Octal Games on Graphs

Laurent Beaudou1, Pierre Coupechoux2, Antoine Dailly3, Sylvain Gravier4, Julien Moncel2, Aline Parreau3, Éric Sopena5

1LIMOS, Clermont-Ferrand
2LAAS, Toulouse
3LIRIS, Lyon
4Institut Fourier, Grenoble
5LaBRI, Bordeaux

This work is part of the ANR GAG (Graphs and Games).

CGTC 2017
Octal games

Definition

Octal games are:

- impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- Nim is 0.3333...
- Kayles is 0.137
- Cram on a single row is 0.07
- The James Bond Game is 0.007
Octal games

Definition
Octal games are:

▶ **impartial** games;
▶ played on **heaps of counters**;
▶ whose rules are defined by an **octal code**.
Octal games

Definition
Octal games are:

- **impartial** games;
- played on *heaps of counters*;
- whose rules are defined by an *octal code*.

Examples

- **NIM** is 0.3333...
Octal games

Definition
Octal games are:

- impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- NIM is 0.3333...
- KAYLES is 0.137
Octal games

Definition
Octal games are:

▶ **impartial** games;
▶ played on **heaps of counters**;
▶ whose rules are defined by an **octal code**.

Examples

▶ **NIM** is 0.3333...
▶ **KAYLES** is 0.137
Octal games

Definition

Octal games are:

- impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples

- NIM is 0.3333...
- KAYLES is 0.137
Octal games

Definition
Octal games are:
▶ impartial games;
▶ played on heaps of counters;
▶ whose rules are defined by an octal code.

Examples
▶ NIM is 0.3333…
▶ KAYLES is 0.137
Octal games

Definition
Octal games are:
▶ **impartial** games;
▶ played on **heaps of counters**;
▶ whose rules are defined by an **octal code**.

Examples
▶ **NIM** is 0.3333…
▶ **KAYLES** is 0.137 | | | | |
Definition
Octal games are:

▶ **impartial** games;
▶ played on **heaps of counters**;
▶ whose rules are defined by an **octal code**.

Examples

▶ **NIM** is 0.3333...
▶ **KAYLES** is 0.137
Octal games

Definition
Octal games are:

- **impartial** games;
- played on **heaps of counters**;
- whose rules are defined by an **octal code**.

Examples

- **NIM** is 0.3333...
- **KAYLES** is 0.137
- **CRAM** on a single row is 0.07
Octal games

Definition
Octal games are:

▷ **impartial** games;
▷ played on **heaps of counters**;
▷ whose rules are defined by an **octal code**.

Examples

▷ **NIM** is 0.3333...
▷ **KAYLES** is 0.137
▷ **CRAM** on a single row is 0.07
Octal games

Definition
Octal games are:

▶ **impartial** games;

▶ played on **heaps of counters**;

▶ whose rules are defined by an **octal code**.

Examples

▶ **NIM** is 0.3333...

▶ **KAYLES** is 0.137

▶ **CRAM** on a single row is 0.07
Octal games

Definition
Octal games are:
- impartial games;
- played on heaps of counters;
- whose rules are defined by an octal code.

Examples
- NIM is 0.3333...
- KAYLES is 0.137
- CRAM on a single row is 0.07
- The James Bond Game is 0.007
Octal games

Definition
Octal games are:

▶ impartial games;
▶ played on heaps of counters;
▶ whose rules are defined by an octal code.

Examples

▶ NIM is 0.3333...
▶ KAYLES is 0.137
▶ CRAM on a single row is 0.07
▶ The JAMES BOND GAME is 0.007

111111
Octal games

Definition
Octal games are:

- **impartial** games;
- played on **heaps of counters**;
- whose rules are defined by an **octal code**.

Examples

- **NIM** is 0.3333\ldots
- **KAYLES** is 0.137
- **CRAM** on a single row is 0.07
- **The James Bond Game** is 0.007
Octal games

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...
Octal games

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, . . .

Examples

- **NIM**: 0, 1, 2, 3, 4, 5, . . .
Octal games

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, ...

Examples

- **NIM**: 0, 1, 2, 3, 4, 5, ...
- **KAYLES**: 0, 1, 2, 3, 1, 4, 3, 2, ... after a **pre-period 72** it becomes periodic with **period 12**;
Octal games

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, . . .

Examples

- **NIM**: 0, 1, 2, 3, 4, 5, . . .
- **KAYLES**: 0, 1, 2, 3, 1, 4, 3, 2, . . . after a pre-period 72 it becomes periodic with period 12;
- **CRAM** on a single row: 0, 1, 1, 2, 0, 3, 1, 1, . . . after a pre-period 53 it becomes periodic with period 34
Octal games

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, \ldots

Examples

- **NIM**: 0, 1, 2, 3, 4, 5, \ldots
- **KAYLES**: 0, 1, 2, 3, 1, 4, 3, 2, \ldots after a **pre-period 72** it becomes periodic with **period 12**;
- **CRAM on a single row**: 0, 1, 1, 2, 0, 3, 1, 1, \ldots after a **pre-period 53** it becomes periodic with **period 34**
- **The James Bond Game**: 0, 0, 0, 1, 1, 1, 2, 2, 0, 3, 3, 1, 1, 1, 0, 4, \ldots still open, 2^{28} values computed!
Octal games

Grundy sequence

The **Grundy sequence** of an octal game is the sequence of its Grundy values for heaps of size 0, 1, 2, \ldots

Examples

- **NIM**: 0,1,2,3,4,5,\ldots
- **KAYLES**: 0,1,2,3,1,4,3,2,\ldots after a pre-period 72 it becomes periodic with period 12;
- **CRAM** on a single row: 0,1,1,2,0,3,1,1,\ldots after a pre-period 53 it becomes periodic with period 34
- **The James Bond Game**: 0,0,0,1,1,1,2,2,0,3,3,1,1,1,0,4,\ldots still open, 2^{28} values computed!

Conjecture (Guy)

All **finite** octal games have **ultimately periodic** Grundy sequences.
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Heap Diagram]</td>
<td>![Graph Diagram]</td>
</tr>
</tbody>
</table>

Removing counters from a heap
Disconnecting a graph

Playing on a heap ≡ Playing on a path
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td></td>
</tr>
</tbody>
</table>

- Removing counters from a heap
- Disconnecting a graph
- Splitting a heap
- Removing connected vertices from a graph
- Playing on a heap ≡ Playing on a path
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td></td>
</tr>
</tbody>
</table>

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
\]
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
```

```text
\[
\begin{array}{c}
\text{Playing on heaps} \\
\text{Removing *counters* from a *heap*} \\
\hline
\text{Playing on graphs} \\
\hline
\end{array}
```
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
</tbody>
</table>

```plaintext
I I I I
```

![Graph Diagram](image)
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
</tbody>
</table>

```
I   I   I   I
```

```
\begin{tikzpicture}
    \draw (0,0) -- (0.5,0);
    \draw (0,0) -- (0,0.5);
    \draw (0,0) -- (0,-0.5);
\end{tikzpicture}
```
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing \textit{counters} from a \textit{heap}</td>
<td>Removing \textit{connected vertices} from a \textit{graph}</td>
</tr>
</tbody>
</table>

\begin{itemize}
 \item \textbf{Splitting} a heap
\end{itemize}
Octal games on graphs

Natural generalization of the definition:

Playing on heaps

Removing **counters** from a **heap**

Splitting a heap

<table>
<thead>
<tr>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing connected vertices from a graph</td>
</tr>
</tbody>
</table>
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
<tr>
<td>Splitting a heap</td>
<td></td>
</tr>
</tbody>
</table>

```
   1 1 1 1
```

```
    o---o---o---o
    |             |
    |             |
```
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
<tr>
<td>Splitting a heap</td>
<td>Disconnecting a graph</td>
</tr>
</tbody>
</table>

[Diagram of a graph with disconnected vertices]
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters</td>
<td>Removing connected vertices</td>
</tr>
<tr>
<td>from a heap</td>
<td>from a graph</td>
</tr>
<tr>
<td>Splitting a heap</td>
<td>Disconnecting a graph</td>
</tr>
</tbody>
</table>
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.---</td>
</tr>
</tbody>
</table>
| | .

<table>
<thead>
<tr>
<th>Splitting a heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Playing on a heap</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Octal games on graphs

Natural generalization of the definition:

<table>
<thead>
<tr>
<th>Playing on heaps</th>
<th>Playing on graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing counters from a heap</td>
<td>Removing connected vertices from a graph</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Splitting a heap</td>
<td>Disconnecting a graph</td>
</tr>
</tbody>
</table>

Playing on a heap \equiv Playing on a path
Octal games on graphs

- **arc-kayles** (Schaeffer, 1978) is 0.07 FPT when parameterized by the number of rounds played (Lampis & Mitsou, 2014).

- **grim** (Adams et al., 2016) is 0.6.

- Study of cycles, wheels, random graphs, ... Scoring version of 0.6 (Duchêne et al., 2017+).

- **node-kayles** is not an octal game.
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- **GRIM** (Adams et al., 2016) is 0.6
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- **GRIM** (Adams *et al.*, 2016) is 0.6
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- **GRIM** (Adams *et al.*, 2016) is 0.6
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- **GRIM** (Adams et al., 2016) is 0.6
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)
- **GRIM** (Adams *et al.*, 2016) is 0.6
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)

- **GRIM** (Adams *et al.*, 2016) is 0.6
 - Study of cycles, wheels, random graphs, ...
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)

- **GRIM** (Adams et al., 2016) is 0.6
 - Study of cycles, wheels, random graphs,
 - Scoring version of 0.6 (Duchêne et al., 2017+)
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)

- **GRIM** (Adams et al., 2016) is 0.6
 - Study of cycles, wheels, random graphs, ...

- Scoring version of 0.6 (Duchêne et al., 2017+)

- **NODE-KAYLES** is **not** an octal game
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)

- **GRIM** (Adams *et al.*, 2016) is 0.6
 - Study of cycles, wheels, random graphs, ...

- Scoring version of 0.6 (Duchêne *et al.*, 2017+)

- **NODE-KAYLES** is not an octal game
Octal games on graphs

- **ARC-KAYLES** (Schaeffer, 1978) is 0.07
 - *FPT* when parameterized by the number of rounds played (Lampis & Mitsou, 2014)
 - Study of cycles and wheels, some sort of periodicity on specific stars (Huggan & Stevens, 2016)

- **GRIM** (Adams et al., 2016) is 0.6
 - Study of cycles, wheels, random graphs, ...

- Scoring version of 0.6 (Duchêne et al., 2017+)

- **NODE-KAYLES** is *not* an octal game
The game 0.33 on graphs

Rules
In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.
The game 0.33 on graphs

Rules

In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.
The game 0.33 on graphs

Rules

In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.
The game 0.33 on graphs

Rules

In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.
The game 0.33 on graphs

Rules
In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.
The game 0.33 on graphs

Rules
In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.

Remark
For every integer n, we have $G(P_n) = n \mod 3$.
The game 0.33 on graphs

Rules
In the game 0.33, both players alternate removing one or two adjacent vertices without disconnecting the graph.

Remark
For every integer n, we have $G(P_n) = n \mod 3$.

Corollary
A path can be reduced to its length modulo 3 without changing its Grundy value.
The game 0.33 on subdivided stars

Subdivided stars
A subdivided star $S_{\ell_1, \ldots, \ell_k}$ is a graph composed of a central vertex connected to k paths of length ℓ_1, \ldots, ℓ_k.

\[
\begin{align*}
S_{1,1,2} & \quad S_4 & \quad S_{1,2,3,6} & \quad S_{1,1,1,1,1,1,1,1}
\end{align*}
\]
The game 0.33 on subdivided stars

Subdivided stars
A subdivided star $S_{\ell_1, \ldots, \ell_k}$ is a graph composed of a central vertex connected to k paths of length ℓ_1, \ldots, ℓ_k.

\begin{center}
\begin{tabular}{ccc}
$S_{1,1,2}$ & S_4 & $S_{1,2,3,6}$ & $S_{1,1,1,1,1,1,1,1}$
\end{tabular}
\end{center}

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$. In other words, each path of a subdivided star can be reduced to its length modulo 3 without changing the Grundy value of the star.

\begin{center}
$S_{1,2,3,6}$
\end{center}
The game 0.33 on subdivided stars

Subdivided stars
A subdivided star \(S_{\ell_1, \ldots, \ell_k} \) is a graph composed of a central vertex connected to \(k \) paths of length \(\ell_1, \ldots, \ell_k \).

\begin{align*}
S_{1,1,2} & \quad S_4 \\
S_{1,2,3,6} & \quad S_{1,1,1,1,1,1,1,1,1}
\end{align*}

Theorem
For all \(\ell_1, \ldots, \ell_k \), we have \(G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3}) \).
In other words, each path of a subdivided star can be reduced to its length modulo 3 without changing the Grundy value of the star.

\begin{align*}
S_{1,2,3,6} & \equiv S_{1,2} = P_4
\end{align*}
The game 0.33 on subdivided stars

Subdivided stars

A **subdivided star** $S_{\ell_1, \ldots, \ell_k}$ is a graph composed of a central vertex connected to k paths of length ℓ_1, \ldots, ℓ_k.

![Graph diagrams](image-url)

$S_{1,1,2}$ S_4 $S_{1,2,3,6}$ $S_{1,1,1,1,1,1,1,1,1}$

Theorem

For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

In other words, each path of a subdivided star can be **reduced** to its **length modulo 3** without changing the Grundy value of the star.

![Graph diagrams](image-url)

$S_{1,2,3,6}$ $S_{1,2} = P_4$ P_1
The game 0.33 on subdivided stars

Theorem
For all \(\ell_1, \ldots, \ell_k \), we have
\[
G(S_{\ell_1}, \ldots, \ell_k) = G(S_{\ell_1 \mod 3}, \ldots, \ell_k \mod 3).
\]
The game 0.33 on subdivided stars

Theorem
For all \(\ell_1, \ldots, \ell_k \), we have \(G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3}) \).

Proof
We prove by induction that \(G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i + 3, \ldots, \ell_k}) \).
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof
We prove by induction that $G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i+3, \ldots, \ell_k})$.

\[+ \]
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof
We prove by induction that $G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i+3, \ldots, \ell_k})$.

\[\begin{align*}
\text{Diagram}
\end{align*}\]
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof
We prove by induction that $G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i + 3, \ldots, \ell_k})$.
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1}, \ldots, \ell_k) = G(S_{\ell_1 \mod 3}, \ldots, \ell_k \mod 3)$.

Proof
We prove by induction that $G(S_{\ell_1}, \ldots, \ell_i, \ldots, \ell_k) = G(S_{\ell_1}, \ldots, \ell_i + 3, \ldots, \ell_k)$.
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $\mathcal{G}(S_{\ell_1, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof
We prove by induction that $\mathcal{G}(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = \mathcal{G}(S_{\ell_1, \ldots, \ell_i+3, \ldots, \ell_k})$.

\begin{itemize}
 \item \[\begin{array}{c}
 \mathcal{G}(S_{\ell_1}) = \mathcal{G}(S_{\ell_1+3}) \\
 \mathcal{G}(S_{\ell_1} + S_{\ell_2}) = \mathcal{G}(S_{\ell_1+3} + S_{\ell_2+3}) \\
 \mathcal{G}(S_{\ell_1} + S_{\ell_2} + S_{\ell_3}) = \mathcal{G}(S_{\ell_1+3} + S_{\ell_2+3} + S_{\ell_3+3}) \\
 \mathcal{G}(S_{\ell_1} + S_{\ell_2} + S_{\ell_3} + S_{\ell_4}) = \mathcal{G}(S_{\ell_1+3} + S_{\ell_2+3} + S_{\ell_3+3} + S_{\ell_4+3}) \\
 \mathcal{G}(S_{\ell_1} + S_{\ell_2} + S_{\ell_3} + S_{\ell_4} + S_{\ell_5}) = \mathcal{G}(S_{\ell_1+3} + S_{\ell_2+3} + S_{\ell_3+3} + S_{\ell_4+3} + S_{\ell_5+3}) \\
 \mathcal{G}(S_{\ell_1} + S_{\ell_2} + S_{\ell_3} + S_{\ell_4} + S_{\ell_5} + S_{\ell_6}) = \mathcal{G}(S_{\ell_1+3} + S_{\ell_2+3} + S_{\ell_3+3} + S_{\ell_4+3} + S_{\ell_5+3} + S_{\ell_6+3}) \\
 \end{array} \]
\end{itemize}
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof
We prove by induction that $G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i + 3, \ldots, \ell_k})$.
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1}, \ldots, \ell_k) = G(S_{\ell_1 \mod 3}, \ldots, \ell_k \mod 3)$.

Proof
We prove by induction that $G(S_{\ell_1}, \ldots, \ell_i, \ldots, \ell_k) = G(S_{\ell_1}, \ldots, \ell_i + 3, \ldots, \ell_k)$.

\[
\begin{array}{c}
\text{+} \quad \text{+} \\
\end{array}
\begin{array}{c}
\text{-} \\
\end{array}
\begin{array}{c}
\text{+} \quad \text{+} \\
\end{array}
\]
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1}, \ldots, \ell_k) = G(S_{\ell_1 \mod 3}, \ldots, \ell_k \mod 3)$.

Proof
We prove by induction that $G(S_{\ell_1}, \ldots, \ell_i, \ldots, \ell_k) = G(S_{\ell_1}, \ldots, \ell_i + 3, \ldots, \ell_k)$.

\[P_\ell + S_{1,1,\ell} \]
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.

$G = \ell + 2 \mod 3$

$G = \ell - 1 \mod 3$

$G = \ell - 2 \mod 3$

$G = \ell \mod 3$
The game 0.33 on subdivided stars

Lemma
For all \(\ell \), we have \(G(S_{1,1,\ell}) = \ell \mod 3 \).

Proof
We use induction on \(\ell \).

\[
G(\bullet) = 0 \quad G(\circlearrowright) = 1
\]
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.

$G = \ell + 2 \mod 3$
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.

$G = \ell + 2 \mod 3$

$G = \ell - 1 \mod 3$

$G = \ell - 2 \mod 3$
The game 0.33 on subdivided stars

Lemma
For all ℓ, we have $G(S_{1,1,\ell}) = \ell \mod 3$.

Proof
We use induction on ℓ.

\[
G = \ell \mod 3
\]

\[
G = \ell + 2 \mod 3
\]

\[
G = \ell - 1 \mod 3
\]

\[
G = \ell - 2 \mod 3
\]
The game 0.33 on subdivided stars

Theorem
For all ℓ_1, \ldots, ℓ_k, we have $G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})$.

Proof
We prove by induction that $G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i + 3, \ldots, \ell_k})$.

\[
P_{\ell} + S_{1,1,\ell} \quad \Rightarrow \quad G(P_{\ell} + S_{1,1,\ell}) = 0
\]
The game 0.33 on subdivided stars

Theorem
For all \(\ell_1, \ldots, \ell_k\), we have \(G(S_{\ell_1, \ldots, \ell_k}) = G(S_{\ell_1 \mod 3, \ldots, \ell_k \mod 3})\).

Proof
We prove by induction that \(G(S_{\ell_1, \ldots, \ell_i, \ldots, \ell_k}) = G(S_{\ell_1, \ldots, \ell_i + 3, \ldots, \ell_k})\).

\[
P_\ell + S_{1,1,\ell} \\
G(P_\ell + S_{1,1,\ell}) = 0
\]

\(\Rightarrow\) We only need to study stars with paths of length 1 and 2
Grundy values of subdivided stars for the game 0.33
Grundy values of subdivided stars for the game 0.33

Number of paths of length 2 in the subdivided star

Number of paths in the subdivided star

∅ 0 1 2 3 4 5 ⋯ 2p 2p + 1
Grundy values of subdivided stars for the game 0.33

Number of paths of length 2 in the subdivided star

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & \cdots & 2p & 2p+1 \\
\emptyset & 0 & 1 & 2 & 3 & 4 & 5 & \cdots & 2p & 2p+1 \\
\end{array}
\]
Grundy values of subdivided stars for the game 0.33

Number of paths of length 2 in the subdivided star

∅ 0 1 2 3 4 5 \ldots 2p 2p + 1

Number of paths in the subdivided star

0 0 1 2 0 1 2 3 1 2

2p 3 1 2 0 3 1 2

2p + 1 1 2 0 3 1 2

(03)∗ 0
(12)∗ 1 2
The game 0.33 on subdivided bistars

Subdivided bistars

The **subdivided bistar** $S_1 \cdot^m \cdot S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

![Diagram of subdivided bistars](image)
The game 0.33 on subdivided bistars

Subdivided bistars
The subdivided bistar $S_1 \ast^m S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

Theorem
Each path of a subdivided bistar can be reduced to its length modulo 3 without changing the Grundy value of the bistar.
The game 0.33 on subdivided bistars

Subdivided bistars

The **subdivided bistar** $S_1 \cdot^m \cdot S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

\[S_{1,1} \cdot^1 \cdot S_{1,1} \quad S_{1,2} \cdot^2 \cdot \emptyset \quad S_{1,2,3} \cdot^3 \cdot S_{2,4} \]

Theorem

Each path of a subdivided bistar can be reduced to its length modulo 3 without changing the Grundy value of the bistar.

\[S_{1,2,3} \cdot^3 \cdot S_{2,4} \equiv S_{1,2} \cdot^3 \cdot S_{1,2} \]
The game 0.33 on subdivided bistars

Subdivided bistars

The **subdivided bistar** $S_1 \overset{m}{\rightarrow} S_2$ is the graph constructed by joining the central vertices of two subdivided stars S_1 and S_2 by a path of m edges.

\[
\begin{align*}
S_{1,1} & \overset{1}{\rightarrow} S_{1,1} \\
S_{1,2} & \overset{2}{\rightarrow} \emptyset \\
S_{1,2,3} & \overset{3}{\rightarrow} S_{2,4}
\end{align*}
\]

Theorem

Each path of a subdivided bistar can be **reduced** to its **length modulo 3** without changing the Grundy value of the bistar.

\[
\begin{align*}
S_{1,2,3} & \overset{3}{\rightarrow} S_{2,4} \\
S_{1,2} & \overset{3}{\rightarrow} S_{1,2} \\
\emptyset & \overset{3}{\rightarrow} S_{1,1,2,2}
\end{align*}
\]
The game 0.33 on subdivided bistars

We want to \textit{directly} compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.
The game 0.33 on subdivided bistars

We want to directly compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing on a subdivided bistar

Playing independently on the two subdivided stars
The game 0.33 on subdivided bistars

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

\[G(\text{subdivided bistar}) = 0 \quad G(\text{star}) = 0 \quad G(\text{subdivided bistar}) = 1 \quad G(\text{star}) = 0 \]

\[\Rightarrow \text{Refinement of } \equiv \frac{12}{19} \]
The game 0.33 on subdivided bistars

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

Playing on a subdivided bistar

Playing independently on the two subdivided stars

...except at the end!
The game 0.33 on subdivided bistars

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

![Diagram of subdivided bistar and its stars](image)

Playing on a subdivided bistar

...except at the end!

\[
G(\text{subdivided bistar}) = 0 \\
G(\text{subdivided star} + \text{linear star}) = 0
\]
The game 0.33 on subdivided bistars

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

\[
\begin{align*}
G(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}) & = 0 \\
G(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}) + \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} & = 0 \\
G(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}) & = 1 \\
G(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}) + \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} & = 0
\end{align*}
\]

Playing on a subdivided bistar

\[\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}\]

...except at the end!

Playing independently on the two subdivided stars
The game 0.33 on subdivided bistars

We want to **directly** compute the Grundy value of a subdivided bistar by using the Grundy values of its stars.

![Diagram of a subdivided bistar and two subdivided stars](image)

Playing on a subdivided bistar

...except at the end!

\[
G(\text{subdivided bistar}) = 0 \\
G(\text{subdivided stars}) = 0
\]

\[
G(\text{subdivided bistar}) = 1 \\
G(\text{subdivided stars}) = 0
\]

⇒ **Refinement** of \(\equiv\)
Refinement of \equiv for subdivided bistars

Reminder - Equivalence of games

$J_1 \equiv J_2 \iff \forall X, J_1 + X$ and $J_2 + X$ have the same outcome.
Refinement of \equiv for subdivided bistars

Reminder - Equivalence of games

\[J_1 \equiv J_2 \iff \forall X, \ J_1 + X \text{ and } J_2 + X \text{ have the same outcome.} \]

Refinement of \equiv

\[S \sim_1 S' \iff \forall X, \ S\bullet^1 X \text{ and } S'\bullet^1 X \text{ are equivalent.} \]
Refinement of \equiv for subdivided bistars

Reminder - Equivalence of games

$$J_1 \equiv J_2 \iff \forall X, \ J_1 + X \text{ and } J_2 + X \text{ have the same outcome.}$$

Refinement of \equiv

$$S \sim_1 S' \iff \forall X, \ S\cdot^1\cdot X \text{ and } S'\cdot^1\cdot X \text{ are equivalent.}$$

\[
\begin{array}{c}
\text{Refinement of } \equiv \\
\Rightarrow \\
\sim_1
\end{array}
\]
Refinement of \equiv for subdivided bistars

Reminder - Equivalence of games

\[J_1 \equiv J_2 \iff \forall X, J_1 + X \text{ and } J_2 + X \text{ have the same outcome.} \]

Refinement of \equiv

\[S \sim_1 S' \iff \forall X, S^{1} \cdot X \text{ and } S'^{1} \cdot X \text{ are equivalent.} \]

The Grundy classes will be split into several classes for \sim_1.

Equivalence classes of \sim_1 for the game 0.33

<table>
<thead>
<tr>
<th>Number of paths of length 2 in the subdivided star</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>\cdots</th>
<th>$2p$</th>
<th>$2p + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1^*</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^*</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0 \leftarrow 1^* \leftarrow 2^*$</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 \leftarrow 2^\square \leftarrow 0 \leftarrow 1^*$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0 \leftarrow 3^\square \leftarrow 1 \leftarrow 2^\square \leftarrow 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 \leftarrow 2^\square \leftarrow 0 \leftarrow 3^\square \leftarrow 1 \leftarrow 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0 \leftarrow 3^\square \leftarrow 1 \leftarrow 2^\square \leftarrow 0 \leftarrow 3 \leftarrow (03)^*$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 \leftarrow 2^\square \leftarrow 0 \leftarrow 3^\square \leftarrow 1 \leftarrow 2 \leftarrow (12)^*$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grundy values of subdivided bistars for the game 0.33

The Grundy value of $S_1 \cdot^{1} \cdot S_2$ depending on the classes of S_1 and S_2 is given by:
Grundy values of subdivided bistars for the game 0.33

The Grundy value of $S_1 \rightarrow S_2$ depending on the classes of S_1 and S_2 is given by:

\[
\begin{array}{cccccccc}
0 & 1 & 1^* & 2 & 2^* & 2 \square & 3 & 3 \square \\
\hline
0 & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ \\
1 & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ \\
1^* & ⊕ & ⊕ & 2 & ⊕ & 0 & ⊕ & ⊕ \\
2 & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ \\
2^* & ⊕ & ⊕ & 0 & ⊕ & 1 & 1 & ⊕ & 0 \\
2 \square & ⊕ & ⊕ & ⊕ & ⊕ & 1 & ⊕ & ⊕ & ⊕ \\
3 & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ & ⊕ \\
3 \square & ⊕ & ⊕ & ⊕ & ⊕ & 0 & ⊕ & ⊕ & ⊕ \\
\end{array}
\]

where $⊕$ is the Nim-sum.
Grundy values of subdivided bistars for the game 0.33

The Grundy value of $S_1 \cdot 1 \cdot S_2$ depending on the classes of S_1 and S_2 is given by:

$$
\begin{array}{cccccccc}
& 0 & 1 & 1^* & 2 & 2^* & 2^\square & 3 & 3^\square \\
0 & \oplus \\
1 & \oplus \\
1^* & \oplus & \oplus & 2 & \oplus & 0 & \oplus & \oplus & \oplus \\
2 & \oplus \\
2^* & \oplus & \oplus & 0 & \oplus & 1 & 1 & \oplus & 0 \\
2^\square & \oplus & \oplus & \oplus & \oplus & 1 & \oplus & \oplus & \oplus \\
3 & \oplus \\
3^\square & \oplus & \oplus & \oplus & \oplus & 0 & \oplus & \oplus & \oplus \\
\end{array}
$$

where \oplus is the Nim-sum.

\Rightarrow The values are still in the range $[0; 3]$
Equivalence classes of \sim_2 for the game 0.33

Number of paths of length 2 in the subdivided star

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>\cdots</th>
<th>$2p$</th>
<th>$2p+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>\Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>\Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>\Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>\Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\cdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$0 \Box 3 \Box 1 \Box 2 \Box 0 \Box 3 \Box (03)^* 0$

$1 \Box 2 \Box 0 \Box 3 \Box 1 \Box 2 \Box (12)^* 1 \Box 2$
Grundy values of subdivided bistars for the game 0.33

The Grundy value of $S_1 \xtwoheadrightarrow{2} S_2$ depending on the classes of S_1 and S_2 is given by:

\[
\begin{array}{cccccccccc}
& 0 & 0^* & 1 & 1^* & 1\square & 2 & 2^* & 2\square & 3 & 3\square \\
0 & \oplus & \oplus_1 & \oplus & 2 & \oplus_1 & \oplus & 0 & \oplus_1 & \oplus & \oplus_1 \\
0^* & \oplus_1 & \oplus_1 & \oplus_1 & 2 & \oplus_1 & \oplus_1 & 0 & \oplus_1 & \oplus_1 & \oplus_1 \\
1 & \oplus & \oplus_1 & \oplus & 3 & \oplus_1 & \oplus & 1 & \oplus_1 & \oplus & \oplus_1 \\
1^* & 2 & 2 & 3 & 0 & 3 & 0 & 1 & 1 & 1 & 0 \\
1\square & \oplus_1 & \oplus_1 & \oplus_1 & 3 & \oplus_1 & \oplus_1 & 1 & \oplus_1 & \oplus_1 & \oplus_1 \\
2 & \oplus & \oplus_1 & \oplus & 0 & \oplus_1 & \oplus & 2 & \oplus_1 & \oplus & \oplus_1 \\
2^* & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\
2\square & \oplus_1 & \oplus_1 & \oplus_1 & 1 & \oplus_1 & \oplus_1 & 2 & 0 & \oplus_1 & 1 \\
3 & \oplus & \oplus_1 & \oplus & 1 & \oplus_1 & \oplus & 3 & \oplus_1 & \oplus & \oplus_1 \\
3\square & \oplus_1 & \oplus_1 & \oplus_1 & 0 & \oplus_1 & \oplus_1 & 3 & 1 & \oplus_1 & 0 \\
\end{array}
\]

where \oplus is the Nim-sum and $x \oplus_1 y$ stands for $x \oplus y \oplus 1$.
Grundy values of subdivided bistars for the game 0.33

The Grundy value of $S_1 \bullet \leftrightarrow S_2$ depending on the classes of S_1 and S_2 is given by:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0*</th>
<th>1</th>
<th>1*</th>
<th>1☐</th>
<th>2</th>
<th>2*</th>
<th>2☐</th>
<th>3</th>
<th>3☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>2</td>
<td>⊕</td>
<td>0</td>
<td>⊕</td>
<td>0☐</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>0*</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>2</td>
<td>⊕</td>
<td>0☐</td>
<td>0</td>
<td>0☐</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>1</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>3</td>
<td>⊕</td>
<td>1</td>
<td>⊕</td>
<td>1☐</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>1*</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3☐</td>
<td>0</td>
<td>1</td>
<td>1☐</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1☐</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>3☐</td>
<td>1☐</td>
<td>1☐</td>
<td>⊕</td>
<td>⊕☐</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>2</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>0☐</td>
<td>2☐</td>
<td>⊕</td>
<td>2</td>
<td>⊕☐</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>2☐</td>
<td>0☐</td>
<td>0☐</td>
<td>1☐</td>
<td>1☐</td>
<td>1☐</td>
<td>2☐</td>
<td>2☐</td>
<td>3☐</td>
<td>3☐</td>
<td>3☐</td>
</tr>
<tr>
<td>2☐</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>1☐</td>
<td>1☐</td>
<td>1☐</td>
<td>2☐</td>
<td>0☐</td>
<td>⊕</td>
<td>1☐</td>
</tr>
<tr>
<td>3</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>3☐</td>
<td>1☐</td>
<td>3☐</td>
<td>⊕</td>
<td>⊕☐</td>
<td>⊕</td>
<td>⊕☐</td>
</tr>
<tr>
<td>3☐</td>
<td>⊕</td>
<td>⊕</td>
<td>⊕</td>
<td>0☐</td>
<td>3☐</td>
<td>3☐</td>
<td>1☐</td>
<td>⊕</td>
<td>0☐</td>
<td>⊕</td>
</tr>
</tbody>
</table>

where ⊕ is the Nim-sum and $x \oplus_1 y$ stands for $x \oplus y \oplus 1$.

⇒ The values are still in the range $[0; 3]$
The game 0.33 on trees
The game 0.33 on trees

Proposition
The reduction of paths to their length modulo 3 does not work on trees:
Proposition

The reduction of paths to their length modulo 3 does not work on trees:
The game 0.33 on trees

Proposition
The reduction of paths to their length modulo 3 does not work on trees:

\[
\begin{array}{c}
\text{\includegraphics[width=2cm]{tree1.png}} \\
\neq \\
\text{\includegraphics[width=2cm]{tree2.png}}
\end{array}
\]

Conjecture
For all \(n \geq 4 \), there exists a tree \(T \) such that \(\mathcal{G}(T) = n \).

\[
\mathcal{G}(\text{\includegraphics[width=5cm]{long_tree.png}}) = 10
\]
Conclusion

Summary
Conclusion

Summary

- Natural generalization of octal games on graphs;

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;
- Generalize some results on other octal games.
Conclusion

Summary

- **Natural generalization** of octal games on graphs;
- **Complete resolution** of 0.33 on subdivided stars and bistars: every path can be *reduced* to its *length modulo* 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars’ Grundy values;
- The result does not hold for trees.

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;
- Generalize some results on other octal games.
Conclusion

Summary

- **Natural generalization** of octal games on graphs;
- **Complete resolution** of 0.33 on subdivided stars and bistars: every path can be *reduced* to its *length modulo 3*;
- Expression of the Grundy value of a subdivided bistar as a *pseudo-sum* of its two stars’ Grundy values;
- Perspectives
 - Prove that trees can have arbitrarily large Grundy values;
 - Studying other graph classes;
 - Generalize some results on other octal games.
Conclusion

Summary

- **Natural generalization** of octal games on graphs;
- **Complete resolution** of 0.33 on subdivided stars and bistars: every path can be *reduced* to its *length modulo 3*;
- Expression of the Grundy value of a subdivided bistar as a *pseudo-sum* of its two stars’ Grundy values;
- The result *does not hold* for trees.

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;
- Generalize some results on other octal games.
Conclusion

Summary

▶ **Natural generalization** of octal games on graphs;
▶ **Complete resolution** of 0.33 on subdivided stars and bistars: every path can be **reduced** to its **length modulo 3**;
▶ Expression of the Grundy value of a subdivided bistar as a **pseudo-sum** of its two stars’ Grundy values;
▶ The result **does not hold** for trees.

Perspectives

▶ Prove that trees can have **arbitrarily large** Grundy values;
Conclusion

Summary

- **Natural generalization** of octal games on graphs;
- **Complete resolution** of 0.33 on subdivided stars and bistars: every path can be **reduced** to its **length modulo 3**;
- Expression of the Grundy value of a subdivided bistar as a **pseudo-sum** of its two stars’ Grundy values;
- The result **does not hold** for trees.

Perspectives

- Prove that trees can have **arbitrarily large** Grundy values;
- Studying other graph classes;
Conclusion

Summary

- **Natural generalization** of octal games on graphs;
- **Complete resolution** of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars’ Grundy values;
- The result does not hold for trees.

Perspectives

- Prove that trees can have **arbitrarily large** Grundy values;
- Studying other graph classes;
- **Generalize** some results on other octal games.
Conclusion

Summary

- Natural generalization of octal games on graphs;
- Complete resolution of 0.33 on subdivided stars and bistars: every path can be reduced to its length modulo 3;
- Expression of the Grundy value of a subdivided bistar as a pseudo-sum of its two stars’ Grundy values;
- The result does not hold for trees.

Perspectives

- Prove that trees can have arbitrarily large Grundy values;
- Studying other graph classes;
- Generalize some results on other octal games.

Merci