ei-
ther disjunction-free sets or in the negative border. Formally, DBC(r, σ) =
〈FreqDFree(r, σ), F reqBd−(r, σ)〉.

Example 7 In the case of the binary database considered in Example 6, the
frequent itemsets of the negative border are {A, B, C} and {C, D}. Then the
disjunction-bordered condensation for σ = 1 is 〈S, {{A, B, C}, {C, D}}〉.
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We can now state the correctness of the DBC, i.e. the sets of the DBC along
with their supports are sufficient to determine the support of any frequent
itemset.

Theorem 1 Let r be a binary database over a set of items R, X be an itemset
such that X ⊆ R, and σ be an absolute support threshold. Using the itemsets in
FreqDFree(r, σ) and in FreqBd−(r, σ), together with their supports, we can
determine if X is σ-frequent, and when X is σ-frequent we can also determine
Sup(r, X).

Proof. Let X be any itemset. If X is in DBC(r, σ) (in FreqDFree(r, σ) or
in FreqBd−(r, σ)), we know its support, so we can state that X is σ-frequent,
and we can also give Sup(r, X). This situation will be referred to as trivial
case in this proof.

The proof is made by induction on |X|.

First, let us consider the case where X = ∅. If X ∈ FreqDFree(r, σ) then we
have the trivial case. Otherwise, by Definition 8, X ∈ Bd−(r, σ). Given that
there cannot be simple disjunctive rule based on ∅ (see Definition 5), X must
be disjunction-free and thus is not σ-frequent.

In the following, we suppose that X 2= ∅.

Hypothesis. Suppose that for every itemset W ⊂ X, we can determine if W is
σ-frequent, and when W is σ-frequent we can also determine Sup(r, W ).

If X ∈ FreqDFree(r, σ) then we have again the trivial case.

If X 2∈ FreqDFree(r, σ) and ∀Y ⊆ X, Y 2∈ FreqBd−(r, σ) then we show that
X is not σ-frequent. First, observe that if X 2∈ FreqDFree(r, σ) then, by
Definition 8, ∃W ⊆ X such that W ∈ Bd−(r, σ). Let W be such a set. W is
not σ-frequent since ∀Y ⊆ X, Y 2∈ FreqBd−(r, σ). By the anti-monotonicity
of support (Lemma 1), we know that X is not σ-frequent, because W ⊆ X.

If X 2∈ FreqDFree(r, σ) and X ∈ FreqBd−(r, σ) then, we have once more
the trivial case.

We consider now the case where X 2∈ FreqDFree(r, σ) and ∃Y ⊂ X, Y ∈
FreqBd−(r, σ). Let Y be such an itemset.

Y ∈ FreqBd−(r, σ) implies that Y is not a disjunction-free set. In this case, we
now construct a valid simple disjunctive rule based on Y , and then we use this
rule to decide if X is σ-frequent and to compute its support. By Definition 6, Y
is not a disjunction-free set implies that there exists Z ⊂ Y and A, B ∈ Y \Z
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such that Z ⇒ A∨B is a valid simple disjunctive rule in r. By Lemma 5, we
have Sup(r, Z ∪ {A, B}) = Sup(r, Z ∪ {B}) + Sup(r, Z ∪ {A}) − Sup(r, Z).

Since Y is σ-frequent, by Lemma 1 all its subsets are σ-frequent. Because
|Y | < |X| and Y is σ-frequent by the induction hypothesis we can determine
the supports of all subsets of Y . So we can find among all subsets of Y four
itemsets Z, Z ∪ {A, B}, Z ∪ {B}, Z ∪ {A} satisfying the relation Sup(r, Z ∪
{A, B}) = Sup(r, Z ∪ {B})+ Sup(r, Z ∪ {A})−Sup(r, Z), which corresponds
to a valid rule Z ⇒ A ∨ B.

By the induction hypothesis, we can determine for the itemsets X\{A, B}, X\
{A} and X \ {B} (the items A and B are the same as above) if they are all
σ-frequent and if so we can also determine their supports. If these three sets
are σ-frequent, using their supports we can determine the support of X as
Sup(r, X) = Sup(r, X\{A})+Sup(r, X\{B})−Sup(r, X\{A, B}) (according
to Lemma 5), because Z ⇒ A ∨ B is a valid disjunctive rule based on X. If
at least one of these itemsets is not σ-frequent so neither is X (by Lemma 1),
which completes the proof. !

It should be noticed that the proof of Theorem 1 is constructive and that it
can be used as a näıve recursive algorithm to determine Sup(r, X).

The next theorem supports an earlier claim, which stated that the disjunction-
bordered condensation is a subcollection of the collection of all frequent item-
sets. The proof is trivial, following the definitions of FreqDFree(r, σ) and of
FreqBd−(r, σ).

Theorem 2 FreqDFree(r, σ) ∪ FreqBd−(r, σ) ⊆ Freq(r, σ).

4 Regeneration of all frequent itemsets

In this section, we present a levelwise algorithm, called RegenFreq, that
regenerates all frequent itemsets from the DBC. Here, we assume that we
regenerate Freq(r, σ) and the corresponding supports given DBC(r, σ) and
the corresponding supports. Nonetheless, the frequency thresholds may be
different — we might regenerate Freq(r, σ′), where σ′ ≥ σ, by skipping from
the DBC(r, σ) the itemsets whose supports are below σ′ and applying the
same algorithm to the reduced input.

We give RegenFreq in a detailed form. The actual implementation integrates
few straightforward optimizations. Most important hints will be mentioned
throughout this section.
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The data structure corresponding to one frequent itemset will be called a node.
Here is its structure:

itemset : set of items
support : integer
prunedby : set of items

Let Freqi denote the collection of nodes corresponding to itemsets of size i. A
collection of such nodes is stored in an itemset-prefix-tree, a structure allowing
efficient access to the node given the value of itemset (see [1]).

For a node N , the access to these three fields is denoted respectively N.itemset,
N.support and N.prunedby. N.itemset corresponds to a frequent itemset 2 and
N.support is its support.

N.prunedby is a set of at most two items. Its meaning if it contains two
different items A, B is that A, B ∈ N.itemset and N.itemset\{A, B} ⇒ A∨B
is valid. When N.prunedby contains only one item A, it means that A ∈
N.prunedby and N.itemset\{A} ⇒ A∨A is valid. Finally, when N.prunedby
is empty, it corresponds to the case where N.itemset is a disjunction-free
set. If there are more than one valid rule based on N.itemset, N.prunedby is
supposed to report any of them.

The following algorithm, called FindDisjRule, computes the value of
N.prunedby for an itemset and will be used in the regeneration of all frequent
itemsets.

Algorithm 1 (FindDisjRule)

Input: Itemset Z, S support of Z, collection of nodes C including nodes cor-
responding to all proper subsets of Z of size |Z|− 1 and of size |Z|− 2.

Output: Itemset P corresponding to prunedby for Z (see description in text).

1. Find any A, B items in Z and NA, NB, NAB nodes in C such that
NA.itemset = Z \ {A} and NB.itemset = Z \ {B} and NAB.itemset = Z \ {A, B}
and NAB.support + S = NA.support + NB.support;

2. if such A, B exist then // in this case Z \ {A, B} ⇒ A ∨ B is valid
3. let P := {A, B};
4. else
5. let P := ∅;
6. fi
7. output P ;

Now, we recall the algorithm APRIORIGen from [2], which also will be

2 The field itemset is represented in the algorithm for clarity, but using an itemset-based
prefix-tree structure provides a much more compact storage of the items in this itemset.
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used in the regeneration of all frequent itemsets. APRIORIGen realizes the
generation of potential frequent itemsets of size k + 1 given the collection
Freqk of nodes corresponding to all frequent itemsets of size k.

We make use of a notation for accessing individually the items in the frequent
itemsets as follows. Let orderedList(N.itemset) be the list of all items in
N.itemset sorted in ascending order according to the linear order ≺ for items.
Then, N.itemset[i] denotes the ith element in the list orderedList(N.itemset).

Algorithm 2 (APRIORIGen)

Input: Freqk collection of nodes corresponding to all frequent itemsets of size
k, with k ≥ 1.

Output: Ck+1 collection of itemsets of size k + 1 such that all their subsets of
size k are represented in Freqk.

1. insert into Ck+1

2. select N.itemset[1], N.itemset[2], . . . , N.itemset[k], R.itemset[k]
3. from Freqk N,Freqk R
4. where N.itemset[1] = R.itemset[1], N.itemset[2] = R.itemset[2], . . . ,

N.itemset[k − 1] = R.itemset[k − 1], N.itemset[k] ≺ R.itemset[k];

5. for all C ∈ Ck+1 do
6. for all A ∈ C do
7. if not ∃N ∈ Freqk such that N.itemset = C \ {A} then
8. delete C from Ck+1;
9. fi
10. od
11. od

12. output Ck+1

Both algorithms, FindDisjRule and APRIORIGen will also be used in
other algorithms presented in this paper. Now, we give the algorithm Regen-
Freq itself, which regenerates all frequent itemsets and their supports.

Algorithm 3 (RegenFreq)

Input: σ, DBC(r, σ) of the form 〈F ,B〉 and for each itemset X ∈ F ∪ B its
support Sup(r, X).

Output: Freq(r, σ) and their supports.

1. for all X ∈ F do // Disjunction-free input sets
2. Create new node NX in Freq|X| with NX .support := Sup(r, X), NX .itemset := X,

NX .prunedby := ∅;
3. od
4. for all X ∈ B do // Non-disjunction-free input sets
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5. Create new node NX in Freq|X| with NX .support := Sup(r, X), NX .itemset := X;
6. if |X | = 1 then let NX .prunedby := X;
7. else let NX .prunedby := FindDisjRule(X, Sup(r, X),Freq|X|−1 ∪Freq|X|−2);
8. fi
9. od

10. let i := 1;
11. while Freqi 2= ∅ do
12. let Ci+1 := APRIORIGen(Freqi);
13. for all X ∈ Ci+1 do
14. Find node N in Freqi such that N.itemset ⊂ X and N.prunedby 2= ∅;
15. if such N exists then
16. case |N.prunedby| of :
17. 2:
18. let A, B be items such that N.prunedby = {A, B};
19. Find nodes NA, NB in Freqi and NAB in Freqi−1 such that

NA.itemset = X \ {A} and NB.itemset = X \ {B} and
NAB.itemset = X \ {A, B};

20. let S := NA.support + NB.support − NAB.support;
21. 1:
22. Find node NA in Freqi such that NA.itemset = X \ N.prunedby;
23. let S := NA.support;
24. end case
25. if S ≥ σ then
26. Create new node NX in Freq|X| with NX .support := S, NX .itemset := X,

NX .prunedby := N.prunedby;
27. fi
28. fi
29. od
30. let i := i + 1;
31. od
32. output {〈N.itemset, N.support〉|N ∈

⋃
j<i Freqj};

In lines 1-9, Algorithm RegenFreq loads the input and converts it to a
collection of nodes, one node per frequent itemset. The nodes corresponding
to frequent itemsets of the negative border are marked by a nonempty content
of the field prunedby.

In line 11, the algorithm enters a loop corresponding to increasing sizes of re-
generated frequent itemsets. Within the ith iteration of the loop, the algorithm
uses Freqi and Freqi−1 (the collections of the nodes corresponding to frequent
itemsets of size i and i − 1) to produce Freqi+1 (i.e. frequent itemsets of size
i + 1). Candidate itemsets, i.e. itemsets of size i + 1 having all their proper
subsets frequent, are computed in line 12 and stored in Ci+1. An additional
test is performed in lines 14-15 3 . The condition ensures that at least one
proper subset of the current candidate itemset is not disjunction-free. Other-

3 Since APRIORIGen already accesses all nearest proper subsets of each candidate, then
in the implementation of the algorithm the condition used in line 14 is checked within
APRIORIGen.
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wise (i.e., when all proper subsets are disjunction-free), the candidate can be
skipped. Two cases fit skipped candidates: the candidate is not frequent, then
we do not want to regenerate it anyway, or the candidate itemset is frequent.
A frequent itemset of size i + 1, for which all subsets of size i are frequent
and disjunction-free, is either in FreqDFree(r, σ) (when it is disjunction-free)
or in FreqBd−(r, σ) (non-disjunction-free itemset). In both cases, it is in the
DBC, and thus the corresponding node has already been created in lines 1-9.

In lines 16-24, for each retained candidate itemset X, RegenFreq searches
the information necessary to restore its support. RegenFreq finds a valid
simple disjunctive rule leading to an equation that can be used to derive the
support of X from the support of some of its subsets. Then, if Sup(r, X) ≥ σ,
RegenFreq creates a node NX and fills it with the corresponding information
(line 26). As previously, the value stored in NX .prunedby corresponds to any
of the valid rules based on X, if there are more than one such rule.

Example 8 Let us consider as input of RegenFreq the DBC given in Ex-
ample 7 and show the most important steps of the execution of RegenFreq
with σ = 1.

Since the smallest frequent itemset of the negative border has 2 items, only
the candidates of size 3 can satisfy the condition of the test performed in
lines 14-15. Therefore, we start tracing the program at the second iteration
(corresponding to candidates of size 3) of the main loop. Let us represent
any node N by a triple 〈N.itemset, N.support, N.prunedby〉 Then Freq2 is
the following collection of triples: {〈{A, B}, 2, ∅〉, 〈{A, C}, 3, ∅〉, 〈{A, D}, 2, ∅〉,
〈{B, C}, 4, ∅〉, 〈{B, D}, 2, ∅〉, 〈{C, D}, 2, {C, D}〉}.

C3 is {{A, B, C}, {A, B, D}, {A, C, D}, {B, C, D}}. {C, D} is the only itemset
with a nonempty prunedby field for the corresponding node, so the test in
line 15 succeeds only for X = {A, C, D} and X = {B, C, D}.

Using the nodes corresponding to {A, C}, {A, D} and {A}, the support of
{A, C, D} is computed (S = 1, in line 20) and leads to the creation of the
node corresponding to {A, C, D} in line 26. Using the nodes corresponding to
{B, C}, {B, D} and {B}, leads similarly to the creation of the node corre-
sponding to {B, C, D} (S = 1).

The node corresponding to {A, B, C} has already been created since {A, B, C}
is in the input B, and thus Freq3 is the following collection of triples:
{〈{A, B, C}, 2, {C}〉, 〈{A, C, D}, 1, {C, D}〉, 〈{B, C, D}, 1, {C, D}〉}. After
the next iteration, C4 is empty, as well as Freq4, so the program exits the
loop and finishes.

Theorem 3 (Correctness of RegenFreq) The algorithm RegenFreq
outputs all and only σ-frequent itemsets along with their supports.
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Proof. By Lemma 1, if X is σ-frequent all its subsets are σ-frequent. Therefore,
the proof is made by induction on |X|.

Hypothesis. Suppose that for every frequent itemset X 2= ∅, the algorithm Re-
genFreq correctly constructs the nodes corresponding to all proper subsets
of X, notably that they are all present in their respective collections Freqj ,
and that their fields itemset, support and prunedby are correctly filled.

First, we consider a σ-frequent itemset X. We are going to show that it is in
the output.

Let us consider the case where X belongs to DBC(r, σ). Then, X is σ-frequent
and it is in the input. Therefore the corresponding node NX is created in line 2
or in lines 5-8 and is never removed. Therefore, it will be output in line 32.

Suppose now that X is frequent, but does not belong to the DBC (is neither in
FreqDFree(r, σ) nor in FreqBd−(r, σ)). Therefore X is not disjunction-free.
Moreover, since X is σ-frequent, but not in FreqBd−(r, σ), there exists Y ⊂ X,
such that |Y | = |X| − 1 and Y is not disjunction-free. The empty itemset is
disjunction-free, thus |Y | ≥ 1 and |X| ≥ 2. Since the nodes corresponding to
all subsets of X are correctly created (by Hypothesis), there exists a node N
corresponding to Y (line 15) and N has a nonempty, correct value of prunedby.

By the same hypothesis, the nodes corresponding to all proper subsets of X
are present in their respective collections Freqj. Since |X| ≥ 2, X is produced
as candidate itemset by APRIORIGen in line 12 and it is considered in
lines 16-27. The corresponding node is actually created in line 26, because X
is σ-frequent. It will be in the output, because a created node is never removed.

For the equivalence, suppose that the output contains X along with its sup-
port. We are going to show that X is σ-frequent.

Observe that nodes are created in lines 2, 5-8 and 26. If the node NX with
NX .itemset = X is created in line 2 or in lines 5-8, then X belongs to the DBC,
and thus is σ-frequent. If the node NX is created in line 26, X is σ-frequent,
because the corresponding value S is checked against σ in line 25. S is the
correct support of X according to the fact that X is not disjunction-free, to the
valid simple disjunctive rule Y \ {A, B} ⇒ A ∨ B corresponding to the value
of N.prunedby, to Lemma 5 and to Hypothesis (N.prunedby is correct and the
support inference equation is applied on correct values of subset supports).

Therefore, if the itemset X is in the output, it is σ-frequent. !
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5 Comparing the representation size

In this section, we report a comparison between sizes of different representa-
tions. For different data sets and support thresholds we consider the collection
of all frequent itemsets, the collection of all frequent closed sets [12] and the
DBC.

Like the DBC, frequent closed sets can be also seen as a condensed repre-
sentation of all frequent itemsets. It has been previously investigated in the
literature and we will recall its definition and some properties when needed
in Section 7. Here, we simply consider the size of this representation and we
only note that it also allows regenerating all frequent itemsets along with their
supports.

The three representations (frequent itemsets, frequent closed sets and the
DBC) are composed of a collection of itemsets and their associated supports.
We retain two measures that reflect the size of these representations:

• total number of itemsets in the representation, and
• flat-storage space used.

The first measure is interesting in itself, but it does not correspond directly
to the amount of data to be stored. The benefit of the second measure is to
characterize this aspect more precisely.

We consider the storage in a binary file without any ad-hoc encoding or com-
pression, and we make the following assumptions. The information relative to
an itemset can be stored using one integer for its support and one integer per
item, all used integers are ranging from 0 to 67 557. We neglect the additional
marker of the end of the sequence of items. And finally, we consider that the
elementary storage unit is simply one 32-bit long integer in a fixed format.
So, let S be the collection of itemsets in one of the three representations, the
corresponding flat storage space (in bytes) is computed as 4 ∗∑

X∈S(|X|+ 1).

We report representation sizes on three different commonly used data sets:
Mushroom (characteristics of some mushroom species), Connect-4 (collection
of game-related state information), and Pumsb (PUMS census data). All these
data sets have been preprocessed by researchers from IBM Almaden Research
Center 4 . The particularity of the selected data sets is that they are very dense
and the combinatorial explosion of the number of frequent itemsets makes the
mining of all frequent itemsets together with their supports intractable for low
support thresholds [19].

4 http://www.almaden.ibm.com/cs/quest/data/long patterns.bin.tar
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Fig. 3. Different representation sizes on the three data sets.

The representation sizes for several support thresholds are given in Figure 3
(note that some axes are logarithmically scaled). Lower values correspond to
more condensed representations. It should be noticed that the support thresh-
olds are given as relative frequency thresholds (i.e., 100 × absolute support
threshold / total number of rows in the data set).

The Mushroom data set is based on 119 items only and contains 8124 rows —
a relatively small number in data mining. Nonetheless, at the thresholds used
in the experiments (Figure 3, upper graphics) the collection of all frequent
itemsets was huge (more than 22 millions for a relative support threshold of
2%) and we could not extract frequent itemsets completely for thresholds lower
than 2%, even with a non-näıve implementation of the APRIORI algorithm [2].

The Connect-4 data set contains 67 557 rows, but a relatively small number
of items (129). Its difficulty lies in a very high correlation. A huge number of
frequent itemsets was observed even for as high frequency thresholds as 75%
(Figure 3, middle graphics).

The last data set, Pumsb, contains 49 046 rows and is very challenging because
of the high number of items (7117). For this reason, when decreasing the
frequency threshold, the sizes quickly grow for all representations (see Figure 3,
lower graphics).
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In the experiments reported on Figure 3 in the left graphics, we can see that
the DBC representation is smaller than the frequent closed sets representation
when we consider their flat-storage spaces. The same holds with few exceptions
if we count the number of itemsets required by each representation (Figure 3,
right graphics).

For the comparison of the size of the DBC with the size of the collection of all
frequent itemsets, according to Theorem 2 we know that the DBC is always
smaller or equal. In the experiments presented in Figure 3, the difference is
very important and ranges from one to four orders of magnitude.

6 Discovering the DBC

In this section we describe two algorithms to mine the DBC. Two main strate-
gies have been proposed to explore the search space during frequent itemset
mining: breadth-first (e.g., [2]) and depth-first [6,5]. Each of them has its pros
and cons, and even if we consider only the extraction time criterion there is
no always-winning strategy as we will show in Section 6.3. So, in this section
we consider both strategies and we describe the corresponding algorithms. For
each, we give an abstract version to find FreqDFree(r, σ) and FreqBd−(r, σ),
and then we describe the key implementation issues.

The anti-monotonicity of disjunction-freeness w.r.t. itemset inclusion is im-
portant for an efficient mining (Lemma 6). Actually, the combined property
“frequent disjunction-free” is used. It is also anti-monotone as stated by the
following lemma.

Lemma 7 Let r be a binary database over R, and X be an itemset, X ⊆ R.
For all Y ⊆ X if X ∈ FreqDFree(r, σ) then Y ∈ FreqDFree(r, σ).

Proof. Suppose that X ∈ FreqDFree(r, σ). Let us consider any Y ⊆ X.

Since X ∈ FreqDFree(r, σ), X ∈ Freq(r, σ) and X ∈ DFree(r). According
to the anti-monotonicity of support (stated by Lemma 1), Y ∈ Freq(r, σ).
Similarly, the anti-monotonicity of disjunction-freeness (stated by Lemma 6)
implies that Y ∈ DFree(r).

Finally, Y ∈ Freq(r, σ) ∩ DFree(r) = FreqDFree(r, σ). !

During the extraction of the DBC, according to the contrapositive of this
property, when an itemset is not frequent disjunction-free then there is no
need to consider any of its proper supersets. This pruning criterion will be
applied in breadth-first and depth-first strategies.

19



6.1 Breadth-first extraction

6.1.1 Abstract algorithm

The algorithm, presented below, is formulated as an instance of the generic
levelwise-search algorithm 5 presented in [18]. It explores iteratively the item-
set lattice (w.r.t. set inclusion) levelwise, starting from the empty itemset and
stopping at the level of the largest itemset from DBC(r, σ), or, less commonly,
one level further. At each iteration, it scans the database to find which item-
sets of the current level are frequent disjunction-free sets. Then, it generates
candidates for the next iteration considering only the itemsets of the next level
for which all proper subsets are frequent disjunction-free sets.

Algorithm 4 (HLinEx)

Input: r a binary database over a set of items R, and σ an absolute support
threshold.

Output: FreqDFree(r, σ) and frequent itemsets of the negative border.

1. let C := {∅}, FDF := ∅, FB := ∅, i := 0;
2. while C 2= ∅ do
3. Scan r and compute supports of itemsets in C;
4. FDF := FDF ∪ {X |X ∈ C and X is σ-frequent disjunction-free in r};
5. FB := FB ∪ {X |X ∈ C and X is σ-frequent and not disjunction-free in r};
6. C := {X |X ⊆ R and |X | = i + 1 and ∀ Y ⊂ X, |Y | = i ⇒ Y ∈ FDF};
7. let i := i + 1;
8. od
9. output 〈FDF,FB〉;

Example 9 Consider the binary database depicted in Figure 1. The execution
of the algorithm HLinEx on this database with σ = 1 can be sketched as
follows:

Initialization
C := {∅}, FDF := ∅, FB := ∅

Iteration 1
FDF := FDF ∪ {∅}
FB := FB ∪ ∅
C := {{A}, {B}, {C}, {D}}

Iteration 2
FDF := FDF ∪ {{A}, {B}, {C}, {D}}
FB := FB ∪ ∅
C := {{A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}}

Iteration 3
FDF := FDF ∪ {{A, B}, {A, C}, {A, D}, {B, C}, {B, D}}

5 Efficient frequent itemset mining algorithms like APRIORI [2] can also be seen as in-
stances of this generic algorithm.
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FB := FB ∪ {{C, D}}
C := {{A, B, C}, {A, B, D}}

Iteration 4
FDF := FDF ∪ ∅
FB := FB ∪ {{A, B, C}}
C := ∅

Output
〈{∅, {A}, {B}, {C}, {D}, {A, B}, {A, C}, {A, D}, {B, C}, {B, D}},
{{C, D}, {A, B, C}}〉.

Using the anti-monotonicity of the combined property stated by Lemma 7 and
the correctness result of the levelwise search algorithm of [18], the following
theorem is straightforward.

Theorem 4 (Correctness of HLinEx) Given r a binary database over a
set of items R, and σ an absolute support threshold, Algorithm 4 computes
〈FDF,FB〉, and we have FreqDFree(r, σ) = FDF and FreqBd−(r, σ) =
FB.

6.1.2 Implementation issues

Techniques similar to the ones presented in [2] for levelwise mining of frequent
itemsets are used. The candidate generation (line 6) is made using a join-
based APRIORIGen function (recalled in Section 4), the data set is linearly
scanned to count supports of candidates (line 3) and the itemset support
counters are updated w.r.t. a row of the data set using a prefix-tree data
structure.

Implementing line 6 as a call to APRIORIGen function requires the size of
itemsets of the current level to be at least 1. Therefore, the empty itemset is
processed apart and the first iteration of the loop starts with singleton itemsets
as candidates. Moreover, APRIORIGen uses only σ-frequent disjunction-free
sets of size i to generate candidates of size i+1. Therefore, we partition FDF
into FDF i according to itemset size, and use only the portion corresponding
to itemsets of size i for the call.

A specific aspect is the implementation of the disjunction-freeness test (lines 4
and 5). When we need to test this property for an itemset X, we already know
the supports of all its subsets. So we check if there exist A and B, items of X,
such that Sup(r, X) = Sup(r, X \{A})+Sup(r, X \{B})−Sup(r, X \{A, B}).
By Lemma 5 and Definition 6, X is disjunction-free if and only if no such a pair
of items exists. Observe, that the function FindDisjRule (given in Section 4)
realizes this test for X using supports of its proper subsets of size |X|− 1 and
|X| − 2. Since all these proper subsets of X are already in FDF |X|−1 and
FDF |X|−2 when the test is to be performed for X in lines 4 and 5, we can
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simply call FindDisjRule(X, Sup(r, X),FDF |X|−1 ∪ FDF |X|−2).

6.2 Depth-first extraction

6.2.1 Abstract algorithm

The algorithm given below is described by means of a recursive function
Find which explores the itemset lattice in a depth-first manner. A call
Find(X, r, σ, Tail) finds in r the σ-frequent disjunction-free sets in a well-
defined partition of the search space. The algorithm uses the efficient divide-
and-conquer strategy of [6,5] as follows. A call to the function will consider
only the partition of the search space corresponding to proper supersets of X.
Moreover, this subspace is further reduced to subsets of X ∪ Tail, i.e. proper
supersets of X that have not been examined earlier (see Algoritm 5).

Considering only supersets of X enables an efficient determination of support
and of disjunction-freeness, because, only a restricted part of the database is
required. Moreover, this restricted part of the database is further restricted in
a recursive manner for recursive calls. Thus, in case of most calls to it, Find
works on a relatively small fraction of the database.

To identify which are the rows necessary for testing disjunction-freeness, we
will recall the function FindDisjRule. For testing disjunction-freeness of the
itemset X, FindDisjRule needs the supports of some subsets of X. Not of
all subsets however — only the subsets of X with up to 2 items missing are
required. Therefore, for the abstract version of the algorithm, we consider the
following function, denoted AugM(r, X), which selects the rows of a database
such that the supports of subsets of X of size at least |X|−2 remain preserved.

Definition 11 Given r a binary database over R and an itemset X, the aug-
mented set of rows matching X is defined as AugM(r, X) = {t ∈ r| |X \ t| ≤
2}.

Lemma 8 Let r be a binary database over R, and X, Y be sets of items such
that Y ⊆ X ⊆ R. Then AugM(r, X) ⊆ AugM(r, Y ).

Proof. Let t be any row in r that belongs to AugM(r, X). From Definition 11,
a row t belongs to M(r, X) iff |X \ t| ≤ 2. Y ⊆ X implies that Y \ t ⊆ X \ t.
It follows that |Y \ t| ≤ |X \ t| ≤ 2 and further that t ∈ AugM(r, Y ). Thus,
AugM(r, X) ⊆ AugM(r, Y ). !

Algorithm 5 (VLinEx) Function Find(X, r, σ, Tail)

Input: X the itemset considered as the current starting point in the search
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space, r a binary database over a set of items R, σ an absolute support thresh-
old, and Tail a set of items such that the itemsets X and X ∪Tail delimit the
partition of the search-space to be considered by this call to the function.

Output: The elements of FreqDFree(r, σ) that are proper supersets of X and
subsets of X ∪ Tail, and a set of additionally explored frequent itemsets (a
superset of the collection of the frequent itemsets of the negative border).

1. let C := {X ∪ {A}|A ∈ Tail};
2. let FDF := ∅, FB := ∅;
3. Scan r and compute supports of itemsets in C;
4. for all A ∈ Tail in the ascending order given by ≺ do
5. let Tail := Tail \ {A};
6. let Y := X ∪ {A}; // Y ∈ C
7. if Y is a σ-frequent disjunction-free set in r then
8. let 〈FDF ′,FB′〉 := Find(Y,AugM(r, Y ),σ, T ail);
9. let FDF := FDF ∪ FDF ′ ∪ {Y };
10. let FB := FB ∪ FB′;
11. elsif Y is a σ-frequent in r then
12. let FB := FB ∪ {Y };
13. fi
14. od
15. output 〈FDF,FB〉;

It should be noticed that the algorithm does not consider the empty itemset,
and also that it does not provide an immediate characterization of the neg-
ative border. However, the empty itemset can be handled trivially and the
computation of the exact collection of frequent itemsets of the negative bor-
der can be performed in a straightforward post-processing step using FB —
non-minimal itemsets (w.r.t. set inclusion) of this collection must simply be
removed to obtain the collection of frequent itemsets of the negative border.

Example 10 Let us consider again the binary database depicted in Figure 1.
Suppose that the linear order ≺ over the set of items is simply A ≺ B ≺
C ≺ D. A call to the function Find on this database with σ = 1, X = ∅ and
Tail = {A, B, C, D} leads to the following recursive calls:

C = {{A}, {B}, {C}, {D}}
since {A} is frequent and disjunction-free
then call Find with X = {A} and Tail = {B, C, D}

1. C = {{A, B}, {A, C}, {A, D}}
since {A, B} is frequent and disjunction-free
then call Find with X = {A, B} and Tail = {C, D}

1.1 C = {{A, B, C}, {A, B, D}}
{A, B, C} is frequent but not disjunction-free
{A, B, D} is not frequent
output 〈∅, {A, B, C}〉

since {A, C} is frequent and disjunction-free
then call Find with X = {A, C} and Tail = {D}

1.2 C = {{A, C, D}}
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{A, C, D} is frequent but not disjunction-free
output 〈∅, {A, C, D}〉

since {A, D} is frequent and disjunction-free
then call Find with X = {A, D} and Tail = ∅

1.3 C = ∅
output 〈∅, ∅〉

FDF collected is {{A, B}, {A, C}, {A, D}}
FB collected is {{A, B, C}, {A, C, D}}
output 〈FDF,FB〉

since {B} is frequent and disjunction-free
then call Find with X = {B} and Tail = {C, D}

2. C = {{B, C}, {B, D}}
since {B, C} is frequent and disjunction-free
then call Find with X = {B, C} and Tail = {D}

2.1 C = {{B, C, D}}
{B, C, D} is frequent but not disjunction-free
output 〈∅, {B, C, D}〉

since {B, D} is frequent and disjunction-free
then call Find with X = {B, D} and Tail = ∅

2.2 C = ∅
output 〈∅, ∅〉

FDF collected is {{B, C}, {B, D}}
FB collected is {{B, C, D}}
output 〈FDF,FB〉

since {C} is frequent and disjunction-free
then call Find with X = {C} and Tail = {D}

3. C = {{C, D}}
{C, D} is frequent but not disjunction-free
output 〈∅, {C, D}〉

since {D} is frequent and disjunction-free
then call Find with X = {D} and Tail = ∅

4. C = ∅
output 〈∅, ∅〉

FDF collected is {{A}, {B}, {C}, {D}, {A, B}, {A, C}, {A, D}, {B, C}, {B, D}}
FB collected is {{C, D}, {A, B, C}, {A, C, D}, {B, C, D}}
output 〈FDF,FB〉

When compared to the output obtained with HLinEx in Example 9, FB con-
tains non-minimal elements. As mentioned in the previous paragraph, these
elements can be removed by a simple post-processing step.

The correctness of Algorithm 5 is stated by the following theorem.

Theorem 5 (Correctness of VLinEx) Given r a binary database over a
set of items R, and σ an absolute support threshold, the call Find(∅, r, σ, R)
returns 〈FDF,FB〉, and we have FreqDFree(r, σ) \ {∅} = FDF and
FreqBd−(r, σ) ⊆ FB.

Proof. First of all, we recall that the list orderedList(X) is the permutation

24



of all items in X that is sorted in ascending order according to the linear order
≺ for items. X[i] designates ith element of orderedList(X).

Let us now consider 〈FDF,FB〉 returned by Find(∅, r, σ, R).

Below, we show that ∀Y, Y ∈ FreqDFree(r, σ) \ {∅} ⇒ Y ∈ FDF using an
induction on |Y |.

Let Y ∈ FreqDFree(r, σ) and |Y | = 1 (i.e. Y is a singleton itemset). Note
that every singleton itemset is considered directly by Find(∅, r, σ, R) (line 6)
and therefore if Y is σ-frequent disjunction-free (line 7) we have Y ∈ FDF
(line 9).

Induction hypothesis. Let Z be an itemset such that |Z| ≥ 2. Suppose that
the property holds for every itemset X ⊂ Z such that orderedList(X) is a
prefix of orderedList(Z).

Given Y ∈ FreqDFree(r, σ), such that |Y | = n+1 ≥ 2, let x be an n-element
prefix of orderedList(Y ) and X be the set of items occurring in x. Note that
Y [n + 1] is the item marking off the difference between Y and X.

By Lemma 7, X ∈ FreqDFree(r, σ), and then, by the induction hypothesis,
X ∈ FDF . Adding an itemset to FDF for the first time in line 9 is preceded
by a call to Find (line 8) with that itemset as the first parameter. It follows
that Find has been called at least once using Find(X, rX , σ, TailX), where rX

and TailX are the corresponding instances of parameters r and Tail, at the
time Find is called.

Similarly, for every k = {1, . . . , n}, Find({X[1], X[2], . . . , X[k]}, . . .) has been
called in line 8. At any of these events, for every item B in the corresponding
instance of Tail such that X[k] ≺ B, B had not yet been processed (due to
the ascending order in which items are processed in line 4). This implies that
B is not yet removed from the corresponding Tail in line 5.

Note that for all k = {1, . . . , n} the property X[k] ≺ Y [n+1] holds. Otherwise,
the list orderedList(Y ) would not have followed the ascending order of items,
which would have contradicted with how orderedList(Y ) is defined.

Combining the last two properties proves that Y [n + 1] is in TailX .

Let us focus on the call Find(X, rX , σ, TailX). This call starts by the fol-
lowing candidate generation step C := {X ∪ {A}|A ∈ TailX}. We know
that Y [n + 1] ∈ TailX . Therefore, Y is generated as candidate (in line 1)
and tested for sufficient support and disjunction-freeness (in line 7). Since
Y ∈ FreqDFree(r, σ), Y is collected in FDF .
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The soundness of the algorithm (i.e., ∀Y, Y ∈ FDF ⇒ Y ∈ FreqDFree(r, σ))
is immediate (lines 7 and 9).

Finally, we consider again the call Find(∅, r, σ, R), which returns 〈FDF,FB〉.
Let Y be an element of FreqBd−(r, σ) such that |Y | = n + 1, and x be the
n-element prefix of orderedList(Y ). Let X be the set of items occurring in x.

By Definition 8, X ∈ FreqDFree(r, σ), and since ∀Z, Z ∈ FreqDFree(r, σ) \
{∅} ⇒ Z ∈ FDF , we have X ∈ FDF unless X = ∅. Using the same reasoning
as above we know that Y is generated as candidate in line 1, thus tested in
lines 7 and 11, and stored in line 12. Thus FreqBd−(r, σ) ⊆ FB. !

6.2.2 Implementation issues

We combined best features from state-of-the-art algorithms implementing a
depth-first strategy for frequent itemset mining. In particular, we use a support
counting technique similar to the one presented in [5], and a compact storage
of a collection of rows (instances of the parameter r of Find) in a prefix-tree
structure as described in [6].

An optimization specific to VLinEx consists in preserving only items of Y ∪
Tail in line 8 (when the selection of rows by AugM occurs), because the
exploration of the corresponding partition of the search space neither contains
other items nor requires supports involving them.

The loop of line 4 enumerates the items A ∈ Tail following the ascending
order of supports of the corresponding itemsets X ∪ {A} in r. This order of
exploration has been inspired by [19] and [6]. It aims at some balancing of
the size of the collection of rows passed to the nested call to Find. Indeed, as
TailX gets smaller and smaller by removing items in line 5, the collection of
rows passed to Find in line 8 preserves statistically less items for a single row.
At the same time, as the number of rows matched by X ∪ {A} in r increases,
AugM selects statistically more rows. Therefore, both effects oppose each
other.

Considering items in this (changed) order in line 4 does not compromise the
correctness of the algorithm, since a candidate itemset is still generated at
least once.

Finally, for an itemset Y , the test of the disjunction-freeness is performed
as follows. We consider all pairs of items A and B in Y , and compute
GenSup(r, (Y ∪ {A, B}) \ {A, B}). If this support is equal to zero for one
of the pairs, then, by Lemma 3, Y is not disjunction-free in r.

Further details about the implementation issues may be found in [20].

26



6.3 Extracting DBC in practice

In Section 5, we experimentally compared the size of the condensed represen-
tation based on frequent closed sets to the size of the DBC. In this section,
we consider their respective extraction times.

To mine efficiently the frequent closed sets we use two algorithms proposed
recently: a breadth-first algorithm called CLOSE [12] and a depth-first algo-
rithm called CLOSET [21]. Additionally, we report the extraction times of
the well-known APRIORI algorithm, which extracts all frequent itemsets. We
have implemented these algorithms as described by their authors. We notice
however that the implementations of all algorithms (including HLinEx and
VLinEx) use the same low-level data structures and techniques, in order to
ensure a fair comparison. All prototypes have been implemented in C++, and
a similar effort has been spent on specific fine-tuning of each of them. We
have run all experiments on a PC with 256 MB of memory and an 800 MHz
Pentium III processor under Linux operating system.

We compared the extraction times of frequent closed sets and of the DBC on
the data sets that have been described in Section 5. We varied data sets and
frequency thresholds in order to get a meaningful overview. The running times,
in seconds, are given in Figure 4 (note that some axes are logarithmically
scaled and that we use relative frequency thresholds, as in Section 5). The
results are given for HLinEx, VLinEx, for the implementations of CLOSE
and CLOSET, and additionally for the implementation of APRIORI.

On the Mushroom data set, we observed that extracting the DBC is advan-
tageous (see Figure 4, upper graphics) especially using HLinEx. Observed
speed-up was up to 5 times for breadth-first extractors and up to 8.5 times
for depth-first extractors. With the extraction time above 1 hour, the curve
corresponding to APRIORI is exceptionally not reported on the figure for this
data set. Thus, we could magnify the difference between extraction times for
frequent closed sets and the DBC.

The Connect-4 data set is very difficult for mining frequent itemsets (see
Figure 4, middle graphics), and mining directly frequent closed sets using
CLOSE and CLOSET allows a significant improvement (compare the results
for CLOSE with the ones for APRIORI). Further significant improvements
(over CLOSE and CLOSET) can be achieved by using HLinEx and VLinEx.
At lowest frequency thresholds for which we were able to extract frequent
closed sets, we observed over 150 times faster extractions for HLinEx vs.
CLOSE and up to 260 times faster extractions for VLinEx vs. CLOSET.

In the case of the last data set, i.e. of Pumsb, extracting frequent patterns was
very difficult for all extractors, and CLOSE was not significantly advantageous
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Fig. 4. Experiments on the three data sets with breadth-first (left) and depth-first
(right) algorithms.

over APRIORI. However, HLinEx and VLinEx offer an evident benefit at
lower frequency thresholds (see Figure 4, lower graphics).

In nearly all experiments on the three data sets, the extraction of the DBC
is significantly more efficient than the extraction of the frequent closed sets.
For the very difficult cases, the DBC can be extracted at lower frequency
thresholds, using the same resources.

7 More about practical use of the DBC

The DBC is a condensed representation of frequent itemsets. The experiments
presented in Sections 5 and 6 have shown that the DBC is much smaller than
the collection of frequent itemsets and that it can be extracted efficiently,
even in difficult cases. Thus, in practice, the DBC can be advantageously
extracted and stored instead of frequent itemsets to derive important data
mining patterns (most commonly association rules [22]).

We show now that the DBC is also an interesting condensed representation of
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the frequent closed sets and thus also offers the same practical benefits as the
closed sets themselves. Among them we can mention the ability to generate
directly rule covers in order to present to the expert a compact summary of
(typically) huge collections of associations rules as described in [16].

In Section 5, we have already described the interest of the DBC w.r.t. closed
sets in terms of representation size. In this section, we give an algorithm to
convert the DBC into the collection of frequent closed sets. Then, we present
experiments showing that in the most difficult cases it is more efficient to
extract the DBC and to convert it into closed sets than to extract the closed
sets directly.

First in Section 7.1, we recall some definitions and properties concerning closed
sets and then give some additional preliminaries in Section 7.2.

7.1 Condensed representation based on frequent closed sets

We simply recall the basics of the closed sets representation. For details and
proofs of the lemmas see [12].

We defined in Section 2 the multiset M(r, X) of rows matched by the itemset
X in r. Now, we give the definition of I(r), the set of items matching a multiset
of rows r.

Definition 12 (itemset matching a multiset of rows) Given r a binary
database over R, I(r) = {A ∈ R|∀t ∈ r, A ∈ t}.

Example 11 Intuitively the itemset matching a multiset of rows is composed
of all items appearing in all rows. I({{A, D}, {A, B, D}, {A, C, D}}) is {A, D}.

Definition 13 (closed itemset) Given r a binary database over R, X is a
closed set w.r.t. r iff X = I(M(r, X)). Closed(r) = {X|X ⊆ R and X =
I(M(r, X))} denotes the set of all closed itemsets in r.

Definition 13 states that an itemset X is closed w.r.t. r if and only if it contains
every item that is present in all rows of r matched by X.

Example 12 In the binary database depicted in Figure 1, the itemsets {A}
and {B, C} are closed sets, whereas the itemset {A, B} is not. Observe that
the rows matching {A, B} are all containing also the item C. So, {A, B} 2=
I(M(r, {A, B})) = {A, B, C} and thus {A, B} is not closed.

The compound function I(M(r, X)) returns the so-called closure of X w.r.t. r,
and the corresponding operator is denoted in the following as I ◦M. Relevant
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properties of this operator are stated in the following lemmas.

Lemma 9 Let r be a binary database over R, and X, Y be itemsets such that
X ⊆ Y ⊆ R. I ◦M(r, X) ⊆ I ◦M(r, Y ).

Lemma 10 Let r be a binary database over R, and X be an itemset such that
X ⊆ R. ∀Y, X ⊆ Y ⊆ I ◦M(r, X) ⇒ Sup(r, Y ) = Sup(r, X).

Lemma 11 Let r be a binary database over R, and X, Y be itemsets such
that X ⊆ Y ⊆ R. Sup(r, Y ) = Sup(r, X) implies Y ⊆ I ◦M(r, X).

We can now define the condensed representation based on frequent closed sets,
as used in this paper.

Definition 14 (frequent closed itemsets) Given r a binary database over
R and σ a frequency threshold, the set of all σ-frequent closed itemsets w.r.t.
r is defined as FreqClosed(r, σ) = Freq(r, σ) ∩ Closed(r).

Definition 15 (representation based on frequent closed itemsets)
The condensed representation based on frequent closed itemsets is the col-
lection of all σ-frequent closed sets w.r.t. a data set r along with the corre-
sponding supports.

7.2 Concepts used in the conversion algorithm

In this section, we give some preliminary definitions and properties needed
in Section 7.3 to present the conversion algorithm. In particular, we use the
concept of 0-free set, introduced in a different context in [13,14].

Informally, an itemset X is 0-free if there is no rule Y ⇒ A with no exceptions
such that Y ⊂ X and A ∈ X \ Y . This notion is captured more precisely by
two following definitions.

Definition 16 (simple consequence rule) Let X be a set of items, a sim-
ple consequence rule based on X is an expression of the form Y ⇒ A, where
Y ⊂ X and A ∈ X \ Y . Let r be a binary database over R, where X ⊆ R.
The simple consequence rule Y ⇒ A is valid in r (i.e., has no exceptions) if
and only if M(r, Y ) = M(r, Y ∪ {A}).

Example 13 {A, B} ⇒ C is a simple consequence rule based on {A, B, C, D}
and is valid in the binary database of Figure 1.

Definition 17 (0-free set) Given r a binary database over R, X is a 0-free
set w.r.t. r iff there is no valid simple consequence rule Y ⇒ A based on X in
r. The set of all 0-free sets w.r.t. r is noted ZFree(r).
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Example 14 Let us consider again the binary database depicted in Figure 1.
{A, C, D} is a 0-free set since no valid simple consequent rule can be formed
using only the items A, C and D.

Anti-monotonicity of 0-freeness w.r.t. itemset inclusion follows directly from
the definition of 0-free sets and is stated by the next lemma.

Lemma 12 Let r be a binary database over R, and X be an itemset, X ⊆ R.
For all Y ⊆ X if X ∈ ZFree(r) then Y ∈ ZFree(r).

The following lemmas are needed in Section 7.3 to demonstrate the correctness
of the conversion algorithm.

Lemma 13 Let r be a binary database over R, X be an itemset such that
X ⊆ R, A be a single positive item in R \X and A its corresponding negative
item.

Then the following three propositions are equivalent:
(1) Sup(r, X ∪ {A}) = Sup(r, X),
(2) X ⇒ A is valid in r,
(3) GenM(r, X ∪ {A}) = ∅.

Proof. Observe that M(r, X) = {t|t ∈ M(r, X ∪ {A}) ∨ t ∈ GenM(r, X ∪
{A})} and that the multisets M(r, X ∪ {A}) and GenM(r, X ∪ {A}) are
mutually exclusive. Therefore Sup(r, X) = Sup(r, X ∪ {A}) + GenSup(r, X ∪
{A}). Consequently, (1) is equivalent to GenSup(r, X ∪ {A}) = 0, and the
latter to (3). Finally, M(r, X) = M(r, X∪{A}) (= {t|t ∈ M(r, X∪{A})∨t ∈
∅}), which satisfies the definition of X ⇒ A being valid in r (i.e. (2)). !

Lemma 14 Given r a binary database over R, X is a 0-free set w.r.t. r iff
∀Y ⊂ X, Sup(r, Y ) > Sup(r, X).

Proof. Let us prove the equivalence of negations.

First, suppose that there exists Y ⊂ X such that Sup(r, Y ) ≤ Sup(r, X). By
Lemma 1, Sup(r, Y ) ≥ Sup(r, X), so Sup(r, Y ) = Sup(r, X). Let A ∈ X \ Y .
By the anti-monotonicity of support w.r.t. the itemset inclusion, Y ⊆ X \
{A} ⊂ X implies Sup(r, X \ {A}) = Sup(r, X). By Lemma 13, we deduce
that X \ {A} ⇒ A is valid, which proves that X is not a 0-free set w.r.t. r.

For the equivalence, suppose that X is not 0-free w.r.t. r, i.e. ∃Y ⊂ X, ∃A ∈
X \ Y such that Y ⇒ A is valid in r. By Lemma 13, Y ⇒ A is valid in r
implies that GenM(r, Y ∪ {A}) = ∅.

Since Y ⊆ X \ {A} implies Y ∪ {A} ⊆ (X \ {A})∪ {A}, Lemma 2 points that
GenM(r, (X \ {A}) ∪ {A}) ⊆ GenM(r, Y ∪ {A}) = ∅. Therefore, no rows
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belong to GenM(r, (X \ {A}) ∪ {A}).

Finally, by Lemma 13, Sup(X \ {A}) = Sup(X), which proves that ¬(∀Y ⊂
X, Sup(r, Y ) > Sup(r, X)). !

Definition 18 (frequent 0-free sets) Given r a binary database over R
and σ a frequency threshold, the set of all σ-frequent 0-free sets is defined as
FreqZFree(r, σ) = Freq(r, σ) ∩ ZFree(r).

Definition 19 (frequent itemsets of the negative border of 0-free
sets) Let r be a binary database over a set of items R. Frequent itemsets of the
negative border of FreqZFree(r, σ) is noted FreqZFreeBd−(r, σ) and is de-
fined as follows: FreqZFreeBd−(r, σ) = {X|X ⊆ R, X 2∈ FreqZFree(r, σ) ∧
(∀Y ⊂ X, Y ∈ FreqZFree(r, σ))} ∩ Freq(r, σ).

7.3 Condensed representation conversion algorithm

In this section, we describe an algorithm that changes the DBC into the con-
densed representation based on frequent closed sets. Although a more abstract
presentation is possible, we give a detailed version to ease the implementation
of an efficient converter.

The algorithm is based on the following theorem.

Theorem 6 Let r be a binary database over a set of items R, σ be a frequency
threshold and Z be a σ-frequent 0-free set. Then, I◦M(r, Z) = Z1∪Z2∪Z3∪Z4,
where Z1, . . . , Z4 are:

Z1 = {A ∈ R|Z∪{A} ∈ FreqZFreeBd−(r, σ)∧Sup(r, Z) = Sup(r, Z∪{A})}

Z2 = {A ∈ R|∃X, |X| < |Z|∧X ∈ FreqZFree(r, σ)∧Sup(r, X) = Sup(r, Z)∧
Z ∪ {A} ⊆ I ◦M(r, X)}

Z3 = {A ∈ R|A ∈ Z∨∃X, X ⊂ Z∧X ∈ FreqZFree(r, σ)∧A ∈ I◦M(r, X))}

Z4 = {A ∈ R|A 2∈ Z ∧ ∃B ∈ Z, (Z ∪ {A}) \ {B} ∈ FreqZFree(r, σ) ∧
Sup(r, (Z ∪ {A}) \ {B}) = Sup(r, Z) ∧ ∃X, X ⊂ (Z ∪ {A}) \ {B}, B ∈ I ◦
M(r, X)}

This theorem states that an item A is an element of the closure of a σ-frequent
0-free set Z if and only if it satisfies at least one of the following properties:

• A is such that the rule Z ⇒ A is valid,
• Z∪{A} is included in the closure of a frequent 0-free set X having the same

support as Z but a size strictly smaller than the size of Z,
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• A is in Z or in the closure of a proper subset of Z,
• A is not in Z, but is in a 0-free set W such that firstly Z and W have the

same size and support, secondly they contain the same items except one,
and finally Z \ W is included in the closure of a proper subset of W .

The proof of this theorem requires the following two lemmas.

Lemma 15 Let r be a binary database over a set of items R, σ be a frequency
threshold, Z be a σ-frequent 0-free set and A ∈ I ◦ M(r, Z). If A 2∈ Z1 then
∃Y ⊂ Z ∪{A}, ∃B ∈ Y, Y \ {B} ∈ FreqZFree(r, σ)∧B ∈ I ◦M(r, Y \ {B}).

Proof. Let A ∈ I ◦ M(r, Z) \ Z1. A 2∈ Z1 implies that Z ∪ {A} 2∈
FreqZFreeBd−(r, σ) ∨ Sup(r, Z) 2= Sup(r, Z ∪ {A}). But A ∈ I ◦ M(r, Z)
implies that Sup(r, Z) = Sup(r, Z ∪ {A}) (Lemma 10). Thus, the disjunct
Z ∪ {A} 2∈ FreqZFreeBd−(r, σ) must be true.

Because Z ⇒ A is valid, Z ∪ {A} is a σ-frequent itemset, but not a 0-free set.

There must exist Y ⊂ Z ∪ {A} such that Y ∈ FreqZFreeBd−(r, σ). Y is
σ-frequent (Lemma 1), and thus Y 2∈ ZFree(r, σ). Therefore, there must
exist B ∈ Y such that X ⇒ B is valid and that X ⊆ Y \ {B}. Since Y ∈
FreqZFreeBd−(r, σ), all its subsets are 0-free and thus X must be equal to
Y \ {B} (otherwise, X ∪ {B} ⊂ Y would not be a 0-free set).

Finally, the validity of Y \ {B} ⇒ B implies that B ∈ I ◦ M(r, Y \ {B})
(Lemmas 13 and 11). !

Lemma 16 Let r be a binary database over a set of items R, σ be a frequency
threshold, Z be a σ-frequent 0-free set and A ∈ I ◦ M(r, Z). If A 2∈ Z2 then
∀X, X ⊂ Z ∪ {A} ∧ |X| < |Z| ⇒ Sup(r, X) > Sup(r, Z).

Proof. We prove the contrapositive.

Suppose that A ∈ I ◦ M(r, Z) and ∃X, X ⊂ Z ∪ {A} ∧ |X| < |Z| ∧ X ∈
FreqZFree(r, σ)∧Sup(r, X) ≤ Sup(r, Z). Let X be such an itemset. If there
are more than one such itemsets, let X be any minimal among them (minimal
w.r.t. set inclusion).

A ∈ I ◦M(r, Z) implies Sup(r, Z) = Sup(r, Z∪{A}) (Lemma 10) and further
that Sup(r, X) ≤ Sup(r, Z∪{A}). By Lemma 1, Sup(r, X) ≥ Sup(r, Z∪{A}),
thus Sup(r, X) = Sup(r, Z) = Sup(r, Z∪{A}). By Lemma 11, X ⊂ Z∪{A}∧
Sup(r, X) = Sup(r, Z ∪ {A}) implies that Z ∪ {A} ⊆ I ◦M(r, X).

By definition of X, no X ′ ⊂ X satisfies |X ′| < |Z| ∧ Sup(r, X ′) ≤ Sup(r, Z).
Since every X ′, subset of X, has necessarily a smaller size than X and thus
smaller than Z, the property must not hold due to the second conjunct, i.e.,
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Sup(r, X ′) > Sup(r, Z). Here Sup(r, Z) is equal to Sup(r, X). Since the in-
equality holds for every proper subset X ′ of X, from Lemma 14, we know that
X is 0-free.

We have X ⊂ Z ∪ {A} ∧ |X| < |Z| ∧ X ∈ FreqZFree(r, σ) ∧ Sup(r, X) =
Sup(r, Z) ∧ Z ∪ {A} ⊆ I ◦M(r, X), i.e. A ∈ Z2. !

Using these two lemmas, we finally can prove Theorem 6.

Proof. [of Theorem 6] We prove that every A ∈ I ◦ M(r, Z) that does not
belong either to Z1 or to Z2, belongs to Z3 or to Z4.

Let A ∈ I ◦M(r, Z) \ (Z1 ∪ Z2).

By Lemma 15, A 2∈ Z1 implies that ∃Y ⊂ Z ∪ {A}, ∃B ∈ Y, Y \ {B} ∈
FreqZFree(r, σ) ∧ B ∈ I ◦M(r, Y \ {B}). Let Y be such an itemset and B
be such a member of Y .

By Lemma 16, A 2∈ Z2 implies that ∀X ⊂ Z ∪ {A}, |X| < |Z| ⇒ Sup(r, X) >
Sup(r, Z), in particular ∀X ⊂ (Z ∪ {A}) \ {B}, Sup(r, X) > Sup(r, Z).

Three cases are possible.

The first is when A 2= B ∧ A 2∈ Z. Then B ∈ I ◦M(r, Y \ {B}) implies (by
Lemma 10) that Sup(r, Y \ {B}) = Sup(r, Y ) and then (by Lemma 13) that
GenM(r, (Y \ {B}) ∪ {B}) = ∅.

Since Y \{B} ⊆ (Z∪{A})\{B}, Lemma 2 implies that GenM(r, ((Z∪{A})\
{B})∪ {B}) ⊆ GenM(r, (Y \ {B})∪ {B}) (= ∅). Therefore, no rows belong
to the multiset GenM(r, ((Z ∪ {A}) \ {B}) ∪ {B}). Thus, by Lemma 13,
Sup(r, (Z ∪ {A}) \ {B}) = Sup(r, Z ∪ {A}) = Sup(r, Z). By Lemma 14,
∀X ⊂ (Z ∪ {A}) \ {B}, Sup(r, X) > Sup(r, Z) = Sup(r, (Z ∪ {A}) \ {B})
implies that (Z ∪ {A}) \ {B} is a 0-free set. Therefore, A belongs to Z4.

The second case is A = B ∧ A 2∈ Z. In this case, B ∈ I ◦ M(r, Y \ {B}) is
equivalent to A ∈ I ◦M(r, Y \ {A}), where (Y \ {A}) ⊂ (Z ∪ {A}) \ {A}, i.e.
Y \ {A} ⊂ Z. This case turns out to be a case, where A ∈ Z3.

The last case is when A ∈ Z. Also here, by definition of Z3, A ∈ Z3. !

The algorithm ConvertToFreqCl converts the condensed representations,
from the DBC into the one based on frequent closed sets. In that end, Con-
vertToFreqCl computes the set of all frequent 0-free sets and their cor-
responding closures. These closures are computed in 5 steps. The first is the
initialization of the closure of Z to the value of Z, followed by computing the
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parts Z1, . . . , Z4 of the closure following Theorem 6.

Even though we give ConvertToFreqCl in a detailed form, the actual
implementation integrates additional straightforward optimizations. Most im-
portant hints will be mentioned throughout this section.

The data structure corresponding to one itemset is called a node. A collection
of such nodes is stored in an itemset-prefix-tree, like in Section 4, to allow an
efficient access.

The structure of node is the following:

itemset : set of items
support : integer
prunedby : set of items
closure : array 1..4 of set of items

For a node N corresponding to an itemset Z, N.itemset is the set of items in
Z and N.support is the support of Z.

N.prunedby is a set of at most two items. If it contains two different items
A, B it corresponds to a set Z that is 0-free but not disjunction-free and means
that A, B ∈ Z and Z \ {A, B} ⇒ A ∨ B is valid. If N.prunedby contains a
single item A it means that Z is not 0-free and that Z \ {A} ⇒ A is valid.
And when N.prunedby = ∅, the node corresponds to an itemset Z that is
disjunction-free (and thus also 0-free).

The frequent itemsets are grouped in different collections according to their
size and to the fact whether they are 0-free sets or not (in this latter case
they are frequent itemsets of the negative border of the 0-free sets, defined
in Section 7.2). For the frequent itemsets of size i, we call ZFreeFri the
collection of the 0-free sets and FreqN egZBdi the collection of the others.
All these collections are stored in separate itemset-prefix-trees.

The four elements of the array closure denoted closure1, . . . , closure4 corre-
spond respectively to the sets Z1, . . . , Z4 specified in Theorem 6. The following
four procedures are used by the conversion algorithm to compute these four
elements accordingly to the definitions of Z1, . . . , Z4.

Algorithm 6 (update closure 1)

Input: ZFreeFri (fields itemset and support) nodes corresponding to all
itemsets of size i from FreqZFree(r, σ). FreqN egZBdi+1 (fields itemset
and support) nodes corresponding to all frequent itemsets of size i + 1 from
FreqZFreeBd−(r, σ).
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Prerequisite: closure1 initialized in ZFreeFri to ∅.

Output: Updated closure1 of all nodes from ZFreeFri.

1. for all N ∈ FreqN egZBdi+1 do
2. for all A ∈ N.itemset do
3. Find node NA in ZFreeFri such that NA.itemset = N.itemset \ {A};
4. if NA.support = N.support then
5. let NA.closure1 := NA.closure1 ∪ {A};
6. fi
7. od
8. od

Algorithm 7 (update closure 2)

Input: ZFreeFri (fields itemset and support) nodes corresponding to all item-
sets of size i from FreqZFree(r, σ).

⋃
j<i ZFreeFrj (all fields) nodes corre-

sponding to all itemsets of sizes strictly lower than i from FreqZFree(r, σ).

Prerequisite: closure2 initialized in ZFreeFri to ∅.

Output: Updated closure2 of all nodes from ZFreeFri.

1. for all NC ∈
⋃

j<i ZFreeFrj do
2. for all N ∈ ZFreeFri such that N.itemset ⊂

⋃
k=1..4 NC .closurek

and NC .support = N.support do
3. let N.closure2 := N.closure2 ∪

⋃
k=1..4 NC .closurek;

4. od
5. od

Algorithm 8 (update closure 3)

Input: ZFreeFri (fields itemset and support) nodes corresponding to all item-
sets of size i from FreqZFree(r, σ). ZFreeFri−1 (all fields) nodes correspond-
ing to all itemsets of size i − 1 from FreqZFree(r, σ).

Prerequisite: closure3 of each node N in ZFreeFri initialized to N.itemset.

Output: Updated closure3 of all nodes from ZFreeFri.

1. for all N ∈ ZFreeFri do
2. for all A ∈ N.itemset do
3. Find node NA in ZFreeFri−1 such that NA.itemset = N.itemset \ {A};
4. let N.closure3 := N.closure3 ∪

⋃
k=1..4 NA.closurek;

5. od
6. od
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Algorithm 9 (update closure 4)

Input: ZFreeFri (fields itemset, closure3 and support) nodes corresponding
to all itemsets of size i from FreqZFree(r, σ).

Prerequisite: closure4 initialized in ZFreeFri to ∅.

Output: Updated closure4 of all nodes from ZFreeFri.

1. for all NW ∈ ZFreeFri do
2. for all B ∈ NW .closure3 \ NW .itemset do
3. for all A ∈ NW .itemset do // here A 2= B
4. Find node NZ in ZFreeFri such that

NZ .itemset = (NW .itemset ∪ {B}) \ {A};
5. if NZ .support = NW .support then
6. let NZ .closure4 := NZ .closure4 ∪ {A};
7. fi
8. od
9. od
10.od

Implementing these procedures using a single field closure instead of an
array of 4 elements closure1, . . . , closure4 is described in details in [20].
This improvement avoids merging the items each time a complete closure
is needed, e.g., in algorithms update closure 2 (lines 2 and 3) and in up-
date closure 3 (line 4).

The conversion algorithm uses the procedure FindDisjRule described in
Section 4 to compute prunedby for itemsets that are 0-free but not disjunction-
free and also the following procedure FindSimpRule to determine prunedby
for non-0-free sets.

Algorithm 10 (FindSimpRule)

Input: Itemset Z, S support of Z, collection of nodes C including nodes cor-
responding to all proper subsets of Z of size |Z|− 1.

Output: Itemset P containing 1 item corresponding to the right-hand-side item
of a valid rule Z \ {A} ⇒ A if it exists, ∅ otherwise.

1. Find any item A in Z and any node NA in C such that
NA.itemset = Z \ {A} and S = NA.support;

2. if such A exists then // in this case Z \ {A} ⇒ A is valid
3. let P := {A};
4. else
5. let P := ∅;
6. fi
7. output P ;
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Now, we give the conversion algorithm itself.

Algorithm 11 (ConvertToFreqCl)

Input: σ, DBC(r, σ) of the form 〈F ,B〉 and for each itemset X ∈ F ∪ B its
support Sup(r, X).

Prerequisite: F ∪ B not empty.

Output: FreqClosed(r, σ) and their supports.

1. for all X ∈ F do // Disjunction-free input sets
2. Create new node NX in ZFreeFr|X| with NX .support := Sup(r, X),

NX .itemset := X, N.closure := [∅, ∅, X, ∅], NX .prunedby := ∅;
3. od
4. for all X ∈ B do // Non-disjunction-free input sets
5. let P := FindSimpRule(X, Sup(r, X),ZFreeFr|X|−1);
6. if P = ∅ then
7. Create new node NX in ZFreeFr|X| with NX .support := Sup(r, X),

NX .itemset := X, NX .closure := [∅, ∅, X, ∅],
NX .prunedby := FindDisjRule(X, Sup(r, X),ZFreeFr|X|−1 ∪ ZFreeFr|X|−2);

8. else
9. Create new node NX in FreqN egZBd|X| with NX .support := Sup(r, X),

NX .itemset := X, NX .closure := [∅, ∅, ∅, ∅], NX .prunedby := P ;
10. fi
11. od

12. Find node NE in ZFreeFr0 such that NE .itemset = ∅;
13. let NE.closure1 := {NY .itemset|NY ∈ FreqN egZBd1};
14. let i := 1;
15. while ZFreeFri−1 2= ∅ do
16. let Ci+1 := APRIORIGen(ZFreeFri);
17. for all X ∈ Ci+1 do
18. Find node N in ZFreeFri such that N.itemset ⊂ X and |N.prunedby| = 2;
19. if such N exists then
20. let A, B be items such that N.prunedby = {A, B};
21. Find nodes NA, NB in ZFreeFri and NAB in ZFreeFri−1 such that

NA.itemset = X \ {A} and NB.itemset = X \ {B} and
NAB.itemset = X \ {A, B};

22. let S := NA.support + NB.support − NAB.support;
23. if S ≥ σ then
24. let P := FindSimpRule(X, S,ZFreeFri);
25. if P = ∅ then
26. Create new node NX in ZFreeFr|X| with NX .support := S,

NX .itemset := X, NX .closure := [∅, ∅, X, ∅], NX .prunedby := {A, B};
27. else
28. Create new node NX in FreqN egZBd|X| with NX .support := S,

NX .itemset := X, NX .closure := [∅, ∅, ∅, ∅], NX .prunedby := P ;
29. fi
30. fi
31. fi
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32. od
33. update closure 1 (ZFreeFri,FreqN egZBdi+1);
34. update closure 2 (ZFreeFri,

⋃
j<i ZFreeFrj);

35. update closure 3 (ZFreeFri,ZFreeFri−1);
36. update closure 4 (ZFreeFri);
37. let i := i + 1;
38. od
39. output {〈

⋃
k=1..4 N.closurek, N.support〉|N ∈

⋃
j<i ZFreeFrj};

In lines 1-11, Algorithm ConvertToFreqCl loads the input and converts
it to a collection of nodes, one node per itemset. For an itemset X, if the
call to FindSimpRule gives a nonempty result (in line 5), then X is not
0-free, but it is an element of the set FreqZFreeBd−(r, σ) (frequent itemsets
of the negative border of 0-free sets). Thus, it is stored in FreqN egZBd|X|
and has a field prunedby filled with a single item. The nodes corresponding to
frequent 0-free sets of Bd−(r, σ) (the negative border of disjunction-free sets)
are distinguished when loaded in line 7 by the content of the field prunedby,
which contains two items.

Reading the input is followed by the computation of the closure of ∅ in lines 12
and 13, according to Theorem 6 applied to this particular itemset. All other
frequent closed sets are obtained by computing the closures of nonempty fre-
quent 0-free sets. This leads to two interleaved processes. The first is the
creation of nodes corresponding to frequent 0-free sets or to frequent itemsets
from the negative border of 0-free sets. And the second is the construction of
the frequent closed sets by computing the closures of frequent 0-free sets.

These two processes are performed within the loop starting at line 15. The ith

iteration first generates the itemsets of size i+1 that are either frequent 0-free
sets (stored in ZFreeFri+1, line 26) or frequent itemsets from the negative
border of 0-free sets (stored in FreqN egZBdi+1, line 28). Then it determines
the closures of the 0-free sets of size i using the characterization of the closed
sets stated in Theorem 6. It should be noticed that during this ith iteration the
algorithm cannot compute the closures of the newly generated 0-free sets of
size i+1 since the use of Theorem 6 requires in this case the frequent itemsets
from the negative border of 0-free sets of size i + 2 (i.e., FreqN egZBdi+2).

In lines 16-19, the algorithm selects candidate sets that are potentially frequent
and 0-free, but are not in the input because they are proper supersets of
non-disjunction-free sets. Next, in lines 20-22, for each candidate set X, the
algorithm searches the necessary information to restore the support of X. It
takes Y , any non-disjunction-free proper subset of X, and considers A, B the
items of N.prunedby in the node N corresponding to Y . Since Y \ {A, B} ⇒
A ∨ B is a valid simple disjunctive rule then, using Lemma 5, the algorithm
infers the support S of X.
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If X is frequent (line 23) then the corresponding node NX is created in lines 24-
29. If the call to FindSimpRule on X returns an empty set then X is a 0-free
set, threfore NX is created in ZFreeFri+1 and the value of pruneby for Y
propagates to X. If not, the set X is not a 0-free set, but all its subsets are
0-free sets and thus X is in the negative border of 0-free sets. In this case
NX is created in FreqN egZBdi+1, and NX .pruneby is filled with the result
of FindSimpRule.

The computation of the closures of the 0-free sets of size i (stored in ZFreeFri)
is then performed in lines 33-36.

The algorithm exits the main loop when the closures of frequent 0-free sets of
the maximal size are computed.

Theorem 7 The algorithm ConvertToFreqCl regenerates all and only
σ-frequent 0-free sets in

⋃
j<k ZFreeFrj, where k is the value of the variable

i at the end of the execution of ConvertToFreqCl.

Proof. Similar to the proof of Theorem 3. !

Lemma 17 Given r a binary database over R, σ a support threshold and X
a σ-frequent closed set w.r.t. r, ∃Y ⊆ X, Y ∈ FreqZFree(r, σ) and X =
I ◦M(r, Y ).

Proof. Let r, σ and X be same as in the lemma. Let Y ⊆ X be the smallest
itemset w.r.t. itemset inclusion having the same support as the support of X.
Below, we show that Y is σ-frequent 0-free set and that X = I ◦M(r, Y ).

By Lemma 11, Sup(r, X) = Sup(r, Y ) implies X ⊆ I ◦ M(r, Y ). Since X =
I ◦ M(r, X) (X is closed), I ◦ M(r, X) ⊆ I ◦ M(r, Y ). By Lemma 9, I ◦
M(r, X) ⊇ I ◦M(r, Y ). Therefore, X = I ◦M(r, X) = I ◦M(r, Y ).

Since Y is the smallest itemset having the same support, ∀Z ⊂ Y, Sup(r, Z) 2=
Sup(r, Y ). Additionally, by the anti-monotonicity of support, we can refine
that property into ∀Z ⊂ Y, Sup(r, Z) > Sup(r, Y ), which according to
Lemma 14, implies that Y is 0-free set. Sup(r, X) = Sup(r, Y ) and X σ-
frequent implies that Y is σ-frequent. !

Theorem 8 (Correctness of ConvertToFreqCl) The algorithm Con-
vertToFreqCl outputs all and only σ-frequent closed sets along with their
supports.

Proof. Immediate from Theorem 7 and Lemma 17. !
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7.4 Results of experiments

We have presented the advantage of the DBC w.r.t. closed sets in terms of
representation size in Section 5. In this section, we report experiments showing
that the frequent closed sets can be derived very efficiently from the DBC
representation using the algorithm ConvertToFreqCl. These additional
experiments lead to the conclusion that in practice the DBC turns out to be
also an interesting condensed representation of the frequent closed sets.

These experiments are run in the same conditions as in Section 5 (same
platform and data sets, and same implementations of CLOSE [12] and
CLOSET [21]). We compare the extraction times of direct computation of
frequent closed sets using CLOSE and CLOSET with the extraction of the
DBC (by means of HLinEx and VLinEx) followed by its conversion into
frequent closed sets using an implementation of ConvertToFreqCl. The
extraction times of the DBC alone (without running ConvertToFreqCl)
have been given in Section 6.3. The running times (in seconds) for several sup-
port thresholds are given in Figure 5 (note that some axes are logarithmically
scaled).
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Fig. 5. Experiments on the three data sets with breadth-first (left) and depth-first
(right) algorithms, reporting the extraction time in seconds vs the relative support
threshold in %.
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The results on the Mushroom data set are the most ambiguous. All result-
ing times are very close, and for both strategies the curves related to the
extraction of DBC followed by ConvertToFreqCl intersect the ones of
the corresponding reference algorithms (see Figure 5, upper graphics). On the
Connect-4 data set, the extraction of the DBC followed by its conversion into
closed sets is always faster (up to 15 times with depth-first extractors and up
to 100 times with breadth-first ones). For the last data set, Pumsb, mining
frequent closed sets was difficult for all techniques and has been stopped at
a relative support threshold of 60%. In the most difficult cases (low support
thresholds), the experiments show a real gain, up to fivefold speed-up, when
using the DBC and its conversion versus a direct extraction of the closed sets.

In most of experiments, the extraction of DBC followed by ConvertTo-
FreqCl produces the frequent closed sets much more efficiently than the
direct extraction of the frequent closed sets. In the cases where the direct
extraction is still faster, it should be noticed that the performances of both
approaches are very close.

In [20], we experimentally demonstrate that the regeneration of the frequent
closed sets from the DBC using ConvertToFreqCl is quasi-linear w.r.t.
the flat-storage size of frequent closed set collection (i.e., quasi-linear w.r.t.
ConvertToFreqCl output size).

8 Conclusion

Knowledge discovery tasks based on frequent itemset extraction are generally
very difficult at low support thresholds because the direct extraction of the fre-
quent itemsets turns out to be a very long process. In this paper, we proposed
a condensed representation of frequent itemsets, called disjunction-bordered
condensation, that can be extracted more efficiently and that can be used to
regenerate all frequent itemsets and their exact supports.

We proposed two algorithms to extract this representation, based respectively
on a depth-first and on a breadth-first strategy. We presented experiments
showing that the size of the DBC is very small w.r.t. the size of the collection of
all frequent itemsets, and that the DBC can be extracted much more efficiently
than frequent itemsets.

We compared the DBC with the representation based on frequent closed
sets [12], which is the other condensed representation investigated in the lit-
erature allowing an exact regeneration of the frequencies. We showed that in
general the DBC representation is smaller and can be extracted much more
efficiently than the frequent closed sets. In the cases where the extraction of
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the DBC is not faster or where the DBC representation is not smaller, the
experiments report very close measures.

We also presented a procedure to generate the frequent closed sets from the
DBC representation. The experiments show that this conversion can be done
very efficiently, and that in most cases it is faster to extract the DBC and then
to derive the frequent closed sets than to extract them directly. Here again, in
the cases where the approach based on the DBC representation is not faster
the performances remain very similar. Thus the DBC representation turns
out to be an interesting condensed representation for the frequent closed sets
themselves.

Future work. Frequent itemset mining is often followed by some data mining
tasks making use of frequent itemsets, and it is a common practice to use
some well-defined subcollections of frequent itemsets and to discard remaining
ones. In such cases, the results of this paper could be refined to regenerate
such subcollections, circumventing often voluminous collections of all frequent
itemsets. For example, the regeneration procedure of all frequent itemsets can
be modified to extract frequent itemsets under constraints [23,24]. Also, the
algorithm converting the DBC into frequent closed sets can be adapted to
extract frequent δ-free sets [13,14].

This paper is limited to the use of simple disjunctive rules of the form
Y ⇒ A ∨ B to condense the representation of the frequent itemsets. An in-
teresting direction for future work is to consider the condensation based on
rules involving 2-disjunction rules (e.g. Y ⇒ A∨B ∨C) or even n-disjunction
rules for arbitrary n. An open question is then, what will be the overall gain of
the approach ? Will the speed-up stemming from a more important pruning
compensate the overhead due to the handling of these rules ?
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