Recurrent Neural Network with Caffe

Bonan CUAN
Recurrent Neural Network

- RNN: often handling sequential data to find patterns through time
- Weight sharing through time
 same weight matrices, invariant to time shift
- How to design recurrence?
- Unfolding/unrolling of RNN
 unfolded RNN: sequence becomes serial states in graph
Unrolling & Weight Sharing
Caffe

- A widely-adopted deep learning framework
 Berkeley Vision & Learning Center (BVLC)
- Soft-coding with multiple interfaces
 command lines, Python, MATLAB
- Modularity and Extensibility
 easy to design customized nets
- Speed
 fastest open-source deep learning framework
Caffe Net Example

Blobs and Layer

Net Example
Caffe Net Example

```
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  transform_param {  
    scale: 0.00392156862745  
  }
  data_param {  
    source: "examples/mnist/mnist_test_lmdb"  
    batch_size: 100  
    backend: LMDB  
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {  
    num_output: 20  
    kernel_size: 5  
    weight_filler {  
      type: "xavier"  
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {  
    pool: MAX  
    kernel_size: 2  
    stride: 2  
  }
}
```
RNN with Caffe?

- **No official version**
 no built-in sequential parameter sharing mechanism
 possible with unrolling structure

- **Manually shared parameters**
 by using the same “name” attribute
 NOT convenient: too many “ctrl+c/v” when facing long sequences

- **Third-party realization**
 e.g. Jeff Donahue’s Unrolled RNN, but out of date
 reinvent the wheel!
RNN with Caffe!

- **PyCaffe** or MatCaffe
 - rapid prototyping
 - easy access to nets, layers, blobs, parameters, etc.

- **Automatic unrolling of RNN**
 - by slicing the input to feed multiple time steps
 - by assigning different “name” attributes to the same layer in different time steps
 - by concatenating the outputs of all time steps

- **Parameter sharing through time**
 - by assigning the same “name” attribute to the parameters in different time steps
Unrolled RNN Structure

DATA

SLICE

OUTPUT T

HIDDEN T

data_slice T

label

time step

transition

output T

SLICE

output

CONCAT

output 1

V (OUTPUT 1)

hidden 1

U (HIDDEN 1)

data_slice 1

W

output 2

V (OUTPUT 2)

hidden 2

U (HIDDEN 2)

data_slice 2

W

output T

V (OUTPUT T)

hidden T

U (HIDDEN T)

data_slice T

W

LOSS & ACCURACY

output

data

label
Binary Addition with RNN

```python
def binary_addition_train(num_steps, batch_size):
    # number of hidden units
    num_hu = 3

    # net spec
    ns = caffe.NetSpec()

    # inputs
    ns.data, ns.label = L.HDF5Data(name='HDF5', include=dict(phase=caffe.TRAIN), ntop=2,
    # slice
    X = L.Slice(ns.data, name='X', ntop=num_steps, slice_param=dict(axis=3, slice_point=
    # initial hidden units
    ns.H = L.DummyData(dummy_data_param=dict(shape=dict(dim=[batch_size, 1, num_hu]), da
    output = []
    for t in xrange(num_steps):
        step = str(t+1)
        zX = L.InnerProduct(X[t], param=[dict(name='WX', lr_mult=1), dict(name='bX', lr_mult
        ns.__setattr__('_zX'+step, zX)
        zH = L.InnerProduct(ns.H, param=dict(name='WH', lr_mult=1), bias_term=False, num_ou
        ns.__setattr__('_zH'+step, zH)
        z = L.Eltwise(zX, zH, eltwise_param=dict(operation=P.Eltwise.SUM))
        ns.__setattr__('_z'+step, z)
        a = L.Sigmoid(z)
        ns.__setattr__('_a'+step, a)
        out = L.InnerProduct(a, param=[dict(name='WO', lr_mult=1), dict(name='b0', lr_mult=1
        ns.__setattr__('_out'+step, out)
        output.append(out)
    ns.output = L.Concat(*output, concat_param=dict(axis=1))
    # ns.accuracy = L.Accuracy(ns.output, ns.label)
    ns.loss = L.EuclideanLoss(ns.output, ns.label)
    return ns.to_proto()
```
Some Experiments

- GPU mode overwhelms CPU mode
- Difference of CPU changes little
- MKL is much faster than other BLASs, e.g. ATLAS & OpenBLAS