
Abstract

Data warehouses store large volumes of data according
to  a  multidimensional  model  with  dimensions
representing  different  axes  of  analysis.  OLAP  systems
(OnLine  Analytical  Processing)  provide  the  ability  to
interactively explore the data warehouse. Rising volumes
and complexity of data favor the use of more powerful
distributed computing architectures. Computing grids in
particular  are  built  for  decentralized  management  of
heterogeneous  distributed  resources.  Their  lack  of
centralized  control  however  conflicts  with  classic
centralized data warehouse models. To take advantage of
a  computing  grid  infrastructure  to  operate  a  data
warehouse, several problems need to be solved. First, the
warehouse  data  must  be  uniquely  identified  and
judiciously  partitioned  to  allow  efficient  distribution,
querying and exchange among the nodes of the grid. We
propose  a  data  model  based  on  “chunks”  as  atomic
entities  of  warehouse  data  that  can  be  uniquely
identified.  We  then  build  contiguous  blocks  of  these
chunks  to  obtain  suitable  fragments  of  the  data
warehouse. The fragments stored on each grid node must
be indexed in a uniform way to effectively interact with
existing grid services. Our indexing structure consists of
a  lattice  structure  mapping  queries  to  warehouse
fragments  and  a  specialized  spatial  index  structure
formed by X-trees  providing  the  information necessary
for optimized query evaluation plans.

1. Introduction

Applications  requiring  analysis  of  large  volumes  of
data increasingly rely on data warehouses to  efficiently
organize and manage the data.  The original  purpose  of
organizing data according to a multidimensional model in
a  warehouse  is  to  make  the  huge  volumes  of  data
generated by production information systems available to
decision  support  systems.  The  “dimensions”  of  the
multidimensional data model represent different axes of
analysis.  This  approach  can  also  be  applied  to  more

general  scenarios  of  analysis  applications  on  large
distributed  databases.  OLAP  (OnLine  Analytical
Processing)  tools  provide  the  ability  to  interactively
explore the stored data by making it available in the form
of  so-called  “data  cubes”  presenting  both  detailed  and
aggregated data to OLAP clients.

The  growing  need  for  computational  power  and
storage capacity caused by the construction and operation
of data warehouses with increasing size and complexity
makes  the  use  of  distributed  systems  an  appropriate
choice. However, classic distributed architectures fail to
significantly  improve  performance  when  it  comes  to
scenarios with numerous simultaneously connected users,
because the centralized control and management instances
are  maintained.  The more recent  concept  of  computing
grids  offers  a  decentralized  approach  to  building  high
performance infrastructures in a very effective, economic
and  scalable  way.  Their  standardized  management  and
information services provide transparent access to distant
heterogeneous resources in order to deliver a “non trivial”
quality of service.

The architectural model proposed in this paper aims at
seamless  integration  of  a  data  warehouse  on  a  grid
computing  infrastructure.  The  obvious  benefits  from
deploying  large  amounts  of  detailed  data  and
precomputed aggregates on a grid are the possibilities for
parallel  computing,  decentralized  accesses,  storage  and
exchange of both original data and query results. From a
user  oriented  point  of  view  the  main  objective  is  to
provide a virtual data warehouse to specialists connecting
to different access points  of the computing grid  and to
satisfy their specific needs in terms of content,  axes of
analysis and levels of detail.

The  rest  of  this  paper  is  organized  as  follows:  in
section 2  we present related  work on data  warehouses,
their  deployment  on  distributed  system  and  data
management on computing grids. Section 3 presents our
approach to global data identification and fragmentation
of the data warehouse on a computing grid. Indexation of
the  identified  fragments  is  described  in  section  4  and
section 5 exemplifies its advantages for distributed query
evaluation.  Section  7  forms  the  conclusion  of  our
proposed  solution  and  section  6  finally  presents  some
future work on this particular model.
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2. Related work

The  initial  purpose  of  data  warehousing  was  first
described  by  W.H.  Inmon  [1] as  “a  subject  oriented,
integrated, time variant, nonvolatile collection of data in
support of management’s decisions”. The data is usually
extracted from databases in production use, transformed
and  stored  according  to  a  multidimensional  model  in
which  the  “dimensions”  are  specific  axes  of  analysis
relevant to future analysis and a cell represents the data
associated  to  specific  values  of  the  dimensions.  OLAP
systems  [2] represent  the  warehouse  data  in  form of  a
hypercube through which the user can navigate.

As an example, figure 1 represents a hypercube with 3
dimensions: location, product and time. A cell holds the
number  of  sold  units  for  a  given  product,  in  a  given
location at a given time.

figure 1 - OLAP hypercube

A classical internal structure for a data warehouse is the
so-called star schema [3] as shown in figure 2. It consists
of a central fact table containing the most detailed data of
the  warehouse,  the  so-called  facts.  These  are  linked to
several  dimension  tables  which  contain  all  data
concerning the available axes of analysis.

figure 2 - data warehouse star schema

In  a  multidimensional  model  a  dimension  is  often
organized according to a hierarchy described by a schema
with containment relations between hierarchy levels. Each

hierarchy level represents a level of detail for the fact data
itself or corresponding aggregates. The example in figure
3 shows the hierarchy of the time dimension using a day,
month and year schema. This particular  instance of the
dimension contains members from 2003 and 2004.

figure 3 - example of the time dimension schema and hierarchy

To improve query performance,  several  aggregations
on the detailed facts are precomputed and stored within
the  data  warehouse  as  well.  To  optimize  query
performance it is necessary to disperse the content of this
large  database  among  storage  nodes  of  distributed
systems  in  a  suitable  way.  Constraints  reducing  the
mobility  of  the  warehouse  data  within  the  distributed
system favor forms of vertical partitioning that keep the
warehouse fragments closest to their respective sources as
proposed  in  [4].  Given  an  already  assembled  data
warehouse that has to be optimized according to the users'
specific query profiles, it is more advantageous to apply a
horizontal  partitioning as  initially described  by  [5] and
used by [6], [7].

Client-side  cache  memory  systems  such  as  those
proposed  in  [8],  [9] aim at  reducing response times of
centralized data warehouses and  [10] even introduces a
peer-to-peer  network  between  clients  to  improve
reutilization  of  results.  These  systems  have  developed
techniques  to  efficiently  manage  fractions  of  data
contained  in  a  warehouse  by  introducing  “chunks”  of
data.  These  chunks  can  be  uniquely  identified  and
exchanged among peers or used to compute results from
existing cache content.

Our  assumptions  about  the  structure  of  computing
grids are best captured by I. Foster and C. Kesselman [11]
who define a computing grid as “a hardware and software
infrastructure  that  provides  dependable,  consistent,
pervasive,  and  inexpensive  access  to  high-end
computational  capabilities”.  According  to  [12],  grids
essentially “coordinate resources  that  are not subject  to
centralized  control”  and  use  “standard,  open,  general-
purpose  protocols  and  interfaces”.  Consequently  the
identifiers of data elements stored on grid nodes need to
be  published  to  make  them available  to  querying  and
exchange  with  other  nodes.  Existing  grid  information
systems like R-GMA [13] are well suited for this purpose.
Efficient  indexing  of  the  locally  materialized  data
becomes  essential  for  this  kind  of  distributed
infrastructure  and  is  one  of  the  main  requirements
formulated by [14]. Distributed query processing on grid
nodes also has existing solutions in the fields of service
discovery  [15] or  biological  analysis  [16].  These



approaches  focus  on  the  concurrent  evaluation  of  sub-
queries on parts of the data which performs particularly
well  on  horizontally  partitioned  data.  Integration  with
these kinds of grid services consists in dividing an OLAP
query into several tasks and subqueries depending on the
location and availability of the result data.

3. Data identification and fragmentation

In  order  to  be  well  adapted  to  a  computing  grid
infrastructure,  the  data  warehouse  must  be  entirely
distributed  among  grid  nodes  and  managed  in  a
completely decentralized way. To facilitate searching and
exchanging  data  between  grid  nodes  we  introduce  a
technique for unique, global and relevant identification of
warehouse data on the grid.

Unique identifiers  can  easily  be  found  for  the  most
detailed  data  in  the  warehouse  by using the  dimension
members directly connected to the facts. It  is important
for  any  effective  data  management  system  that  these
identifiers can be comparable and ordered in a way that
allows assembling them into greater entities. In order to
achieve  this  we  introduce  a  few  requirements  to  the
dimensions. 

Ordering dimension members

We note  i0   a total order relation on the set M i0  of
dimension members at the most detailed level (level 0) for
a  dimension  Di .  For  dimension  members  with non-
numeric values, so this order  must be determined using
semantics or simple methods like alphabetic sorting. We
suppose such an order can be found for each dimension
on the most detailed level. Because every subset of M i0

inherits the total order relation, we can define an interval
Ri0  of dimension members.

Let M i0  be the set of dimension members at the most
detailed level of the dimension hierarchy in one instance
of dimension Di .  Then an interval Ri0⊆M i0  is defined
as follows: 
Ri0=[ml , mu]={m |m , ml , mu∈M i0 , mli0 mi0 mu}

where  ml ist  the lowest  member  and  mu the  uppermost
member of the interval.
Example 1:

On the example of the time dimension, one can use a
chronological order on the set of members that represent
the days and thus obtain arbitrary intervals in time:
1st quarter 2004 = [“2004-01-01”, “2004-03-31”]
fiscal year 2004 = [“2003-10-01”, “2004-09-30”]

We next aim at reproducing the total order relation on
each hierarchy level. In order  to be managed efficiently
by  our  identification  and  indexation  system dimension
hierarchies  need  to  be  explicit  (defined  by  an  explicit
schema of hierarchy levels), strict (no dimension member

has more than one parent), onto (being represented by a
balanced tree) and covering (excluding parent-child links
that  span  more  than  one  hierarchy  level).  If  these
conditions are met, each dimension member mi0∈M i0  on
the  lowest  hierarchy  level  is  associated  to  exactly  one
member on each higher level and every data element is
represented by one member on each hierarchy level.

Based on the total order defined on the set of members
at  the  lowest  (most  detailed)  hierarchy  level  of  every
dimension instance we can now propagate the total order
relation  to  the  entire  hierarchy.  The  notion  of  interval
Rij⊆M ij  on these ordered sets is defined identically to

intervals on level 0:
Rij=[ml , mu]={m |m∈M ij , ml , mu∈M ij , mlij mij mu}

Example 2:
Continuing the example based on the time dimension,

we find that the order defined on the most detailed level is
easily propagated to the month and year level:
“2003-05”  i1   “2003-07”; “2003”  i2   “2004”

Base chunks and aggregated chunks

With the methods for efficient comparison and sorting
of  dimension  members  we  can  now  create  unique
identification  for  both  detailed  and  aggregated  data
elements. The notion of data “chunk” was introduced as
subdivision of data for  client-side OLAP result  caching
solutions in [8], [9] and [10]. We choose to apply the term
“chunk” to a concrete unit of warehouse data at the finest
grain possible and identify it by a unique combination of
dimension members.

Definition 1 – base chunk:

Let F be the fact table of a data warehouse star schema
and  D1 , , Dn  be  the  associated  dimensions.  A  base
chunk c is equivalent to one tuple of the fact table, i.e. it
contains  a  combination  of  dimension  members
m1 , , mn ,  one  for  each  dimension  and  one  or  more

facts f 1 , , f q . We note c=〈〈m1 , , mn〉 , f 1 , , f q〉 .
Example 3:

The base chunk containing the sales of Radios in the
city of Lyon on the 12th december 2003 is represented as
follows: c '=〈〈"Radio" ,"Lyon" ,"2003-12-12" 〉 ,123〉

Every base chunk can be uniquely identified through
the combination of  dimension members associated to  it
and  contains  the  corresponding  facts.  Publishing  their
identifiers  via  grid  information  services  offers  a  global
view of the available detailed data on the grid.

Because  a  base  chunk  contains  only  data  directly
stored  in  the  fact  table,  at  this  point  our  identification
method remains limited to the keys of the fact table. The
next  step  is  to  include  aggregates  that  are  often
precomputed  and  stored  in  so-called  views  or  OLAP
cuboids.  There  is  one  potential  OLAP cuboid  for  each
combination of aggregation levels that can be applied to



the set of dimensions. This combination must be added to
the identifiers in order to maintain their uniqueness.

Definition 2 – aggregated chunk:

An  aggregated  chunk  ca contains  aggregated  data
from a set of facts representing exactly one member on a
hierarchy level ji0  for  each dimension  Di.  We note
Lm=〈m1 j1

, , mnjn
〉  the list of dimension members for ca

and  Ld ca=〈 j1,  , jn〉  its list of hierarchy levels.  The
information  on  the  utilized  aggregation  functions
La=〈a1,  , aq〉  is also added to the identification data.

We  note  ca=〈〈m1 j1
, , mnjn

〉 , v1 , , vq , La〉  ,  where
vk=ak { f k1 , , f kr} ,  k∈{1,  , q} .  The  facts
{ f k1 , , f kr}  aggregated in ca are stored by a set of base

chunks {c1 , , cr} .
Example 4:

As shown by figure 4, the aggregated chunk containing
the sum of all computer products sold in December 2003
is created by computing the sum of sales for desktop PCs
and notebooks on the three days of December for which
data is available.

figure 4 - creating an aggregated chunk

The  aggregated  chunk  contains  the  results  of  the
aggregation operation on the facts extracted from the set
of  base  chunks  representing  the  elements  of  Lm.  By
limiting  this  approach  to  distributive  and  algebraic
aggregation functions like SUM or COUNT we allow the
calculation of aggregates from aggregates. In these cases
aggregated chunks can be created from aggregated chunks
of lower dimension hierarchy levels.

Horizontal partitioning

Horizontal  partitioning  of  a  relational  database  as
described by  [5] consists in breaking up one large table
into separate sets of tuples, called fragments. The content

of  these  fragments  is  determined  by  a  minimal  and
complete  set  of  selection  predicates  extracted  from  a
number  of  typical  queries.  The  data  contained  in  one
fragment  is  therefore  best  suited  for  answering  queries
from a particular user group or a specialized environment.
[6] and  [7] extend this method to partitioning of entire
star schemas. Selections are first made on the dimension
tables and then transmitted to the fact table via a semi-join
operation,  thus  creating  separate  instances  of  the  star
schema. Aggregated data is  commonly stored  in OLAP
cuboids. Following our identification model, these higher
cuboids  are  made  of  aggregated  chunks  sharing  a
common list  of  hierarchy levels  Ld=〈 j1,  , jn〉 .  This
similarity allows us to fragment them in the same fashion
using parts of the dimension tables.

Definition 3 - block of chunks:

A multidimensional block of chunks B is a contiguous
subset of warehouse data. It is represented by one interval
Rix per dimension, i.e. a list of intervals  {R1 j1

, , Rnjn
}

covering all dimensions. A block of chunks contains all
chunks  c=〈〈m1 , , mn〉 , f 1 , , f q ,[La ]〉  with
mk∈Rk , k∈{1,  , n} . All chunks  c∈B share the same

list of hierarchy levels.
Example 5:

One can imagine choosing all sales data in two months
for a range of products for an arbitrary region. This set of
data is represented by a block of base chunks defined by
the following intervals:
R10 =["Notebook" ,"CD Player"]  in products,
R21 =["2003-11" ,"2003-12"]  in time and
R30 =["St Etienne" ,"Marseille"]  in location. The block

of  chunks  will  thus  contain  all  data  between
c1 =〈〈"Notebook" ,"2003-11-01" ,"St Etienne"〉 , f 1〉  and
c2 =〈〈"CD Player" ,"2003-12-31" ,"Marseille"〉 , f 2〉 .

Definition 4 - horizontal fragment:

A horizontal fragment HF C={B1,  , B p} of an OLAP
cuboid  C is a set containing blocks of chunks with one
common  list  of  hierarchy  levels
Ld Bi=Ld B1∀ i∈{1,  , p} .

We obtain the same type of fragments of the fact table
as  the  original  method and  fragments  of  higher  OLAP
cuboids  by using aggregated chunks. As chunks all have
their corresponding dimension members tagged to them,
the knowledge of the dimension hierarchy is sufficient to
reconstruct the star schema equivalent to each fragment.

4. Indexing the data warehouse

Indexing the fragments of the data warehouse using a
combination of a lattice structure and a spatial indexing
structure  based  on  X-trees  ensures  the  availability  of



detailed information on the storage location of result data
and the possibilities for locally calculating results.

The underlying computing grid  structure offers local
storage units directly referenced by the indexing service.
Pointers to locally available data delivered by the index
service should be as direct as possible without invoking
many  additional  data  access  and  replica  management
services. It is necessary that all grid nodes participating in
the  operation  of  the  distributed data  warehouse  have  a
complete knowledge of the dimension instances with all
information concerning dimension hierarchies.

A lattice indexing local data

The superordinate structure for indexing fragments of
the data warehouse is inspired by a detailed form of the
OLAP  cuboid  lattice  with  one  vertex for  each
combination of dimension hierarchy levels  [9]. An edge
represents  an  aggregation  operation  on  a  dimension
leading from one hierarchy level to the parent level.

To  index  a  set  of  data  warehouse  fragments
materialized on a grid node, fragments with identical lists
of dimension hierarchy levels Ld are unified. For each one
of the resulting fragments one lattice vertex is created and
connected to the rest of the lattice. The result is a partial
instantiation  of  the  maximum  lattice  (figure  5)  that
provides  fast  access  to  available  categories  of  locally
materialized warehouse data.

figure 5 - maximum lattice structure for two dimensions

Spatial indexing of single fragments

The internal  structure  of  a  data  warehouse  fragment
requires a well adapted indexing mechanism. All blocks
of  chunks  contained  in  a  fragment  are  described  by
intervals on sets of dimension members  M 1 j1

, , M njn

for  all  dimensions,  where  Ld=〈 j1,  , jn〉  is  the
associated  list  of  dimension  hierarchy  levels.  The
cartesian  product  M 1 j1

××M njn
 on  these  sets  of

dimension members forms a multidimensional data space.

We assimilate the blocks of chunks to multidimensional
objects  in  form  of  hyperrectangles  located  between  a
lower and an upper limit.

The choice of a specialized spatial indexing structures
that  adapts  well  to  high-dimensional  data  spaces  is
therefore necessary to efficiently index a data warehouse
fragment. We use the X-tree introduced by [17]. It  is an
evolution of the R*-tree  [18], optimized to minimize the
number of splits  in high-dimensional spaces that  would
increase  the  height  of  the  tree  and  the  number  of
overlapping subtrees.

figure 6 - X-tree indexing blocks of chunks in two dimensions

Blocks of chunks are the objects indexed by the leaf
nodes  of  the  X-tree.  Non-terminal  directory  nodes
represent at least two child nodes through the minimum
hyperrectangle containing them. Supernodes with a higher
capacity avoid disadvantageous splits of directory nodes.
Indexing  a  locally  materialized  fragment  of  the  data
warehouse is done by inserting its blocks into the X-tree
structure  of  the  corresponding  node  in  the  lattice
structure.

Integration of computable data

Once  materialized  fragments  are  indexed  it  is  also
possible to integrate information on aggregates that can
be computed from existing data. Aggregates can only be
computed  from  data  retrieved  from  lattice  nodes  of
inferior  aggregation  levels  or  from  detailed  data.  The
utilized  method  to  determine  if  an  aggregate  chunk  is
computable  from a  set  of  chunks  from another  lattice
node is inspired by the mechanism presented in [9]. It is
based on a virtual counter for every chunk containing the
number of paths in the lattice through which this chunk
can be computed.

Let  c1  be  an aggregated  chunk and  C 1  the  set  of
chunks (aggregated or base) that represent  c1 on a lower
hierarchy level. Then c1 can be computed from any block
B1 of  chunks with  C1 ⊆B1 .  We  therefore  add  a  node
representing c1  in the corresponding X-tree that contains
the number of blocks B1  materialized in the lattice from
which c1  can be computed.
Example 6:



As shown by figure 7, the sum of monthly sales for a
particular product stored in the block of chunks B2 can be
used to compute yearly sales represented by the virtual
block of chunks B2'.

figure 7 - combined indexing including computable data

5. Query evaluation

OLAP  query  processing  integrates  both  the  results
provided by the index and the capabilities of existing grid
services in building distributed evaluation plans.

Querying the lattice

Different pieces of information on the requested result
data  are  extracted  from  the  initial  OLAP  query.  The
selection  predicates  used  by  the  query  contain  the
dimension members used to identify the result data and
the  hierarchy levels  on  the  dimensions  included  in  the
selection. Together with the content of the “GROUP BY”
clause one can determine the exact level of detail required
to answer the query. The gathered information for a given
query  Q is  represented by a list  of  requested hierarchy
levels Ld Q=〈 j1 , , jn〉 . We query the lattice structure
by searching for a vertex whose combination of hierarchy
levels matches Ld. If no such vertex exists within the local
lattice  the  index  does  not  contain  any  reference  to
potential  result  data.  If  the  required  vertex  exists,  the
evaluation can proceed to querying the X-tree connected
to it.
Example 7:

We consider the following OLAP query Q1 on our data
warehouse:
SELECT ProdName, Month, Region, SUM(NbProdSold)
FROM Facts, Product, Location, Time
WHERE ProdName=”CD Player”
GROUP BY Month, Region;
This query asks for an aggregate SUM of CD Player sales
at  a  detail  level  of  months for  the time dimension and
region for the location dimension. We obtain .

Querying the X-tree

The query on the X-tree requires a transformation of
the  original  OLAP  query's  selection  predicates.  The
transformation  consists  of  creating  an  ordered  list  of
requested chunks and then grouping together contiguous
parts  of  the  requested  data  to  create  queries  for
hyperrectangles  (blocks  of  chunks)  on  the  X-tree.
Processing the resulting list of chunk and block of chunk
queries provides detailed information on chunks or blocks
of  chunks  either  containing  result  data  that  are
materialized locally and directly referenced by the X-tree,
or  representing  result  data  that  can  be  (partially)
computed  from  locally  materialized  data,  or  missing
blocks of chunks that are materialized outside the scope
of the  local  index and need to  be  retrieved from other
nodes of the grid. If the result contains chunks or blocks
of  chunks  marked  as  computable  from  locally
materialized data, additional searching within the lattice is
performed  to  find  the  source  data  for  the  requested
aggregation.

Constructing a distributed evaluation plan

The information obtained from evaluating the query on
the  indexing structure  it  used  to  generate  a  distributed
evaluation plan for the query. It consists of a number of
tasks for the different grid services. These tasks include
loading  locally  available  data  into  memory,  computing
and loading of aggregates from locally available detailed
data  and  searching  and  transferring  missing  data  from
other grid nodes.

Computation of aggregates from local detailed data is
only worthwhile  if  the  service  executing the  query has
access to a sufficient amount of computing capacity which
can be negotiated with local resource brokers. The results
can  be  delivered  gradually  as  they  arrive  or  after  the
complete response is available.

6. Conclusion

We  have  introduced  a  data  model  for  managing  a
distributed data warehouse adapted to  the decentralized
and  heterogeneous  structure  of  computing  grids.  It  is
inspired  by  existing  methods  of  distributed  data
warehouse management. To build a basis for effectively
identifying the warehouse data on the grid we introduced
total  order  relations on the  sets  of  dimension members
throughout dimension hierarchies. The elementary unit of
warehouse data called a “chunk” was then introduced to
itself form a basis for a global indexation method for the
grid.  We then extended the “base chunk” to aggregated
data. These elements helped constitute contiguous blocks
of chunks and entire fragments of the data warehouse. In
order to provide efficient indexation and management of



the identified data structures, we developed a specialized
indexing  method.  It  combines  a  lattice  structure  with
spatial X-tree indexation to handle the multidimensional
space created by the warehouse data. A special capability
of this system is that it can include aggregated data that
can be computed from locally stored data. As a result we
obtain a method to efficiently evaluate OLAP queries that
best  exposes  the  distribution  and  potential  for  on-site
aggregation of data.

7. Future work

Future research on distributed data warehouses on grid
infrastructures  includes  work  on  the  partitioning  and
distribution of the data warehouse. Our approach is based
on the assumption that one needs to deploy a centralized
data warehouse on a computing grid.  However it  could
also be adapted to scenarios where existing data stored on
the grid that cannot be easily moved for storage capacity,
security or  property reasons needs to be integrated into
one  virtual  data  warehouse.  Making  the  distribution  of
data  evolve  with  changing  query  profiles,  limited
availability of data and dynamically changing conditions
for computing and data transfer on the grid is also part of
our goals. Updates and additions to the warehouse data
need to maintain consistency between detailed data and
aggregates computed from them. This kind of evolution
mechanism  would  help  achieve  decentralized
maintenance of the data warehouse.
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