
Abstract

Data warehouses store large volumes of data according
to a multidimensional model with dimensions
representing different axes of analysis. OLAP systems
(OnLine Analytical Processing) provide the ability to
interactively explore the data warehouse. Rising volumes
and complexity of data favor the use of more powerful
distributed computing architectures. Computing grids in
particular are built for decentralized management of
heterogeneous distributed resources. Their lack of
centralized control however conflicts with classic
centralized data warehouse models. To take advantage of
a computing grid infrastructure to operate a data
warehouse, several problems need to be solved. First, the
warehouse data must be uniquely identified and
judiciously partitioned to allow efficient distribution,
querying and exchange among the nodes of the grid. We
propose a data model based on “chunks” as atomic
entities of warehouse data that can be uniquely
identified. We then build contiguous blocks of these
chunks to obtain suitable fragments of the data
warehouse. The fragments stored on each grid node must
be indexed in a uniform way to effectively interact with
existing grid services. Our indexing structure consists of
a lattice structure mapping queries to warehouse
fragments and a specialized spatial index structure
formed by X-trees providing the information necessary
for optimized query evaluation plans.

1. Introduction

Applications requiring analysis of large volumes of
data increasingly rely on data warehouses to efficiently
organize and manage the data. The original purpose of
organizing data according to a multidimensional model in
a warehouse is to make the huge volumes of data
generated by production information systems available to
decision support systems. The “dimensions” of the
multidimensional data model represent different axes of
analysis. This approach can also be applied to more

general scenarios of analysis applications on large
distributed databases. OLAP (OnLine Analytical
Processing) tools provide the ability to interactively
explore the stored data by making it available in the form
of so-called “data cubes” presenting both detailed and
aggregated data to OLAP clients.

The growing need for computational power and
storage capacity caused by the construction and operation
of data warehouses with increasing size and complexity
makes the use of distributed systems an appropriate
choice. However, classic distributed architectures fail to
significantly improve performance when it comes to
scenarios with numerous simultaneously connected users,
because the centralized control and management instances
are maintained. The more recent concept of computing
grids offers a decentralized approach to building high
performance infrastructures in a very effective, economic
and scalable way. Their standardized management and
information services provide transparent access to distant
heterogeneous resources in order to deliver a “non trivial”
quality of service.

The architectural model proposed in this paper aims at
seamless integration of a data warehouse on a grid
computing infrastructure. The obvious benefits from
deploying large amounts of detailed data and
precomputed aggregates on a grid are the possibilities for
parallel computing, decentralized accesses, storage and
exchange of both original data and query results. From a
user oriented point of view the main objective is to
provide a virtual data warehouse to specialists connecting
to different access points of the computing grid and to
satisfy their specific needs in terms of content, axes of
analysis and levels of detail.

The rest of this paper is organized as follows: in
section 2 we present related work on data warehouses,
their deployment on distributed system and data
management on computing grids. Section 3 presents our
approach to global data identification and fragmentation
of the data warehouse on a computing grid. Indexation of
the identified fragments is described in section 4 and
section 5 exemplifies its advantages for distributed query
evaluation. Section 7 forms the conclusion of our
proposed solution and section 6 finally presents some
future work on this particular model.

A Model for Distributing and Querying a
Data Warehouse on a Computing Grid*

Pascal Wehrle, Maryvonne Miquel, Anne Tchounikine
LIRIS – INSA de Lyon

pascal.wehrle@insa-lyon.fr, maryvonne.miquel@insa-lyon.fr,
anne.tchounikine@insa-lyon.fr

*This work is supported by the French Ministry for Research ACI-
GRID project (http://www-sop.inria.fr/aci/grid/public/)

2. Related work

The initial purpose of data warehousing was first
described by W.H. Inmon [1] as “a subject oriented,
integrated, time variant, nonvolatile collection of data in
support of management’s decisions”. The data is usually
extracted from databases in production use, transformed
and stored according to a multidimensional model in
which the “dimensions” are specific axes of analysis
relevant to future analysis and a cell represents the data
associated to specific values of the dimensions. OLAP
systems [2] represent the warehouse data in form of a
hypercube through which the user can navigate.

As an example, figure 1 represents a hypercube with 3
dimensions: location, product and time. A cell holds the
number of sold units for a given product, in a given
location at a given time.

figure 1 - OLAP hypercube

A classical internal structure for a data warehouse is the
so-called star schema [3] as shown in figure 2. It consists
of a central fact table containing the most detailed data of
the warehouse, the so-called facts. These are linked to
several dimension tables which contain all data
concerning the available axes of analysis.

figure 2 - data warehouse star schema

In a multidimensional model a dimension is often
organized according to a hierarchy described by a schema
with containment relations between hierarchy levels. Each

hierarchy level represents a level of detail for the fact data
itself or corresponding aggregates. The example in figure
3 shows the hierarchy of the time dimension using a day,
month and year schema. This particular instance of the
dimension contains members from 2003 and 2004.

figure 3 - example of the time dimension schema and hierarchy

To improve query performance, several aggregations
on the detailed facts are precomputed and stored within
the data warehouse as well. To optimize query
performance it is necessary to disperse the content of this
large database among storage nodes of distributed
systems in a suitable way. Constraints reducing the
mobility of the warehouse data within the distributed
system favor forms of vertical partitioning that keep the
warehouse fragments closest to their respective sources as
proposed in [4]. Given an already assembled data
warehouse that has to be optimized according to the users'
specific query profiles, it is more advantageous to apply a
horizontal partitioning as initially described by [5] and
used by [6], [7].

Client-side cache memory systems such as those
proposed in [8], [9] aim at reducing response times of
centralized data warehouses and [10] even introduces a
peer-to-peer network between clients to improve
reutilization of results. These systems have developed
techniques to efficiently manage fractions of data
contained in a warehouse by introducing “chunks” of
data. These chunks can be uniquely identified and
exchanged among peers or used to compute results from
existing cache content.

Our assumptions about the structure of computing
grids are best captured by I. Foster and C. Kesselman [11]
who define a computing grid as “a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end
computational capabilities”. According to [12], grids
essentially “coordinate resources that are not subject to
centralized control” and use “standard, open, general-
purpose protocols and interfaces”. Consequently the
identifiers of data elements stored on grid nodes need to
be published to make them available to querying and
exchange with other nodes. Existing grid information
systems like R-GMA [13] are well suited for this purpose.
Efficient indexing of the locally materialized data
becomes essential for this kind of distributed
infrastructure and is one of the main requirements
formulated by [14]. Distributed query processing on grid
nodes also has existing solutions in the fields of service
discovery [15] or biological analysis [16]. These

approaches focus on the concurrent evaluation of sub-
queries on parts of the data which performs particularly
well on horizontally partitioned data. Integration with
these kinds of grid services consists in dividing an OLAP
query into several tasks and subqueries depending on the
location and availability of the result data.

3. Data identification and fragmentation

In order to be well adapted to a computing grid
infrastructure, the data warehouse must be entirely
distributed among grid nodes and managed in a
completely decentralized way. To facilitate searching and
exchanging data between grid nodes we introduce a
technique for unique, global and relevant identification of
warehouse data on the grid.

Unique identifiers can easily be found for the most
detailed data in the warehouse by using the dimension
members directly connected to the facts. It is important
for any effective data management system that these
identifiers can be comparable and ordered in a way that
allows assembling them into greater entities. In order to
achieve this we introduce a few requirements to the
dimensions.

Ordering dimension members

We note i0 a total order relation on the set M i0 of
dimension members at the most detailed level (level 0) for
a dimension Di . For dimension members with non-
numeric values, so this order must be determined using
semantics or simple methods like alphabetic sorting. We
suppose such an order can be found for each dimension
on the most detailed level. Because every subset of M i0

inherits the total order relation, we can define an interval
Ri0 of dimension members.

Let M i0 be the set of dimension members at the most
detailed level of the dimension hierarchy in one instance
of dimension Di . Then an interval Ri0⊆M i0 is defined
as follows:
Ri0=[ml , mu]={m |m , ml , mu∈M i0 , mli0 mi0 mu}

where ml ist the lowest member and mu the uppermost
member of the interval.
Example 1:

On the example of the time dimension, one can use a
chronological order on the set of members that represent
the days and thus obtain arbitrary intervals in time:
1st quarter 2004 = [“2004-01-01”, “2004-03-31”]
fiscal year 2004 = [“2003-10-01”, “2004-09-30”]

We next aim at reproducing the total order relation on
each hierarchy level. In order to be managed efficiently
by our identification and indexation system dimension
hierarchies need to be explicit (defined by an explicit
schema of hierarchy levels), strict (no dimension member

has more than one parent), onto (being represented by a
balanced tree) and covering (excluding parent-child links
that span more than one hierarchy level). If these
conditions are met, each dimension member mi0∈M i0 on
the lowest hierarchy level is associated to exactly one
member on each higher level and every data element is
represented by one member on each hierarchy level.

Based on the total order defined on the set of members
at the lowest (most detailed) hierarchy level of every
dimension instance we can now propagate the total order
relation to the entire hierarchy. The notion of interval
Rij⊆M ij on these ordered sets is defined identically to

intervals on level 0:
Rij=[ml , mu]={m |m∈M ij , ml , mu∈M ij , mlij mij mu}

Example 2:
Continuing the example based on the time dimension,

we find that the order defined on the most detailed level is
easily propagated to the month and year level:
“2003-05” i1 “2003-07”; “2003” i2 “2004”

Base chunks and aggregated chunks

With the methods for efficient comparison and sorting
of dimension members we can now create unique
identification for both detailed and aggregated data
elements. The notion of data “chunk” was introduced as
subdivision of data for client-side OLAP result caching
solutions in [8], [9] and [10]. We choose to apply the term
“chunk” to a concrete unit of warehouse data at the finest
grain possible and identify it by a unique combination of
dimension members.

Definition 1 – base chunk:

Let F be the fact table of a data warehouse star schema
and D1 , , Dn be the associated dimensions. A base
chunk c is equivalent to one tuple of the fact table, i.e. it
contains a combination of dimension members
m1 , , mn , one for each dimension and one or more

facts f 1 , , f q . We note c=〈〈m1 , , mn〉 , f 1 , , f q〉 .
Example 3:

The base chunk containing the sales of Radios in the
city of Lyon on the 12th december 2003 is represented as
follows: c '=〈〈"Radio" ,"Lyon" ,"2003-12-12" 〉 ,123〉

Every base chunk can be uniquely identified through
the combination of dimension members associated to it
and contains the corresponding facts. Publishing their
identifiers via grid information services offers a global
view of the available detailed data on the grid.

Because a base chunk contains only data directly
stored in the fact table, at this point our identification
method remains limited to the keys of the fact table. The
next step is to include aggregates that are often
precomputed and stored in so-called views or OLAP
cuboids. There is one potential OLAP cuboid for each
combination of aggregation levels that can be applied to

the set of dimensions. This combination must be added to
the identifiers in order to maintain their uniqueness.

Definition 2 – aggregated chunk:

An aggregated chunk ca contains aggregated data
from a set of facts representing exactly one member on a
hierarchy level ji0 for each dimension Di. We note
Lm=〈m1 j1

, , mnjn
〉 the list of dimension members for ca

and Ld ca=〈 j1, , jn〉 its list of hierarchy levels. The
information on the utilized aggregation functions
La=〈a1, , aq〉 is also added to the identification data.

We note ca=〈〈m1 j1
, , mnjn

〉 , v1 , , vq , La〉 , where
vk=ak { f k1 , , f kr} , k∈{1, , q} . The facts
{ f k1 , , f kr} aggregated in ca are stored by a set of base

chunks {c1 , , cr} .
Example 4:

As shown by figure 4, the aggregated chunk containing
the sum of all computer products sold in December 2003
is created by computing the sum of sales for desktop PCs
and notebooks on the three days of December for which
data is available.

figure 4 - creating an aggregated chunk

The aggregated chunk contains the results of the
aggregation operation on the facts extracted from the set
of base chunks representing the elements of Lm. By
limiting this approach to distributive and algebraic
aggregation functions like SUM or COUNT we allow the
calculation of aggregates from aggregates. In these cases
aggregated chunks can be created from aggregated chunks
of lower dimension hierarchy levels.

Horizontal partitioning

Horizontal partitioning of a relational database as
described by [5] consists in breaking up one large table
into separate sets of tuples, called fragments. The content

of these fragments is determined by a minimal and
complete set of selection predicates extracted from a
number of typical queries. The data contained in one
fragment is therefore best suited for answering queries
from a particular user group or a specialized environment.
[6] and [7] extend this method to partitioning of entire
star schemas. Selections are first made on the dimension
tables and then transmitted to the fact table via a semi-join
operation, thus creating separate instances of the star
schema. Aggregated data is commonly stored in OLAP
cuboids. Following our identification model, these higher
cuboids are made of aggregated chunks sharing a
common list of hierarchy levels Ld=〈 j1, , jn〉 . This
similarity allows us to fragment them in the same fashion
using parts of the dimension tables.

Definition 3 - block of chunks:

A multidimensional block of chunks B is a contiguous
subset of warehouse data. It is represented by one interval
Rix per dimension, i.e. a list of intervals {R1 j1

, , Rnjn
}

covering all dimensions. A block of chunks contains all
chunks c=〈〈m1 , , mn〉 , f 1 , , f q ,[La]〉 with
mk∈Rk , k∈{1, , n} . All chunks c∈B share the same

list of hierarchy levels.
Example 5:

One can imagine choosing all sales data in two months
for a range of products for an arbitrary region. This set of
data is represented by a block of base chunks defined by
the following intervals:
R10 =["Notebook" ,"CD Player"] in products,
R21 =["2003-11" ,"2003-12"] in time and
R30 =["St Etienne" ,"Marseille"] in location. The block

of chunks will thus contain all data between
c1 =〈〈"Notebook" ,"2003-11-01" ,"St Etienne"〉 , f 1〉 and
c2 =〈〈"CD Player" ,"2003-12-31" ,"Marseille"〉 , f 2〉 .

Definition 4 - horizontal fragment:

A horizontal fragment HF C={B1, , B p} of an OLAP
cuboid C is a set containing blocks of chunks with one
common list of hierarchy levels
Ld Bi=Ld B1∀ i∈{1, , p} .

We obtain the same type of fragments of the fact table
as the original method and fragments of higher OLAP
cuboids by using aggregated chunks. As chunks all have
their corresponding dimension members tagged to them,
the knowledge of the dimension hierarchy is sufficient to
reconstruct the star schema equivalent to each fragment.

4. Indexing the data warehouse

Indexing the fragments of the data warehouse using a
combination of a lattice structure and a spatial indexing
structure based on X-trees ensures the availability of

detailed information on the storage location of result data
and the possibilities for locally calculating results.

The underlying computing grid structure offers local
storage units directly referenced by the indexing service.
Pointers to locally available data delivered by the index
service should be as direct as possible without invoking
many additional data access and replica management
services. It is necessary that all grid nodes participating in
the operation of the distributed data warehouse have a
complete knowledge of the dimension instances with all
information concerning dimension hierarchies.

A lattice indexing local data

The superordinate structure for indexing fragments of
the data warehouse is inspired by a detailed form of the
OLAP cuboid lattice with one vertex for each
combination of dimension hierarchy levels [9]. An edge
represents an aggregation operation on a dimension
leading from one hierarchy level to the parent level.

To index a set of data warehouse fragments
materialized on a grid node, fragments with identical lists
of dimension hierarchy levels Ld are unified. For each one
of the resulting fragments one lattice vertex is created and
connected to the rest of the lattice. The result is a partial
instantiation of the maximum lattice (figure 5) that
provides fast access to available categories of locally
materialized warehouse data.

figure 5 - maximum lattice structure for two dimensions

Spatial indexing of single fragments

The internal structure of a data warehouse fragment
requires a well adapted indexing mechanism. All blocks
of chunks contained in a fragment are described by
intervals on sets of dimension members M 1 j1

, , M njn

for all dimensions, where Ld=〈 j1, , jn〉 is the
associated list of dimension hierarchy levels. The
cartesian product M 1 j1

××M njn
 on these sets of

dimension members forms a multidimensional data space.

We assimilate the blocks of chunks to multidimensional
objects in form of hyperrectangles located between a
lower and an upper limit.

The choice of a specialized spatial indexing structures
that adapts well to high-dimensional data spaces is
therefore necessary to efficiently index a data warehouse
fragment. We use the X-tree introduced by [17]. It is an
evolution of the R*-tree [18], optimized to minimize the
number of splits in high-dimensional spaces that would
increase the height of the tree and the number of
overlapping subtrees.

figure 6 - X-tree indexing blocks of chunks in two dimensions

Blocks of chunks are the objects indexed by the leaf
nodes of the X-tree. Non-terminal directory nodes
represent at least two child nodes through the minimum
hyperrectangle containing them. Supernodes with a higher
capacity avoid disadvantageous splits of directory nodes.
Indexing a locally materialized fragment of the data
warehouse is done by inserting its blocks into the X-tree
structure of the corresponding node in the lattice
structure.

Integration of computable data

Once materialized fragments are indexed it is also
possible to integrate information on aggregates that can
be computed from existing data. Aggregates can only be
computed from data retrieved from lattice nodes of
inferior aggregation levels or from detailed data. The
utilized method to determine if an aggregate chunk is
computable from a set of chunks from another lattice
node is inspired by the mechanism presented in [9]. It is
based on a virtual counter for every chunk containing the
number of paths in the lattice through which this chunk
can be computed.

Let c1 be an aggregated chunk and C 1 the set of
chunks (aggregated or base) that represent c1 on a lower
hierarchy level. Then c1 can be computed from any block
B1 of chunks with C1 ⊆B1 . We therefore add a node
representing c1 in the corresponding X-tree that contains
the number of blocks B1 materialized in the lattice from
which c1 can be computed.
Example 6:

As shown by figure 7, the sum of monthly sales for a
particular product stored in the block of chunks B2 can be
used to compute yearly sales represented by the virtual
block of chunks B2'.

figure 7 - combined indexing including computable data

5. Query evaluation

OLAP query processing integrates both the results
provided by the index and the capabilities of existing grid
services in building distributed evaluation plans.

Querying the lattice

Different pieces of information on the requested result
data are extracted from the initial OLAP query. The
selection predicates used by the query contain the
dimension members used to identify the result data and
the hierarchy levels on the dimensions included in the
selection. Together with the content of the “GROUP BY”
clause one can determine the exact level of detail required
to answer the query. The gathered information for a given
query Q is represented by a list of requested hierarchy
levels Ld Q=〈 j1 , , jn〉 . We query the lattice structure
by searching for a vertex whose combination of hierarchy
levels matches Ld. If no such vertex exists within the local
lattice the index does not contain any reference to
potential result data. If the required vertex exists, the
evaluation can proceed to querying the X-tree connected
to it.
Example 7:

We consider the following OLAP query Q1 on our data
warehouse:
SELECT ProdName, Month, Region, SUM(NbProdSold)
FROM Facts, Product, Location, Time
WHERE ProdName=”CD Player”
GROUP BY Month, Region;
This query asks for an aggregate SUM of CD Player sales
at a detail level of months for the time dimension and
region for the location dimension. We obtain .

Querying the X-tree

The query on the X-tree requires a transformation of
the original OLAP query's selection predicates. The
transformation consists of creating an ordered list of
requested chunks and then grouping together contiguous
parts of the requested data to create queries for
hyperrectangles (blocks of chunks) on the X-tree.
Processing the resulting list of chunk and block of chunk
queries provides detailed information on chunks or blocks
of chunks either containing result data that are
materialized locally and directly referenced by the X-tree,
or representing result data that can be (partially)
computed from locally materialized data, or missing
blocks of chunks that are materialized outside the scope
of the local index and need to be retrieved from other
nodes of the grid. If the result contains chunks or blocks
of chunks marked as computable from locally
materialized data, additional searching within the lattice is
performed to find the source data for the requested
aggregation.

Constructing a distributed evaluation plan

The information obtained from evaluating the query on
the indexing structure it used to generate a distributed
evaluation plan for the query. It consists of a number of
tasks for the different grid services. These tasks include
loading locally available data into memory, computing
and loading of aggregates from locally available detailed
data and searching and transferring missing data from
other grid nodes.

Computation of aggregates from local detailed data is
only worthwhile if the service executing the query has
access to a sufficient amount of computing capacity which
can be negotiated with local resource brokers. The results
can be delivered gradually as they arrive or after the
complete response is available.

6. Conclusion

We have introduced a data model for managing a
distributed data warehouse adapted to the decentralized
and heterogeneous structure of computing grids. It is
inspired by existing methods of distributed data
warehouse management. To build a basis for effectively
identifying the warehouse data on the grid we introduced
total order relations on the sets of dimension members
throughout dimension hierarchies. The elementary unit of
warehouse data called a “chunk” was then introduced to
itself form a basis for a global indexation method for the
grid. We then extended the “base chunk” to aggregated
data. These elements helped constitute contiguous blocks
of chunks and entire fragments of the data warehouse. In
order to provide efficient indexation and management of

the identified data structures, we developed a specialized
indexing method. It combines a lattice structure with
spatial X-tree indexation to handle the multidimensional
space created by the warehouse data. A special capability
of this system is that it can include aggregated data that
can be computed from locally stored data. As a result we
obtain a method to efficiently evaluate OLAP queries that
best exposes the distribution and potential for on-site
aggregation of data.

7. Future work

Future research on distributed data warehouses on grid
infrastructures includes work on the partitioning and
distribution of the data warehouse. Our approach is based
on the assumption that one needs to deploy a centralized
data warehouse on a computing grid. However it could
also be adapted to scenarios where existing data stored on
the grid that cannot be easily moved for storage capacity,
security or property reasons needs to be integrated into
one virtual data warehouse. Making the distribution of
data evolve with changing query profiles, limited
availability of data and dynamically changing conditions
for computing and data transfer on the grid is also part of
our goals. Updates and additions to the warehouse data
need to maintain consistency between detailed data and
aggregates computed from them. This kind of evolution
mechanism would help achieve decentralized
maintenance of the data warehouse.

References
[1] W.H. Inmon: Building the Data Warehouse, John
Wiley&Sons, 1992

[2] S. Chaudhuri, U. Dayal, "An overview of data warehousing
and OLAP technology", ACM SIGMOD Record Volume 26 ,
Issue 1 (March 1997), pp.65-74

[3] R. Kimball: The Data Warehouse Toolkit, John
Wiley&Sons, 1996

[4] M. O. Akinde, M. H. Böhlen, T. Johnson, L. V. S.
Lakshmanan, D. Srivastava, "Efficient OLAP Query Processing
in Distributed Data Warehouses", Proceedings of the 8th
EDBT Conference (EDBT 2002), March 2002, Prague, Czech
Republic, Springer, pp.336-353

[5] M. T. Özsu, P. Valduriez: Principles of distributed database
systems, Prentice Hall, 1991, ISBN 0-13-715681-2

[6] L. Bellatreche, K. Karlapalem, M. Mohania, "OLAP Query
Processing for Partitioned Data Warehouses", 1999
International Symposium on Database Applications in Non-
Traditional Environments (DANTE '99), November 1999,
Kyoto, Japan, IEEE Computer Society, pp.35-42

[7] L. Bellatreche, M. Schneider, M. K. Mohania, B. K.
Bhargava, "PartJoin: An Efficient Storage and Query Execution

for Data Warehouses", Proceedings of the 4th DaWaK
Conference (DaWaK 2002), September 2002, Aix-en-Provence,
France, Springer, pp.296-306

[8] P. M. Deshpande, K. Ramasamy, A. Shukla, J. F. Naughton,
"Caching multidimensional queries using chunks", Proceedings
of the 1998 ACM SIGMOD Conference, June 1998, Seattle,
USA, ACM Press, pp.259-270

[9] P. Deshpande, J. F. Naughton, "Aggregate Aware Caching
for Multi-Dimensional Queries", Proceedings of the 7th EDBT
Conference (EDBT 2000), March 2000, Konstanz, Germany,
Springer, pp.167-182

[10] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, K.-L. Tan,
"An adaptive peer-to-peer network for distributed caching of
OLAP results", Proceedings of the 2002 ACM SIGMOD
Conference, June 2002, Madison, USA, ACM Press, pp.25-36

[11] I. Foster (editor), C. Kesselman (editor): The Grid 2:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 2003, ISBN 1-55860-933-4

[12] I. Foster, "What is the Grid? A Three Point Checklist",
Grid Today, Vol. 1, No. 6, 22 July 2002
http://www.gridtoday.com/02/0722/100136.html

[13] A. W. Cooke, A. J. G. Gray, L. Ma, W. Nutt, J. Magowan,
M. Oevers, P. Taylor, R. Byrom, L. Field, S. Hicks, J. Leake,
M. Soni, A. J. Wilson, R. Corden, "R-GMA: An Information
Integration System for Grid Monitoring", Proceeding of
CoopIS, DOA, and ODBASE - OTM Confederated
International Conferences, November 2003, Catania, Italy,
Springer, pp.462-481

[14] L. Brunie, M. Miquel, J.-M. Pierson, A. Tchounikine, C.
Dhaenens, N. Melab, E.-G. Talbi, A. Hameurlain, F. Morvan,
"Information grids: managing and mining semantic data in a
grid infrastructure; open issues and application to geno-medical
data", 14th DEXA Workshop (DEXA'03), September 2003,
Prague, Czech Republic, IEEE Computer Society, pp.509-516

[15] Wolfgang Hoschek, "A Unified Peer-to-Peer Database
Framework for Scalable Service and Resource Discovery",
Proceedings of Grid Computing - GRID 2002, Third
International Workshop, November 2002, Baltimore, USA,
Springer, pp.126-144

[16] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. A.
Fernandes, R. Sakellariou, "Distributed Query Processing on the
Grid", Proceedings of Grid Computing - GRID 2002, Third
International Workshop, November 2002, Baltimore, USA,
Springer, pp.279-290

[17] S. Berchtold, D. A. Keim, H.-P. Kriegel, "The X-tree : An
Index Structure for High-Dimensional Data", Proceedings of
the 22th VLDB Conference, September 1996, Mumbai, India,
Morgan Kaufmann Publishers/Elsevier Science, pp.28-39

[18] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, "The
R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles", Proceedings of the 1990 ACM SIGMOD
Conference, May 1990, Atlantic City, USA, ACM Press,
pp.322-331

