
Investigating the Mapping between Default Logic and
Inconsistency-Tolerant Semantics

Abdallah Arioua12, Nouredine Tamani3, Madalina Croitoru1, Jérôme Fortin1, Patrice
Buche2

1University Montpellier, France.
2IATE, INRA, Montpellier, France.
3INRIA Sophia Antipolis, France.

Abstract. In this paper we propose a mapping between inconsistent ontological
knowledge bases and semi-monotonic, prerequisite-free closed normal default
theories. As a proof of concept of the new results obtained by the proposed map-
ping we introduce an any-time algorithm for query answering that starts off by a
small set of facts and incrementally adds to this set.

1 Introduction

The ONTOLOGY-BASED DATA ACCESS (ODBA) problem [18] investigates querying
multiple data sources defined over the same ontology [13]. We distinguish ourselves
from other approaches in the OBDA community by considering a rule based language
that gains more and more interest from a practical point of view [4]. We consider exis-
tential variables in the head of the rules as well as n-ary predicates and conflicts (and
generalise certain subsets of Description Logics (e.g. DL-Lite) [1, 5]). The tractabil-
ity conditions of the considered rule based language rely on different saturation (chase)
methods [15]. For algorithmic considerations here we will restrict ourselves to a tractable
fragment (such as weakly-acyclic rule sets) [4].

The hypothesis made by OBDA setting is that each data source is assumed to be
self-consistent along with the ontology, whereas the integration of homogeneous fac-
tual information from all data sources might be no longer consistent [12]. A common
solution is to construct a maximal (with respect to set inclusion) consistent subsets
of the knowledge base called repair. Once repairs computed, different semantics can
be used for query answering over the knowledge base. In this paper we focus on All
Repairs semantics (AR-semantics) and Brave-semantics [2, 3, 12].

Much research has been undertaken in the field of Default Logics and several tools
and frameworks have been developed (GaDeL [16], X-Ray [21], DeReS[6]). More-
over, there was an increasing interest in relating Reiter’s Default Logic to other non-
monotonic formalism such as Minimal Temporal Epistemic Logic [8], Autoepistemic
Logics [11, 9], Circumscription [10], Argumentation [7] and the modal logic S4F [22].
Any attempt to find a relation between inconsistency handling in OBDA and Reiter’s
Default Logic would benefit from such well-established tools and equivalent formalisms.
To the best of our knowledge, there is no work on relating both inconsistent ontological
knowledge bases semantics and Reiter’s Default Logic considering (1) the expressive



setting of existential rules [4] and (2) assuming that the inconsistency comes from the
set of facts. Our work differs from existing work in the literature considering a similar
intuition but only focusing on the propositional case.

The contribution of the paper lies in the following points. We propose an efficient
(with respect to time and space complexity) mapping between inconsistent ontological
knowledge bases (expressed in a general rule-based language) and a class of default
theories (semi-monotonic, precisely prerequisite-free closed normal default theories).
We formally prove the equivalence between the inconsistency-tolerant semantics (AR
and Brave) in OBDA and inference in Default Logic (sceptical and credulous) in the
aforementioned class of default theories. We also formally prove the property of semi-
monotonicity for inconsistency-tolerant semantics. This property will serve as a basis
for an anytime algorithm for query answering.

We show that the non-ontological information (that is information contained in the
data sources, also called facts in the remainder of the paper) can be viewed as closed
normal defaults. Defaults along with the ontological rules will form a closed normal
default theory. We show then the link between default extensions and maximal consis-
tent subsets of facts (called repairs). Based on this link we obtain equivalences between
the inconsistency-tolerant semantics (AR and Brave) and inference in Default Logic
(sceptical and credulous).

From an engineering perspective, our work paves the way for an inconsistency han-
dling hybrid system that incorporates different formalisms at distinct levels. While the
algorithm presented in the paper constitutes a proof of concept of the benefit of our
mapping, it could be the case that clever application of algorithms for default logic
could improve the state of art in OBDA. For example, by bridging the gap between the
two fields we can make use of the relation between Reiter’s Default Logic and Answer
Set Programming [14] for an efficient query answering engine.

2 Preliminaries

Let us briefly recall the basics of the rule-based language used in this paper (equivalent
to Datalog± [4]), namely, existential rules, negative constraints, facts and knowledge
base as well as inconsistency-tolerant semantics.

2.1 Rule-Based Language

We consider The positive existential conjunctive fragment of first-order logic, which is
composed of formulas built with the connectives {∧,→} and the quantifiers {∃,∀}. We
consider first-order vocabularies with constants but no other function symbol. A term t
is a constant or a variable, different constants represent different values (unique name
assumption), an atomic formula (or atom) is of the form p(t1, ..., tn) where p is an n-
ary predicate, and t1, ..., tn are terms. A ground atom is an atom with no variables .
Given an atom or a set of atoms A, vars(A), consts(A) and terms(A) denote its set
of variables, constants and terms.

An existential rule (rule) is a first-order formula of the form R = ∀−→x ∀−→y (H →
∃−→wC) whereH (resp. C) is a conjunction of atoms called the hypothesis (resp. conclu-
sion) ofR. The variables in the hypothesis (resp. conclusion) are denoted as vars(H) =



−→x ∪−→y (resp. vars(C) = −→w ). Note that, the notation −→x represents a sequence of vari-
ables. We omit quantifiers and we use R = (H,C) as a contracted form of a rule
R. An existential rule with an empty hypothesis is called a fact. A fact is an exis-
tentially closed (with no free variable) conjunction of atoms. i.e. ∃x(teacher(x) ∧
employee(x)). This fact allows to assert an unknown individual which is an essen-
tial aspect in open-domain perspectives where it cannot be assumed that all individuals
are known in advance. A boolean conjunctive query has the same form as a fact. A
negative constraint is a rule with a conclusion equals to the truth constant false “⊥”.
N = ∀x, y, z (supervises(x, y) ∧ work_in(x, z) ∧ directs(y, z)) → ⊥ means it is
impossible for x to supervise y if x works in department z and y directs z.

Given a conjunction of atoms A1 and A2, a homomorphism π from A1 to A2 is a
substitution of vars(A1) by terms(A2) such that π(A1) ⊆ A2.

A rule R = (H,C) is applicable to a set of atoms A if and only if there ex-
ists A′ ⊆ A such that there is a homomorphism π from H to the conjunction of
elements of A′. For example, the rule ∀x(teacher(x) → employee(x)) is applica-
ble to the set {teacher(Tom), cute(Tom)}, since there is a homomorphism from
teacher(x) to teacher(Tom). If a rule R is applicable to a set A, the application of R
to A according to π produces a set A ∪ {π(C)}. In our example, the produced set is
{teacher(Tom), employee(Tom), cute(Tom)}. We then say that the new set (which
includes the old one and adds the new information to it) is an immediate derivation of
A by R. This new set is denoted by R(A). Since facts are conjunction of atoms, given
two facts f and f ′, f |= f ′ iff there is a homomorphism from f ′ to f .

Let F be a set of facts and R be a set of rules. An R-derivation of F is a finite
sequence 〈F0, ..., Fn〉 s.t F0 = F , and for all 0 ≤ i < n, there is a ruleRi = (Hi, Ci) ∈
R and a homomorphism πi fromHi to Fi s.t Fi+1 = Fi∪{π(Ci)}. For a set of facts F
and a query Q and a set of rules R, we say F ,R |= Q iff there exists an R-derivation
〈(F0 = F ), ..., Fn〉 such that Fn |= Q [15]. Given a set of facts {f0, . . . , fk} and a set of
rulesR, the closure of {f0, . . . , fk} with respect toR, denoted by ClR({f0, . . . , fk}),
is defined as the smallest set (with respect to ⊆) which contains {f0, . . . , fk}, and is
closed underR-derivation (that is, for everyR-derivation Di = 〈(F ′

1 = {fi}), ..., F ′
m〉

of fi ∈ {f0, . . . , fk} s.t i ∈ {0, ..., k}, we have F ′
m ⊆ ClR({f0, . . . , fk}) and m ∈ N.

Finally, we say that a set of facts F and a set of rules R entail a fact G (and we write
F ,R |= G) iff the closure of the facts by all the rules entails G (i.e. if ClR(F) |= G).

A knowledge base K = (F ,R,N ) is composed of finite set of facts F , finite set of
existential rules R and a finite set of negative constrains N . Given a knowledge base,
one can ask if a boolean conjunctive query Q holds or not. The answer to the query Q
is yes if and only if F ,R |= Q. In this paper we refer to a boolean conjunctive query as
query.

Given a knowledge base K = (F ,R,N ), a set {f1, . . . , fk} ⊆ F is said to be
inconsistent if and only if there exists a constraint N ∈ N such that {f1, . . . , fk} |=
HN , where HN denotes the hypothesis of the constraint N . A set of facts is consistent
if and only if it is not inconsistent. A set {f1, . . . , fk} ⊆ F is R-inconsistent if and
only if there exists a constraint N ∈ N such that ClR({f1, . . . , fk}) |= HN , where
HN is the hypothesis of the constraintN . A set of facts is said to beR-consistent if and



only if it is not R-inconsistent. A knowledge base (F ,R,N ) is said to be inconsistent
iff F isR-inconsistent.

Example 1. Let us consider the following knowledge base K = (F ,R,N ), with: F =
{teacher(Tom), student(Tom)},R = {∀x(teacher(x)→ university_member(x)),
∀x(student(x)→ university_member(x))}, N = {∀x(student(x) ∧teacher(x)
→ ⊥)}. It is obvious that K directly violates the constraint N (F is R-inconsistent
since ClR(F) entails the hypothesis of the negative constraint). Consequently, K is
inconsistent.

2.2 Inconsistency-Tolerant Semantics

Notice that (like in classical logic), if a knowledge base K = (F ,R,N ) is inconsis-
tent then everything can be entailed from it. A common solution [2, 12] is to construct
maximal (with respect to set inclusion) consistent subsets of K. These repairs repre-
sent different ways of regaining consistency while maintaining as much information as
possible from the original knowledge base. Such subsets are called repairs.

Definition 1 (Repair). Let K = (F ,R,N ) be a knowledge base. A repair A of K is
an inclusion-maximal subset of F such that (i) A is R-consistent, (ii) there exist no A′

such that A ⊂ A′ and A′ is R-consistent. The set of all repairs of K is denoted by
Repair(K).

Once the repairs are calculated, different semantics can be used for query answering
over the knowledge base1. For example, we may want to accept a query if it is entailed
by all repairs (AR-semantics), another possibility is to accept the query if it is entailed
by at least some repairs (Brave-semantics). The definitions of the previous semantics
are introduced by [2, 12] and adapted for the rule-based language:

Definition 2 (AR-Semantics). Let K = (F ,R,N ) be a knowledge base and let α be
a query. Then α is AR-entailed from K, written K |=AR α iff for every repair A′ ∈
Repair(K), it holds that ClR(A′) |= α.

Definition 3 (Brave-Semantics). Let K = (F ,R,N ) be a knowledge base and let α
be a query. Then α is brave-entailed from K, written K |=Brave α iff ClR(A′) |= α for
at least one A′ ∈ Repair(K).

Example 2 (Example 1 Cont.). Repair(K) = {A1,A2} with A1 = {teacher(Tom)}
andA2 = {student(Tom)}}. ClR(A1) = {teacher(Tom), university_member(Tom)},
ClR(A2) = {student(Tom), university_member(Tom)}. For example, we getK |=AR

university_member(Tom),K |=brave teacher(Tom) andK |=brave student(Tom).

1 These semantics are called inconsistency-tolerant semantics.



2.3 Reiter’s Default Logic

We presume a basic familiarity with Default Logic [19] and only recall basic notions.
In Default Logic, we represent certain facts about the world in a background theory
W , whereas we represent certain rules that express normally and generally in a set D,
these rules are called defaults. A default theory ∆ = (W,D) is a pair composed of
a background theory W and a set of defaults D expressed in a logical language (we
consider first-order logic). A default takes the form of δ = A : B/C, where A, B
and C are first-order logic (FOL) formulae (possibly, with free variables) denoted by
pre(δ), just(δ) and cons(δ) respectively and standing for prerequisite, justification
and conclusion respectively. The default is interpreted as "If it is the case thatA and it is
consistent to assumeB then deduce C”. A default δ where just(δ) = cons(δ) is called
a normal default, if δ has no free variables then it is closed. Moreover, if pre(δ) = ∅ we
call the default δ prerequisite-free. A default theory is said to be a closed normal default
theory if and only if all its defaults are closed and normal. A default theory may induce
zero, one, or multiple extensions:

Definition 4 (Reiter’s extension [19]). Let ∆ = (D,W ) be a default theory. The op-
erator Γ assigns to every set S of formulae the smallest set U of formulae such that: (i)
W ⊆ U, (ii) T h(U)=U, (iii) If (A : B/C) ∈ D ,U � A, S 2 ¬B, then C ∈ U. A set E of
formulae is an extension of ∆ if and only if E = Γ (E), that is, E is a fixed point of Γ .

Notice that, T h(U) is the deductive closure of U ( i.e. the set of logical consequences
of a set of formulae U).

Any extension represents a set of acceptable beliefs that can be deduced from an
incomplete description of the world described inW . Furthermore, for a given extension
E and a set of defaults D, the set of generating defaults for E with respect to ∆ is
GD(D,E) = {δ ∈ D|E � pre(δ) and E 2 ¬just(δ)}. For a set of defaults D′ ⊆
D we denote by Con(D′) the set of the conclusions of all defaults in D′, Namely,
Con(D′)={cons(δ) | δ ∈ D′}. Note that if G is the set of generating defaults for an
extension E then E=T h(W ∪ Con(G))[19].

Reiter defined some inference problems in Default Logic as follows. For a given
default theory ∆ = (W,D) a well-formed formula α is sceptically entailed from ∆
iff α belongs to all extensions of ∆. Whereas it is credulously entailed from ∆ iff it
belongs to at least one extension of ∆.

In this paper we are interested in closed normal default theories. This type of default
theories is a subset of the so called semi-monotonic default theories that have gained
an increasing interest for it desirable properties (it admits local proof procedures as
mentioned in [20, 19] and it is implemented in many systems such as X-Ray [17]).

Theorem 1. [19] Let ∆ = (W,D) be a closed normal default theory, let E and F be
two extensions of ∆ and let D,D′ be set of closed normal defaults s.t D′ ⊆ D. Then,
∆ enjoys the following properties:

1. Minimality: if F ⊆ E, then E = F.
2. Orthogonality: If F and E are distinct then F ∪ E is inconsistent.
3. Semi-monotonicity: if E′ is an extension of ∆′ = (W,D′) then ∆ = (W,D) has

an extension E s.t E′ ⊆ E and GD(D′, E′) ⊆ GD(D,E).



Theorem 2. [19] Let ∆ = (W,D) be a closed normal default theory such that D′ ⊆
D. Suppose that E′

1 and E′
2 are distinct extensions of (W,D′). Then ∆ has distinct

extensions E1 and E2 such that E′
1 ⊆ E1 and E′

2 ⊆ E2.

The property of semi-monotonicity in Theorem 1 stipulates that a closed normal
default theory is monotone with respect to the addition of new defaults. Theorem 2
implies that the addition of new closed normal defaults to a closed normal default theory
can never lead to a default theory with fewer extensions than the original.

3 A Default Logic Interpretation of Inconsistent Knowledge Base

In the OBDA setting we consider the set of facts as the source of inconsistency. Let
K = (F ,R,N ) be a knowledge base, the intuition underlying the mapping is that we
handle all the facts according to the principle “every fact in K is consistent with the rest
unless proven inconsistent”. That is, we transform each fact in F into a default while
maintaining the setR andN since they are assumed to be consistent. Specifically, if we
have a fact α in our knowledge base K we consider it as “generally consistent” until we
prove the other way around by developing our initial knowledge in W using defaults.
This leads to the following:

Definition 5 (Mapping τ ). LetK = (F ,R,N ) be an inconsistent knowledge base and
∆K = (W,D) be a closed normal default theory. Furthermore, Let S be the set of all
possible inconsistent knowledge bases and D be the set of all possible closed normal
default theories. The mapping τ is defined from S to D such that τ(K) = ∆K as
follows:

(a) The mapping τ associates for every fact fi ∈ F its default δfi = : fi/fi in D.
Notice that δfi is a prerequisite-free, closed normal default since facts in K are
either ground atoms or existentially closed conjunction of atoms (see Section 2.1).

(b) The mapping τ associates for every rule Ri ∈ R (Ni ∈ N , resp.) the sameRi (Ni,
resp.) in W .

One major implication of the mapping is that every inconsistent knowledge base
can be efficiently (w.r.t time and space) mapped to a closed normal default theory. The
benefit of such mapping is that we can handle inconsistency issues with a theoretically
and practically well-established framework (i.e. Default Logic). In what follows, we
present the application of mapping on Example 1.

Example 3. Consider K = (F ,R,N ) of example 1, the corresponding default theory
τ(K) = ∆K = (D,W ) is a closed normal default theory with a background knowl-
edge:

W = {∀x(teacher(x)→ university_member(x)),∀x(student(x)→ university
_member(x)),∀x(teacher(x) ∧ student(x)→ ⊥)}.
And a set of defaults:

• D = {: teacher(Tom)/teacher(Tom), : student(Tom)/student(Tom)}.

With a set of extensions Ext(∆K) = {E1, E2} such that:



• E1 = T h(W∪{teacher(Tom)}) = T h({teacher(Tom), university_member(Tom)}).
• E2 = T h(W∪{student(Tom)}) = T h({student(Tom), university_member(Tom)}).

The set of generating defaults for E1 (resp. E2) is the singleton GD(D,E1) =
{: teacher(Tom)/teacher(Tom)} (resp.GD(D,E2) = {: student(Tom)/student(Tom)}).

4 Equivalences and New Results

As stated above, the previous mapping establishes a relation between inconsistent knowl-
edge bases and closed normal default theories. We show how this relation also holds for
repairs and extensions; consequently between inconsistency-tolerant semantics and in-
ference in Default Logic.

Let K = (F ,R,N ) be an inconsistent knowledge base and ∆K = (D,W ) the cor-
responding default theory using the mapping τ . Let Ext(∆K) be the set of all extensions
of ∆K andRepair(K) the set of all repairs of K.

Proposition 1. For every extensionEi ∈ Ext(∆K) it holds that the setCon(GD(D,Ei)) ∈
Repair(K).

Proof 1 First, notice that the set Con(D)=F , since every fact in F has been mapped to
a default.

Let us first prove that the for every Ei ∈ Ext(∆K) the set Con(GD(D,Ei)) is
consistent (contradiction free). On the one hand, we have Con(GD(D,Ei)) ⊂ Ei. On
the other hand, since Ei is an extension then it has to be consistent (E 2⊥). Hence,
Con(GD(D,Ei)) has to be consistent. By means of contradiction we prove now that for
everyEi ∈Con(GD(D,Ei)) is maximally (w.r.t⊆) consistent subset ofF . Let us suppose
the contrary, i.e. Con(GD(D,E)) is not maximally consistent. Then there exists another
extension E′ for which Con(GD(D,Ei)) ⊆ Con(GD(D,E′)) such that GD(D,E′) is the
set of generating defaults of E′. Consequently, T h(W ∪ Con(GD(D,Ei))) ⊆ Cn(W ∪
Con(GD(D,E′))). In other words, Ei ⊆ E′ is in contradiction with Theorem 1 (mini-
mality).

Example 4 (Example 3 cont.). Consider∆K, we haveCon(GD(D,E1)) = {teacher(Tom)}
and Con(GD(D,E2)) = {student(Tom)}, it is obvious that Con(GD(D,E1)) ∈
Repair(K) and Con(GD(D,E2)) ∈ Repair(K).

On one hand, extensions in ∆K represent a maximal set of beliefs that can be to-
gether. On the other hand, repairs also represent a maximal non-conflicting set of facts.
Thus there is a relation between extensions and repairs.

Proposition 2. Every extension E contains one and only one repair A ∈ Repair(K).

Proposition 3. Every repair A ∈ Repair(K) is contained in one and only one exten-
sion E ∈ Ext(∆K).

Proof 2 First, we prove that every repair is contained in at least one extension. Next,
we prove that every repair is contained in only one extension.



1. On one hand we have A ⊆ F thus R ⊆ Con(D) (there exists a set of defaults
D′ ⊆ D such thatA = Con(D′)). On other hand, sinceA is maximally consistent
(w.r.t⊆), by definition we get ∀fi ∈ F−A, ClR(A∪fi) isR-inconsistent, similarly,
∀di ∈ D−D′ the set T h(W ∪A∪ cons(di)) �⊥. Therefore we conclude that; (1)
E = T h(W ∪ A) is closed under D′ (there is no default that can be applied), (2)
W ⊆ E; (3) T h(E) = E. Consequently,E is an extension (according to Definition
4) such that A ∈ E.

2. Now let us prove that E is the only extension that contains A. Suppose that E and
E′ are two extensions andA ∈ E andA ∈ E′, from (1) we have E = T h(W ∪A)
andE′ = T h(W ∪A), it is not hard to see thatE andE′ are not orthogonal which
contradicts Theorem 1.

From 1 and 2 we conclude that a repair A is contained in one and only one extension.

In the following example we show the relation between extensions and repairs.

Example 5 (Example 3 count.). Consider the repairs A1 and A2 of example 2 and the
extensions E1 and E2 of the corresponding default theory ∆K. One can clearly see that
E1 = T h({teacher(Tom), university_member(Tom)}) ⊃ A1 = {teacher(Tom)}
andE2 = T h({student(Tom), university_member(Tom)}) ⊃ A1 = {student(Tom)}.

Previous propositions in this section show that the mapping τ induces a link between
repairs and extensions. We use this link to prove the relation between AR-semantics and
sceptical inference and also between the Brave-semantics and credulous inference in
closed normal default theories.

Theorem 3. LetK = (F ,R,N ) be an inconsistent knowledge base, ∆K = (W,D) be
the corresponding closed normal default theory obtained by the mapping τ and let α
be a query. Then:

1. K �AR α iff α is sceptically entailed by ∆K.
2. K �brave α iff α is credulously entailed by ∆K.

In Example 2, we mentioned that the query α = university_member(Tom) is
AR-entailed by the knowledge base K (K �AR α). In the next example we show that α
is sceptically entailed by ∆K .

Example 6 (Example 3 count.). Consider the extensions E1 and E2 and let α1 =
university_member(tom) and α2 = teacher(tom). It is clear that α1 ∈ E1 and
α1 ∈ E2, thus α is sceptically entailed by ∆K. Whereas α1 belongs only to E1 thus α1

is credulously entailed by ∆K.

Note that a closed normal default theory always has an extension, and if it has more
than one extension then the extensions are inconsistent together (orthogonal). Based
on this we can observe that if the corresponding default theory ∆K has more than one
extension then K is inconsistent.

By virtue of the equivalences provided in this section, we can prove interesting prop-
erties about inconsistency-tolerant semantics. In Section 2 we have shown that closed



normal default theories enjoy the property of semi-monotonicity which states that the
extensions of the original theory are always preserved within the extension of the new
theory (with the addition of new closed normal defaults). We show how this property
holds in inconsistency-tolerant semantics.

Theorem 4 (Semi-monotonicity). Let K = (F ,R,N ) and K′ = (F ′,R,N ) be two
inconsistent knowledge bases such that F ′ ⊆ F and let A′ be a repair of K′. Then, K
has a repair A ∈ Repair(K) such that A′ ⊆ A.

Proof. Let us suppose the following, K′ = (F ′,R,N ) and K = (F ,R,N ) such that
F = F ′ ∪ {f} (we get K by adding a new fact to F ′), suppose further that A1 ∈
Repair(K) and A′

1 ∈ Repair(K′), then either (1) A1 = A′
1 ∪ {f} is consistent, then

A1 is a repair of K such thatA′
1 ⊂ A1; or (2)A1 = A′

1 ∪ {f} is inconsistent, thus {f}
will form a new repair A2 such that {f} ∈ A2. In two cases there exists always a repair
A1 such that A′

1 ⊆ A.

The next corollary then follows.

Corollary 1. LetK = (F ,R,N ) andK′ = (F ′,R,N ) be two inconsistent knowledge
bases such that F ′ ⊆ F and let A′

1 and A′
2 be two repairs of K′. Then K = (F ,R,N )

has two repairs A1 and A2 such that A′
1 ⊆ A1 and A′

2 ⊆ A1.

This stipulates that for an inconsistent knowledge base K, K is monotone with re-
spect the addition of new facts. That means the repairs of a knowledge base with fewer
facts from the original knowledge base are always preserved within the repairs of the
original knowledge base. Notice that, K is non-monotone with respect to the addition
of new constraints, because the added constraints can alter its repairs.

In what follows we show the result of Corollary 1 and Theorem 4 on AR and Brave
semantics.

Proposition 4. Let K′ = (F ′,R,N ) and K = (F ,R,N ) be two inconsistent knowl-
edge bases such that F ′ ⊆ F and let α be a query. Then, (i) if K′ �brave α then
K �brave α; (ii) if K′ �AR α then K �brave α.

5 Conclusion

We have studied the relation between Default Logic and inconsistent ontological knowl-
edge bases within a rule-based language in the OBDA setting and shown that every
inconsistent knowledge base can be efficiently represented as a closed normal default
theory. This gives the possibility to bridge two different formalisms. We proved that
inconsistency-tolerant semantics enjoys the same property of a closed normal default
theory, namely semi-monotonicity. In addition, this work shows the expressiveness of
Default Logic as a powerful non-monotonic formalism that is capable of handling dif-
ferent problems. A further study on the equivalences with another variants of Default
Logic (constrained, justified, rational, etc) will be a matter of interest; as well as the
relation with Answer Set Programming given its computational efficiency.
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