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Abstract. Conceptual Graphs are a powerful visual knowledge representation
language. In this paper we are interested in the use of Conceptual Graphs in the
setting of Ontology Based Data Access, and, more specifically, in reasoning in the
presence of inconsistency. We present different explanation heuristics of query
answering under inconsistency and show how they can be implemented under the
Conceptual Graphs editor COGUI.

1 Introduction

We place ourselves in a Rule-based Data Access (RBDA) setting that investigates how
to query multiple data sources defined over the same ontology represented using a
rule based language. The RBDA is a specific case of the Ontology Based Data Ac-
cess (OBDA) setting. In RBDA we assume that the ontology is encoded using rules.
The growing number of distinct data sources defined under the same ontology makes
OBDA an important and timely problem to address. The input to the problem is a set of
facts, an ontology and a conjunctive query. We aim to find if there is an answer to the
query in the facts (eventually enriched by the ontology).

More precisely, the RBDA problem stated in reference to the classical forward
chaining scheme is the following: “Can we find an answer to the query Q in a database
F ′ that is built from F by adding atoms that can be logically deduced from F and the
rule based ontologyR?”

In certain cases, the integration of factual information from various data sources
may lead to inconsistency. A solution is then to construct maximal (with respect to set
inclusion) consistent subsets of F called repairs [6, 20]. Once the repairs are computed,
there are different ways to combine them in order to obtain an answer for the query.

In this paper we address the RBDA problem from a Conceptual Graphs perspective.
Conceptual Graphs are powerful visual formalism for representing a subset of First
Order Logic covered by the RBDA setting.

We make explicit these links and focus on the case where we want to perform query
answering in presence of inconsistency. We present query answering explanation strate-
gies inspired from the link between the ODBA inconsistent-tolerant semantics and ar-
gumentation acceptance semantics[11]. Our work is inspired by the argumentation ex-
planation power [14, 25, 28].



2 Related work

There are two major approaches in order to represent an ontology for the OBDA prob-
lem and namely Description Logics (such as EL([2]) and DL-Lite [9] families) and rule
based languages (such as the Datalog+ [8] language, a generalization of Datalog that
allows for existentially quantified variables in the head of the rules). When using rules
for representing the ontology we would denote the OBDA problem under the name
of RBDA. Despite Datalog+ undecidability when answering conjunctive queries, there
exist decidable fragments of Datalog+ which are studied in the literature [5]. These
fragments generalize the above mentioned Description Logics families.

Here we follow the second method: representing the ontology via rules. We give a
general rule based setting knowledge representation language equivalent to the Datalog+

language and show how this language is equivalent to Conceptual Graphs with rules and
negative constraints.

Within this language we are mainly interested in studying the question of "why an
inconsistent KB entails a certain query α under an inconsistency-tolerant semantics".
Indeed, many works focused on the following questions: "Why a concept C is subsumed
(non-subsumed) by D" or "Why the KB is unsatisfiable and incoherent"? The need for
explanation-aware methods stems from the desire to seek a comprehensive means that
facilitates maintenance and repairing of inconsistent knowledge bases as well as un-
derstanding the underlying mechanism for reasoning services. In the field of databases
there has been work on explaining answer and non-answer returned by database systems
[1, 24, 23, 16, 15] using causality and responsibility or using a cooperative architecture
to provide a cooperative answer for query failing.

In the area of DLs, the question was mainly about explaining either reasoning (sub-
sumption and non-subsumption) or unsatisfiability and incoherence. In a seminal paper
McGuinness et al. [22, 7] addressed the problem of explaining subsumption and non-
subsumption in a coherent and satisfiable DL knowledge base using formal proofs as
explanation based on a complete and sound deduction system for a fragment of De-
scription Logics, while other proposals [27, 26, 3, 4] have used Axiom pinpointing and
Concept pinpointing as explanation to highlight contradictions within an unsatisfiable
and incoherent DL KB.

Another proposal [19, 18] is the so-called justification-oriented proofs in which the
authors proposed a proof-like explanation without the need for deduction rules. The
explanation then is presented as an acyclic proof graph that relates axioms and lemmas.
Another work [12] in the same context proposes a resolution-based framework in which
the explanation is constructed from a refutation graph.

3 Logical Language

We consider a (potentially inconsistent) knowledge base composed of the following:

– A set F of facts that correspond to existentially closed conjunctions of atoms. The
atoms can contain n-ary predicates. The following facts are borrowed from [21]:
F1 : directs(John, d1), F2 : directs(Tom, d1), F3 : directs(Tom, d2), F4 :
supervises(Tom, John), F5 : works_in(John, d1), F6 : works_in(Tom, d1).



– A set of negative constraints which represent the negation of a fact. Alternatively
negative constraints can be seen as rules with the absurd conclusion. Negative
constraints can also be n-ary. For example, N1 = ∀x, y, z (supervises(x, y) ∧
work_in(x, z) ∧ directs(y, z))→ ⊥ and
N2 = ∀x, y supervises(x, y) ∧manager(y)→ ⊥ are negative constraints.

– An ontology composed of a set of rules that represent general implicit knowledge
and that can introduce new variables in their head (conclusion). Please note that
these variables, in turn, can trigger new rule application and cause the undecidabil-
ity of the language in the general case. Different rule application strategies (chase),
including the skolemized chase, are studied in the literature. For example
R1 = ∀x∀dworks_in(x, d)→ emp(x)
R2 = ∀x∀d directs(x, d)→ emp(x)
R3 = ∀x∀d directs(x, d) ∧ works_in(x, d)→ manager(x)
R4 = ∀x emp(x)→ ∃y(office(y) ∧ uses(x, y))

A rule is applicable to set of facts F if and only if the set entails the hypothesis
of the rule. If rule R is applicable to the set F , the application of R on F produces a
new set of facts obtained from the initial set with additional information from the rule
conclusion. We then say that the new set is an immediate derivation of F by R denoted
by R(F ). For example R1(F5) = works_in(John, d1) ∧ emp(John).

Let F be a set of facts and letR be a set of rules. A set Fn is called anR-derivation
of F if there is a sequence of sets (derivation sequence) (F0, F1, . . . , Fn) such that: (i)
F0 ⊆ F , (ii) F0 isR-consistent, (iii) for every i ∈ {1, . . . , n− 1}, it holds that Fi is an
immediate derivation of Fi−1.

Given a set {F0, . . . , Fk} and a set of rules R, the closure of {F0, . . . , Fk} with
respect to R, denoted ClR({F0, . . . , Fk}), is defined as the smallest set (with respect
to ⊆) which contains {F0, . . . , Fk}, and is closed for R-derivation (that is, for every
R-derivation Fn of {F0, . . . , Fk}, we have Fn ⊆ ClR({F0, . . . , Fk})). Finally, we say
that a set F and a set of rulesR entail a fact G (and we write F ,R |= G) iff the closure
of the facts by all the rules entails F (i.e. if ClR(F) |= G).

Given a set of facts {F1, . . . , Fk}, and a set of rules R, the set of facts is called R-
inconsistent if and only if there exists a constraintN = ¬F such that ClR({F1, . . . , Fk})
|= F . A set of facts is said to beR-consistent if and only if it is notR-inconsistent.

A knowledge base K = (F ,R,N ), composed of a set of facts (denoted by F), a
set of rules (denoted by R) and a set of negative constraints (denoted by N ), is said to
be consistent if and only if F is R-consistent. A knowledge base is inconsistent if and
only if it is not consistent.

The above facts {F1, ..., F6} areR-inconsistent withR = {R1, ..., R4} since
{F1, F4, F6} activate together N1. Moreover, R3 can be applied on F1 and F5 deliver-
ing the new fact manager(John) which put together with F4 activate N2.

3.1 Conceptual Graphs Representation

Conceptual Graphs are a visual, logic-based knowledge representation knowledge rep-
resentation formalism. They encode a part of the ontological knowledge in a structure
called support. The support consists of a number of taxonomies of the main concepts



(unary predicates) and relations (binary or more predicates) used to describe the world.
Note that these taxonomies correspond to certain rules in Datalog. More complex rules
(for instance representing transitivity or symmetry of relations) or rules that introduce
existential variables in the conclusion are represented using Conceptual Graphs rules.
Finally, negative constraints represent rules with the conclusion the absurd operator (or,
logically equivalent, negation of facts).

The factual information is described using a bipartite graph in which the two classes
of the partition are the concepts, and the relations respectively.

We recall the definition of support and fact following [10]. We consider here a sim-
plified version of a support S = (TC , TR, I), where: (TC ,≤) is a finite partially ordered
set of concept types; (TR,≤) is a partially ordered set of relation types, with a specified
arity; I is a set of individual markers. A (simple) CG is a triple CG= [S,G, λ], where:

– S is a support;
– G = (VC , VR, E) is an ordered bipartite graph ; V = VC ∪ VR is the node set of
G, VC is a finite nonempty set of concept nodes, VR is a finite set of relation nodes;
E is the set of edges {vr, vc} where the edges incident to each relation node are
ordered and this ordering is represented by a positive integer label attached to the
edge; if the edge {vr, vc} is labeled i in this ordering then vc is the i-neighbor of
vr and is denoted by N i

G(vr);
– λ : V → S is a labeling function; if v ∈ VC then λ(v) = (typev, refv) where
typev ∈ TC and refv ∈ I ∪ {∗}; if r ∈ VR then λ(r) ∈ TR.

We denote a conceptual graph CG= [S,G, λ] by G, keeping support and labeling
implicit. The order on λ(v) preserves the (pair-wise extended) order on TC (TR), con-
siders I elements mutually incomparable, and ∗ ≥ i for each i ∈ I. Usually, CGs are
provided with a logical semantics via the function Φ, which associates to each CG a
FOL formula (Sowa (1984)). If S is a support, a constant is associated to each individ-
ual marker, a unary predicate to each concept type and a n-ary predicate to each n-ary
relation type. We assume that the name for each constant or predicate is the same as the
corresponding element of the support. The partial orders specified in S are translated
in a set of formulae Φ(S) by the following rules: if t1, t2 ∈ TC such that t1 ≤ t2, then
∀x(t2(x) → t1(x)) is added to Φ(S); if t1, t2 ∈ TR, have arity k and t1 ≤ t2, then
∀x1∀x2 . . . ∀xk(t2(x1, x2, . . . , xk)→ t1(x1, x2, . . . , xk)) is added to Φ(S).

If CG= [S,G, λ] is a conceptual graph then a formula Φ(CG) is constructed as fol-
lows. To each concept vertex v ∈ VC a term av and a formula φ(v) are associated:
if λ(v) = (typev, ∗) then av = xv (a logical variable) and if λ(v) = (typev, iv),
then av = iv (a logical constant); in both cases, φ(v) = typev(av). To each rela-
tion vertex r ∈ VR, with λ(r) = typer and degG(r) = k, the formula associated is
φ(r) = typer(aN1

G(r), . . . , aNk
G(r)).

Φ(CG) is the existential closure of the conjunction of all formulas associated with
the vertices of the graph. That is, if VC(∗) = {vi1 , . . . , vip} is the set of all concept
vertices having generic markers, then Φ(CG)= ∃v1 . . . ∃vp(∧v∈VC∪VR

φ(v)).
If (G,λG) and (H,λH) are two CGs (defined on the same support S) then G ≥ H

(G subsumes H) if there is a projection from G to H . A projection is a mapping π



from the vertices set of G to the vertices set of H , which maps concept vertices of G
into concept vertices of H , relation vertices of G into relation vertices of H , preserves
adjacency (if the concept vertex v in V GC is the ith neighbour of relation vertex r ∈ V GR
then π(v) is the ith neighbour of π(r)) and furthermore λG(x) ≥ λH(π(x)) for each
vertex x of G. If G ≥ H then Φ(S), Φ(H) |= Φ(G) (soundness). Completeness (if
Φ(S), Φ(H) |= Φ(G) then G ≥ H) only holds if the graph H is in normal form, i.e. if
each individual marker appears at most once in concept node labels.

A CG rule (Hyp,Conc) expresses implicit knowledge of the form “if hypothesis
then conclusion”, where hypothesis and conclusion are both basic graphs. This knowl-
edge can be made explicit by applying the rule to a specific fact: intuitively, when the
hypothesis graph is found in a fact, then the conclusion graph can be added to this fact.
There is a one to one correspondence between some concept nodes in the hypothesis
with concept nodes in the conclusion. Two nodes in correspondence refer to the same
entity. These nodes are said to be connection nodes. A rule can be represented by a
bicolored graph or by a pair of two CGs (represented, for instance, on the right and
respectively left hand side of the screen).

A rule R can be applied to a CG H if there is a homomorphism from its hypothesis
to H . Applying R to H according to such a homomorphism π consists of “attaching”
to H the conclusion of R by merging each connection node in the conclusion with the
image by π of the corresponding connection node in the hypothesis. When a knowledge
base contains a set of facts (say F) and a set of rules (sayR), the query mechanism has
to take implicit knowledge coded in rules into account. The knowledge base answers a
query Q if a CG F ′ can be derived from F using the rules ofR such that Q maps to F ′.

We note that using the (F ,R,N ) Datalog+ notation or the rule based Conceptual
Graphs with negative constraints has the same logical expressivity. However, the added
value of using Conceptual Graphs comes from the visual depiction of the knowledge.
This aspect is shown next, where the previous example knowledge base is depicted
using COGUI, a Conceptual Graphs editor developed by the LIRMM, University of
Montpellier 2.

3.2 COGUI CG Editor

All figures depict graphs drawn using the conceptual graph editor Cogui 1. CoGui is a
Conceptual Graphs editor. Please note that Cogui is also fully integrated with the con-
ceptual graph engine Cogitant 2 to perform reasoning on the above mentioned graphs.

Let us consider again the knowledge base previously considered:

– F : F1 : directs(John, d1), F2 : directs(Tom, d1), F3 : directs(Tom, d2), F4 :
supervises(Tom, John), F5 : works_in(John, d1), F6 : works_in(Tom, d1).

– N1 = ∀x, y, z (supervises(x, y) ∧ work_in(x, z) ∧ directs(y, z))→ ⊥ and
N2 = ∀x, y supervises(x, y) ∧manager(y)→ ⊥.

– The set of rules: R1 = ∀x∀dworks_in(x, d)→ emp(x)
R2 = ∀x∀d directs(x, d)→ emp(x)

1 http://www.lirmm.fr/cogui/
2 http://cogitant.sourceforge.net/



Fig. 1: Visualisation of a support (vocabulary) using CoGui

Fig. 2: Visualisation of two rules using CoGui

R3 = ∀x∀d directs(x, d) ∧ works_in(x, d)→ manager(x)

R4 = ∀x emp(x)→ ∃y(office(y) ∧ uses(x, y))

Figure 1 presents the concept type hierarchy, the relation type hierarchy and the list
of individuals. Please note that the rule hierarchy encodes the rules R1 and R2.

Rules R3 and R4 respectively are depicted in Figure 2. The negative constraints N1

and N2 are depicted in Figure 3.
Finally, the set of facts is represented in Figure 4.



Fig. 3: Visualisation of negative constraints using CoGui

Fig. 4: Visualisation of factual knowledge using CoGui

4 Dealing with inconsistency

We recall the definition of inconsistency. Given a set of facts {F1, . . . , Fk}, and a set of
rules R, the set of facts is called R-inconsistent if and only if there exists a constraint
N = ¬F such that ClR({F1, . . . , Fk}) |= F .

In Figure 5 we can see that there is a negative constraint entailed by the facts en-
riched by the rules. The image of the negative constraint by homomorphism is repre-
sented in red (if color is available) or darker shade of grey (greyscale).

Like in classical logic everything can be entailed from an inconsistent knowledge
base. Different semantics have been introduced in order to allow query answering in
the presence of inconsistency. Here we only focus on the ICR (Intersection of Closed
Repair) semantics defined as follows:



Fig. 5: Visualisation of factual knowledge using CoGui

Definition 1. Let K = (F ,R,N ) be a knowledge base and let α be a query. Then α is
ICR-entailed from K, written K |=ICR α if and only if

⋂
A′∈Repair(K) ClR(A

′) |= α.

In the above example, we obtain 6 repairs. The following are one of them (closed
under set of rules):

A1 = {directs(John, d1), directs(Tom, d1), directs(Tom, d2),
supervises(Tom, John), emp(John), emp(Tom),∃y1(office(y1)∧uses(Tom, y1)),
∃y2(office(y2) ∧ uses(John, y2))}
The intersection of the closed repairs is:⋂

ClR(A) = {directs(Tom, d1), directs(Tom, d2), emp(Tom),

∃y uses(Tom, y),∃yoffice(y)}.
Another possibility to deal with an inconsistent knowledge base in the OBDA set-

ting is to define an instantiation [11] of Dung’s abstract argumentation theory [13].
An argumentation framework is composed of a set of arguments and a binary relation
defined over arguments, the attack.

Definition 2 (Argument). [11] An argument A in a knowledge base K = (F ,R,N )
is a tuple A = (F0, . . . , Fn) where:
• (F0, . . . , Fn−1) is a derivation sequence w.r.t K.
• Fn is an atom, a conjunction of atoms, the existential closure of an atom or the

existential closure of a conjunction of atoms such that Fn−1 |= Fn.

We can extract from each argument its sub-arguments.

Definition 3 (Sub-argument). Let K = (F ,R,N ) be a knowledge base and A =
(F0, F1, . . . , Fn) be an argument. A′ = (F0, . . . , Fk) with k ∈ {0, ..., n − 1} is a
sub-argument of A iff (i) A′ = (F0, . . . , Fk) is an argument and (ii) Fk ∈ Fk+1.

Let A = (F0, ..., Fn) be an argument, then Supp(A) = F0 and Conc(A) = Fn.
Let S ⊆ F a set of facts, Arg(S) is defined as the set of all arguments A such that
Supp(A) ⊆ S.



An argument corresponds to a rule derivation. Therefore we can use the Cogui ed-
itor in order to depict arguments (via the depiction of rule derivations). In Figure 6 an
example of a derivation is depicted. The added information by the rule is visible due to
the changed color (pink in color, darker shade of grey on grey scale).

Fig. 6: Visualisation of a rule derivation using CoGui

Definition 4 (Attack). [11] LetK = (F ,R,N ) be a knowledge base and let a, b ∈ A.
The argument a attacks b, denoted by (a, b) ∈ Att, iff there exists ϕ ∈ Supp(b) such
that the set {Conc(a), ϕ} isR-inconsistent.

Definition 5 (Argumentation framework). [11] Let K = (F ,R,N ) be a knowledge
base, the corresponding argumentation framework AFK is a pair (A = Arg(F), Att)
where A is the set of arguments that can be built from F and Att is the attack relation.
Let E ⊆ A and a ∈ A.
• We say that E is conflict free iff there exists no arguments a, b ∈ E such that

(a, b) ∈ Att.
• E defends a iff for every argument b ∈ A, if we have (b, a) ∈ Att then there exists

c ∈ E such that (c, b) ∈ Att.
• E is admissible iff it is conflict free and defends all its arguments.
• E is a preferred extension iff it is maximal (with respect to set inclusion) admissible

set.
• E is a stable extension iff it is conflict-free and ∀a ∈ A\E , there exists an argument

b ∈ E such that (b, a) ∈ Att.
• E is a grounded extension iff E is a minimal (for set inclusion) complete extension.
We denote by Ext(AFK) the set of extensions of AFK . We use the abbreviations

p, s, and g for respectively preferred, stable and grounded semantics. An argument is
skeptically accepted if it is in all extensions, credulously accepted if it is in at least one
extension and rejected if it is not in any extension.

The following results are then showed by [11]:



Theorem 1. [11] Let K = (F ,R,N ) be a knowledge base, let AFK be the corre-
sponding argumentation framework, α be a query, and x ∈ {s, p} be stable or preferred
semantics. Then K |=ICR α iff α sceptically accepted under semantics x.

5 Argumentative Explanation

In this section we define two different heuristics for explanation of inconsistency tol-
erant semantics. Since these heuristics work under inconsistent knowledge bases the
Cogui editor is not yet adapted to implement them. We note that explanations corre-
spond to the notion of argument, thus, the Cogui visual power could be easily adapted
for our case. Moreover, in section 5.1 we show the equivalence between one type of
explanation and a visual rule depiction in Cogui. This could be a starting point for the
explanation of queries under inconsistency using Cogui.

When handling inconsistent ontological knowledge bases we are interested in the
explanation of query answers conforming to a given semantics. More precisely we are
interested in explaining why a query α is ICR-entailed by an inconsistent knowledge
base K. By explanation we mean a structure that has to incorporate minimal set of
facts (w.r.t ⊆) and general rules that, if put together, will lead to the entailment of the
query α. According to this intuition (which coincides with the definition of [17]) and
the link between inconsistent ontological knowledge bases and logic-based argumenta-
tion framework, a first candidate of explanation is an argument. However, an argument
as defined in definition 2 can be cumbersome and difficult to understand, because the
information of how these derivations have been achieved and how they lead to the con-
clusion are missing. Therefore we propose a refined explanation that incorporates rules
as a crucial component.

Definition 6 (Explanation). Let K = (F ,R,N ) be an inconsistent knowledge base,
let α be query and letK �ICR α. An explanation for α inK is a 3-tupleE = (A,G,C)
composed of three finite sets of formulae such that: (1) A ⊆ F , G ⊆ R, (2) C � α, (3)
ClG(A) 2⊥ (consistency), (4) For every formula β inA, ClG(A−β) 2 C (minimality).
Such that ClG represents the closure w.r.t to the set of rules G.

We denote by EXP the universe of explanations and by EXPα the set of all ex-
planations for α. We denote the sets A, G and C as antecedents, general laws and
conclusions respectively. Here the definition specifies three important components for
explaining query α. First, the set A of antecedent conditions which is a minimal sub-
set of facts that entails the query α. Second, the set of general laws G (from now on,
rules) that produce the query α, the reason for integrating rules is that the user is of-
ten interested in knowing how we achieved the query. Finally, the third component is
the conclusion C (the answer for the query α). The definition also imposes a central
concept, namely explanation consistency.

An explanation can be computed directly from K or from an argumentation frame-
work using the following mapping A.

Definition 7 (Mapping A). Given an inconsistent knowledge baseK = (F ,R,N ) and
AFK = (A, Att) the corresponding argumentative framework. The mapping A is a
total function defined on A −→ EXP as E = A((F0, ..., Fn)) with:



– The set of antecedent conditions A = F0,
– The set of rules G ⊆ R, such that ∀r ∈ R, r ∈ G iff for all Fi in x the rule r is

applicable to Fi.
– The conclusion C = Fn iff ClG(A) � Fn.

Proposition 1 (Bijection of A). For any argument a ∈ A, the mapping A is a bijection.

The proposition follows from the definition of the mapping because for every argu-
ment we can construct one explanation. Since the mapping is a bijection, we call the
argument xe = A−1(e) the corresponding argument of an explanation e. We say the
argument xe supports the explanation e. The following proposition states that there is
always an explanation for an ICR-entailed query.

Proposition 2 (Existence of explanation). For every query α such thatK �ICR α, the
set EXPα is not empty.

Proof 1 On the one hand, if K �ICR α then the query α is sceptically accepted.
That means ∀E ∈ Ext(AFK), E � α. Hence there is an argument a ∈ E such that
Cons(a) � α. On the other hand, using the mapping A we have e = A(a) is an expla-
nation for α, namely e ∈ EXPα. Consequently EXPα 6= ∅

Example 1 (Corresponding Argument). Let us explain α = ∃x emp(x). We can build
the following argument for α:

a+α = ({works_in(Tom, d1)}, {works_in(Tom, d1), emp(Tom)}, emp(Tom)),
and the delivered explanation is:

Eα = ({directs(Tom, d1)}, {∀x∀dworks_in(x, d)→ emp(x)}, emp(Tom)).

There could be cases where the user wants to know how the set of rules and facts
interact in order to explain a query α. Put differently, a user-invoked explanation that
makes explicit any relation between the facts and the rules which lead to α. Notice that,
this type of user-invoked explanation is called deepened explanation and it should not
confounded with a proof-like explanation, because we are considering an inconsistent
and incomplete settings. For this reason the explanation below has not yet been imple-
mented as a stand alone plugin for Cogui (Cogui only deals with querying consistent
knowledge).

5.1 Deepened Explanation (d-explanation)

Definition 8 (d-explanation). Let K = (F ,R,N ) be an inconsistent knowledge base,
let α be a query and letK �ICR α. Then, the finite sequence of tuples d = 〈t1, t2, ..., tn〉
is a d-explanation for α iff:
1. For every tuple ti = (ai, ri) ∈ d such that i ∈ {1, ..., n}, it holds that ai ⊆ ClR(F)

and ri ∈ R.
2. For every tuple ti = (ai, ri) ∈ d such that i ∈ {2, ..., n} we have ai = a′i ∪ a′′i

where (i) ri−1(ai−1) � a′i, (ii) a′′i ⊆ ClR(F) and (iii) ri is applicable to ai. Note
that if i = 1 then a′i = ∅.

3. The tuple (an, rn) entails α (i.e rn(an) � α).



4. ClR(∪ni=0ai) 2⊥ (consistency).

We denote byD the universe of d-explanations and byDα the set of all d-explanations
for a query α.

The intuition about the d-explanation d is as follows: tuples in d represent
〈fact, applicable rule〉, and the sequence of tuples represents the order by which we
achieve the answer of the query. Think of it as a chain where each ai has a link with the
previous ai−1 through the rule ri−1. This is similar to the notion of derivation depicted
in Figure 6.

Example 2 (Deepened explanation). The deepened explanation associated to α is the
same as E and doesn’t provide more information. Let us consider the explanation of
α2 = ∃x office(x). A possible argument for α2 is:

a+α2
= ({works_in(Tom, d1)}, {works_in(Tom, d1), emp(Tom)},

{works_in(Tom, d1), emp(Tom),∃y(office(y) ∧ uses(Tom, y))},
∃y(office(y) ∧ uses(Tom, y))).

SoEα2 = ({works_in(Tom, d1)}, {∀x∀d directs(x, d)→ emp(x),∀x emp(x)→
∃y(office(y) ∧ uses(x, y))},∃yoffice(y)).

DE = (〈works_in(Tom, d1),∀x∀d directs(x, d)→ emp(x)〉,
〈emp(Tom),∀x emp(x)→ ∃y(office(y) ∧ uses(x, y))〉).

There is a bijection between an explanation e and a d-explanation d represented
here by the following mapping.

Definition 9 (Mapping D). Let K = (F ,R,N ) be an inconsistent knowledge base, α
be a query, e = (A,G,C) ∈ EXP be an explanation for α and d = 〈t1, t2, ..., tn〉 ∈ D
be a d-explanation for α. The mapping D is total function D : EXP −→ D, e −→ d
defined as follows:
1. For every tuple ti = (ai, ri) such that i ∈ {1, ..., n}, it holds that ri ∈ G.
2. For every tuple ti = (ai, ri) in D such that i ∈ {2, ..., n} we have ai = a′i ∪ a′′i

where ri−1(ai−1) � a′i, a
′′
i ⊆ A and ri is applicable to ai. Note that if i = 1 then

ai = A and ei is applicable to ai.
3. The tuple (an, rn) entails α (i.e rn(an) � α) and C � α.

Since the mapping is a bijection the existence of the inverse function is guaran-
teed. Thereby we consider the mapping D(e) as deepening the explanation e and the
inverse mapping D−1(d) as simplifying the d-explanation d. The advantage of such a
mapping is that it gives the users the freedom to shift from an explanation to another
which complies better with their level of understanding and their experiences. Also it
guarantees that every explanation can be deepened. As done before, we also define the
corresponding argument xd for a d-explanation d, as the corresponding argument xe
for an explanation e = D−1(d). This can be achieved by the following composition of
function: xd = (D ◦ A)−1(d).

6 Conclusion

In this paper we have presented an argumentative approach for explaining user query
answers in a particular setting, Namely, an inconsistent ontological knowledge base



where inconsistency is handled by inconsistency-tolerant semantics (ICR) and it is is-
sued from the set of facts. In this paper we have exploited the relation between on-
tological knowledge base and logical argumentation framework to establish different
levels of explanation ranging from an explanation based on the notion of argument to
a user-invoked explanation called deepened explanation. We have also shown the rela-
tion between every type of explanation using a one-to-one correspondence which gives
the user the possibility to deepen (or simplify) the explanation in hand. Future works
aims at studying the proposed explanation in the context of other inconsistency-tolerant
semantics. We are currently working on a Cogui based plug-in that only deals with
reasoning under inconsistency and the above mentioned semantics.
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