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Abstract. Given a logic-based argumentation framework built over
a knowledge base in a logical language and a query in that language,
the query is universally accepted if it is entailed from all extensions.
As shown in [2, 14], universal acceptance is different from skepti-
cal acceptance as a query may be entailed from different arguments
distributed over all extensions but not necessarily skeptical ones. In
this paper we provide a dialectical proof theory for universal accep-
tance in coherent logic-based argumentation frameworks. We prove
its finiteness, soundness, completeness, consistency and study its dis-
pute complexity. We give an exact characterization for non-universal
acceptance and provide an upper-bound for universal acceptance.

1 Introduction

Dialectical proof theories have their roots in the dialogical approach
to logic traditions [23]. In the Greek antiquity logic was studied in
a dialogical context where two parties exchange arguments over a
central claim. In modern logic the dialogical approach (or dialogical
logics) is used to provide a game-theoretical semantics for logical
systems. Proofs according to dialogical logics is a dialogue game
between two parties arguing about a thesis while respecting some
fixed rules. The dialogue is adversarial where one party plays the role
of the defender of the thesis (proponent) and the other argues against
the thesis (opponent). Each dialogue ends after a finite number of
moves with a winner and a loser.

Since the work of Dung [16] many attempts have been made to
adapt the dialogical approach to provide formal proof theories for
formal argumentation, this is often referred to as dialectical proof
theories. The works of [20, 28] define, similarly to dialogical logic, a
dialectical proof theory as an argument game with a winning criterion
alongside with a legal move function that decides the allowed moves
to be played. Given an argumentation framework, a semantics x and
an argument a, the objective is to prove whether the argument a is
skeptically/credulously accepted under a semantics x.

The TPI (Two Party Immediate response) procedure proposed in
[30] and further formalized in [17] is used for credulous and skep-
tical games in finite and coherent argumentation frameworks where
two players exchange arguments (moves) until one of them cannot
play. The justification status of the argument (skeptical/credulous)
is decided with respect to the wining criterion. The turn in TPI-
disputes shifts after one move with the move mi attacks the prece-
dent one (hence immediate response). Their dialectical proof theo-
ries are sound and complete. In [12], the same guideline is followed
but with a refinement on the size of the proof, where [12] produces
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shorter proofs than [17]. In [25] a different dialectical proof theory
has been proposed for skeptical acceptance where, instead of ex-
changing arguments the proponent and the opponent exchange whole
admissible sets. The goal is to construct a block, which is an admis-
sible set of arguments that conflicts with all admissible sets around
the argument in question [25, Theorem 6.7]. Following the same
idea, [15] constructs such block in a meta-argumentation frame-
work within a meta-dialogue where admissible sets are considered
as moves, then the classical credulous proof theory of [12] is used as
a sub-procedure to prove skeptical acceptance. In [29] a more gen-
eral framework has been provided which is sound for any argumenta-
tion frameworks and it is complete for general classes of finitary ar-
gumentation frameworks including the class of finite argumentation
frameworks using the notions of dispute derivation and base deriva-
tion. For skeptical preferred, the proof theory proposes to find a base
then check whether it is complete or not. A base of an argument a is a
set of admissible sets that (each of which) contains a such that when-
ever a is in an extension then there is an admissible set in the base
that belongs to this extension. The base is complete if all extensions
contains an admissible set from the base.

When it comes to logic-based argumentation the situation is quite
different. In logic-based argumentation we differentiate between the
acceptance of an argument and the acceptance of a query. A query
is universally accepted under a semantics x if it is entailed from ev-
ery extension. A query is skeptically accepted under a semantics x
if it is entailed from a skeptically accepted argument. It is important
to notice that the universal acceptance of a query does not necessar-
ily mean that the query is skeptically accepted whereas the skeptical
acceptance of a query necessarily yields the universal acceptance of
the query. Skeptical acceptance can be easily handled by state of the
art dialectical proof theories. However, already proposed dialectical
proof theories fail when it comes to the universal acceptance as this
one is not implied by skeptical acceptance.

In this paper, following [17], we propose a new TPI-like dialecti-
cal proof theory for universal acceptance. We limit the scope of the
work to finite and coherent logic-based argumentation frameworks.
In coherent argumentation frameworks the stable and preferred ex-
tensions coincide. Therefore, our dialectical proof theory works for
all the above mentioned semantics. We show the soundness, com-
pleteness and finiteness of the proposed proof theory and analyse its
dispute complexity properties.

2 The Dialectical Proof Theory

2.1 Preliminaries and Motivating Example

To facilitate the readability of this section, we first introduce neces-
sary background notions then we shift directly to Example 1 (moti-



vating example) that shows how existing work cannot be applied to
universal acceptance. Then we give a complete characterization of
such acceptance.

We consider existential rules, widely used nowadays on the Se-
mantic Web [27, 6, 26], they generalize certain Description Logics
(such as EL [5] and DL-Lite [11] families) with cyclicity notions
and predicate arity. This language is a fragment of first-order logic
(aka Datalog± [10]) composed of formulas built with the only log-
ical connectives (∧,→), the quantifiers (∃,∀) and the special con-
stant ⊥. An atom is of the form p(t1, . . . , tk) where p is a predi-
cate of arity k and the ti are terms (variables or constants). A finite
set of atoms A is called an atomset, we denote by terms(A) (resp.
vars(A)) the set of terms (resp. variables) that occur in A. Given
atomsets A1 and A2, a homomorphism π from A1 to A2 is a substi-
tution of vars(A1) by terms(A2) such that π(A1) ⊆ A2. In this
case we sayA2 |= A1 where |= is the FOL entailment. An existential
rule is of the formR = ∀~x∀~y(B → ∃~zH), whereB andH are con-
junctions of atoms2, with vars(B) = ~x ∪ ~y, and vars(H) = ~x ∪ ~z.
B and H are respectively called the body and the head of R. A rule
with an empty body (resp. head set to ) is called a fact (resp. negative
constraint). A boolean conjunctive query (BCQ)Q has the form of a
fact. From now on we use the general term query to mean BCQ. We
denote variables by uppercase letters X,Y, Z, . . ., constants by low-
ercase letters a, b, c, . . . and predicate symbols by lowercase letters
p, q, r, s, etc.

A knowledge base K = (F ,R,N ) is composed of a finite sets
of facts F , rules R and negative constraints N . Facts represent fac-
tual knowledge about the world, rules represent generic rule-based
knowledge, and negative constraints represent logical falsehood (e.g.
∀X(cat(X) ∧ dog(X) → ⊥)). We say a rule R ∈ R is applicable
on a fact F ∈ F iff there is a homomorphism from F to the body
of R. This application gives a new fact F ′ which is the head of R
with instantiated variables. For instance ∀X(p(X) → q(X)) is ap-
plicable on p(a) and it gives q(a). The application of all rules R on
all facts F exhaustively until termination is referred to as the chase
and it produces the set of facts ClR(F ) (all deducible facts). We re-
strict our work to the finite expansion fragment that guarantees that
the chase halts and ClR(F ) is finite [6]. We say a query is entailed
from K iff ClR(F) |= Q. Since the chase always halts then query
entailment is decidable. For a given K, we say that a set of facts
F ⊆ F is inconsistent (consequently K) iff ClR(F) |= ⊥.

The definition of an argument in this language is similar to the
usual definition in logic-based argumentation of [7, 1].

Definition 1 (Argument). Given a knowledge baseK = (F ,R,N ).
An argument is a tuple (H,C) such that: (1) H ⊆ F with
ClR(H) 6|= ⊥ (consistency), and (2) C ∈ ClR(H) and H |= C
(entailment), and (3) there is no H ′ ⊂ H that verifies (1) and (2)
(minimality). The support (resp. conclusion) of an argument a are
denoted by Supp(a) = H (resp. Conc(a) = C).

We denote arguments by subscripted lowercase letters ai, bi, etc.
However, we may use a, b, . . . when there is no ambiguity.

Arguments may attack each other with different types of attacks
identified in the literature [8]. Here we focus on the assumption at-
tack of [18] as it satisfies the rationality postulates [14].

Definition 2 (Attack). An argument a attacks b iff ∃h ∈ Supp(b)
such that ClR({Conc(a), h}) |= ⊥.

Definition 3 (Argumentation framework). Let K = (F ,R,N ) be a
knowledge base. The corresponding argumentation framework is a
2 We follow [6] in considering conjunctions of atoms as atomsets.

pair H = (Arg(F),U) where Arg(F) is the set of all arguments
that can be constructed from F and U is the attack relation.

Notation 1. Let K be a knowledge base and H = (A,U) its corre-
sponding argumentation framework such that S ⊆ A. We denote:

• range+(a) = {b | (a, b) ∈ U}, range−(a) = {b | (b, a) ∈ U}.
• range+(S) =

⋃
a∈S range

+(a) and range−(S) =⋃
a∈S range

−(a).
• A set of arguments S attacks an argument b if there exists an ar-

gument a ∈ S with (a, b) ∈ U .

Definition 4 (Semantics). Let K be a knowledge base and H =
(A,U) its corresponding argumentation framework. Let E ⊆ A and
a ∈ A. We say that E is conflict free iff there exists no arguments
a, b ∈ E such that (a, b) ∈ U . E defends a iff for every argument
b ∈ A, if we have (b, a) ∈ U then E attacks b. E is admissible iff it is
conflict free and defends all its arguments. E is a preferred extension
iff it is maximal (w.r.t⊆) admissible set. E is a stable extension iff it is
conflict-free and for all a ∈ A\E , E attacks a. We denote by Ext(H)
the set of all extensions ofH under the preferred/stable semantics. An
argument is skeptically accepted if it is in all extensions, credulously
accepted if it is in at least one extension and rejected if it is not in
any extension.

It has been show in [14] that argumentation frameworks in our set-
ting are coherent, i.e. the stable and the preferred semantics coincide.

Definition 5 (Universal acceptance [2, 14]). Given an argumentation
framework H over an inconsistent knowledge base K. A query Q is
universally accepted inH if and only if ∀E ∈ Ext(H), Concs(E) |=
Q where Concs(E) =

⋃
a∈E Conc(a).

After introducing the universal acceptance, let us explain why it is
different from skeptical acceptance. Note that a query is skeptically
accepted if and only if it is entailed by a conclusion of a skeptically
accepted argument.

Example 1 (Motivating example). We consider an inconsistent
knowledge base K: F = {p(a), q(a), r(a)}, R = {∀X(p(X) →
s(X)), ∀X(q(X)→ s(X))} andN = {∀X(p(X)∧q(X)→ ⊥)}.

The arguments that can be built from F are:
• a1 = ({p(a)}, {p(a)}), a2 = ({q(a)}, {q(a)}).
• a3 = ({p(a)}, {s(a)}), a4 = ({q(a)}, {s(a)}).
• a5 = ({p(a), r(a)}, {p(a), r(a)}).
• a6 = ({q(a), r(a)}, {q(a), r(a)}).
• a7 = ({p(a), r(a)}, {s(a), r(a)}).
• a8 = ({q(a), r(a)}, {s(a), r(a)}).
• a9 = ({r(a)}, {r(a)}).

The attacks are U = {(a1, a2), (a1, a4), (a1, a6), (a2, a1),
(a2, a3), (a2, a5), (a5, a6), (a6, a5), (a2, a7), (a1, a8)}. The pre-
ferred extensions: E1 = {a1, a3, a5, a7, a9} and E2 =
{a2, a4, a6, a8, a9} with a9 = (r(a), r(a)) being a skeptical ar-
gument. As one may notice that the query Q = s(a) is not skepti-
cally accepted but it is universally accepted. Indeed, Q = s(a) can
be deduced from every extension (precisely, from the conclusions of
{a3, a7} ⊂ E1 and {a4, a8} ⊂ E2). However, Q′ = r(a) is univer-
sally and skeptically accepted. Note that the queryQ′′ = s(a)∧r(a)
is also universally accepted but not skeptically accepted.

In what follows we give a fine-grained characterization of univer-
sal acceptance that will help us to give a clear proof theory for it.
It turns out that universal acceptance can be characterized using the
concepts of query supporters, reduct, proponent set and block.



Definition 6 (Query’s supporters). Given an argumentation frame-
work H over an inconsistent knowledge base. The set of all argu-
ments that supports the queryQ is defined as follows:

SUP(Q) = {a | a is credulously accepted and Conc(a) |= Q}

Definition 7 (Reduct of extension). Given an extension E ⊆ A and
a query Q. The reduct EQ ⊆ E of the extension E w.r.t the query Q
is defined as the non-empty intersection SUP(Q)

⋂
E . The reduct of

the set of all extensions Ext(H) w.r.t Q is defined as Ext(H)Q =
{EQ|E ∈ Ext(H)}.

The reduct EQ of the extension E w.r.t the query Q is defined as
the set of all supporters of Q which belong to E . This means that a
complete set of reducts covers the set of all extensions.

Definition 8 (Complete reduct). The set of all reducts Ext(H)Q w.r.t
a queryQ is complete if and only if there exists no E ∈ Ext(H) such
that EQ /∈ Ext(H)Q.

An incomplete reduct corresponds to the case where there is an
extension that does not contain any supporter.

Proposition 1. A query Q is credulously accepted if and only if
Ext(H)Q 6= ∅. A query Q is universally accepted if and only if
Ext(H)Q is complete.

The proponent set is similar to the concept of a complete base in
[29]. Before defining it we need the concept of a hitting set.

Definition 9 (Hitting set). Given a collection C = {S1, ..., Sm} of
finite nonempty subsets of a set B (the background set). A hitting set
of C is a set A ⊆ B such that Sj ∩ A 6= ∅ for all Sj ∈ C. A hitting
set of C is minimal (w.r.t ⊆) if and only if no proper subset of it is a
hitting set of C. A minimum hitting set is a minimal hitting set w.r.t
set-cardinality.

Definition 10 (Proponent set). A set of arguments S ⊆ A is a pro-
ponent set of Q if and only if S is a minimal (w.r.t ⊆) hitting set of
Ext(H)Q.

Proposition 2. A query Q is universally accepted if and only if it
has a proponent set.

It is clear that a proponent set holds the smallest set of arguments
which are distributed over all extensions and support the queryQ. So,
if one extension does not contain any supporter then the query is not
universally accepted. The reason for the absence of such supporter
is what we call the presence of a block. We follow the notion of a
block from [25] and instantiate it in our setting. A blockB is a set of
arguments which are (1) all credulously accepted, (2) attack all the
supporters ofQ, and (3) they can all together be extended to form an
extension.

Definition 11 (Block). Let Q be a query and let C =
{range−(a) | a ∈ SUP(Q)}. A set of arguments B ⊆ A is a
block of Q if and only if: (1) B is a hitting set of C; and, (2) there
exists an admissible set A ⊆ A such that B ⊆ A.

While a query may have more than one block or more than one
proponent set, it is never the case that it has the two together.

Proposition 3. A query Q has a block iff Q has no proponent set.

Consequently, a query is not universally accepted iff it has a block.

2.2 Universal Dialectical Proof Theory
Given a query Q and an argumentation framework H, the universal
dialectical proof theory is a two-person argument game between a
proponent (PRO) and an opponent (OPP). The proponent and the op-
ponent are engaged in an argumentation dialogue of precisely defined
types of moves respecting a turn taking mechanism. The turn taking
mechanism is deterministic where odd indexed moves are advanced
by PRO and even index moves are advanced by OPP. The moves of
the dialogue are defined in terms of speech acts: support, counter and
retrace. The move SUPPORT(a) advances an argument a which sup-
ports the query in question. The move COUNTER(A) counterattacks
the position of PRO by advancing a set of arguments that attack the
previously advanced supporters. The move RETRACE(A, i) is used
to retrace to the stage i in the dialogue. The dialogue is asymmetric
where SUPPORT can only be played by PRO, whereas COUNTER and
RETRACE3 can only be played by OPP.

Definition 12 (Dialogue). Let H = (A,U) be an argumenta-
tion framework. A dialogue based on H is a finite sequence dn =
(m1, . . . ,mn) of moves where each mj is either:

• Support move: mj = SUPPORT(a) such that a ∈ A (In this case
we denote Arg(mj) = a and Sp(mj) = SUPPORT).

• Counter move: mj = COUNTER(A) such that A ⊆ A (In this
case we denote Arg(mj) = A and Sp(mj) = COUNTER).

• Retrace move:mj = RETRACE(A, i) such thatA ⊆ A and i < j
(In this case we denote Arg(mj) = A, Sp(mj) = RETRACE).

Odd-indexed (resp. even-indexed ) moves are played by PRO (resp.
OPP). We denote by d · d′ and d · m the concatenation of the di-
alogues d and d′ and the dialogue d with the move m respectively.
The retrace move has a special parameter i called the index (denoted
as Idx(m)). The subscript of dn refers to the stage of the dialogue.4

Let Q be a query, any dialogue of this dialectical theory starts
by PRO advancing SUPPORT(a) that supports Q (i.e. a ∈ SUP(Q)
). Then, OPP presents an argument (or a set of arguments) that at-
tacks the previously advanced argument. Next, PRO tries to avoid this
attack and reinstate the query using another argument which is not
attacked by the already advanced attackers. OPP in turn, tries to ex-
tend the previous set of attackers so that it attacks all the supporters
advanced so far. When OPP fails to extend the set, it retraces back
and chooses another set of attackers and continues the dialogue from
thereafter. By doing so OPP is somehow trying to construct a set of
arguments that attack all the supporters of the query Q, i.e. a block
forQ.

Following [17] we introduce the notion of a dialectical state which
helps in controlling the dialogue.

Definition 13 (Dialectical state). Let dk be a dialogue at stage k.
The dialectical state of dk is a tuple δk = (πk, hk, θk, βk,∆k)5:

• πk: the set of arguments available to PRO.
• hk: the set of arguments that have been played so far by PRO.
• θk: the set of arguments available to OPP.
• βk: the current block constructed by PRO.
• ∆k: the sets of arguments that have been shown to be not blocks.

d0 is the empty dialogue and δ0 is its initial dialectical state.

3 When there is no risk of ambiguity we refer to moves by their speech acts.
4 We may sometimes omit the subscript when it is not needed.
5 To be able to understand the terms think of π as the first letter of proponent,
h as history, θ as opponent and β as block.



A dialectical state defines at a any stage k of the dialogue dk the
set of arguments πk available to PRO to be used in order to support the
query Q. In the dialectical state, we find also the set hk that shows
the arguments so far played by PRO. In addition, it presents the set
θk of arguments that can be used to attack the arguments previously
advanced by PRO. βk presents the currently constructed block. When
OPP fails to extend the current block to another that attacks all the
previously played supporters, the RETRACE move is used. By doing
so we keep track of the sets of arguments that cannot be extended to
blocks. These are stored in ∆k.

At the beginning stage, when the dialogue d0 has not yet been
started, the set of available arguments π0 for PRO ranges over all the
possible supporters of the query Q. The played arguments h0, the
available arguments θ0, current block β0 and ∆0 are empty.

2.3 Dialogue Rules

The advancement of moves within the dialogue are usually controlled
by a legal move function [25] which can be expressed in terms of
rules, called dialogue rules. Every move depends on certain precon-
ditions about the actual dialectical state and the previous move ad-
vanced by the other party. Every move also determines the next move
to be played (postcondition).

Let dk be a dialogue and δk the current dialectical state of dk. Let
mk+1 be a move and δk+1 be the dialectical state of the dialogue
dk+1 = dk ·mk+1 after playing the move mk+1. For a given move
we index preconditions (resp. effects) by the first letter of the speech
act of the move followed by P (resp. E) and subscripted by a number.

Move:
mk+1 = SUPPORT(a).

Description:
advances an argument that supports the query in question.

Preconditions:

(SP1) k + 1 is odd.

(SP2) a ∈ πk.
Postconditions:

the next move can be either COUNTER or RETRACE.
Effects:

(SE1) πk+1 = πk/a.

(SE2) hk+1 = hk ∪ {a}.
(SE3) θk+1 = range−(hk+1).

(SE4) βk+1 = βk.

(SE5) ∆k+1 = ∆k.

This move is advanced by PRO, therefore k + 1 should be odd
(SP1). It advances an argument a that supports the query Q (SP2).
To respond, OPP should either use COUNTER or RETRACE.

As one may notice, the support move mk+1 changes the set of
available arguments πk+1 of PRO. In fact a supporting argument
ceases to be available once it is played (SE1). In contrast it is added
to the history hk+1. The support move alters the set of available argu-
ments of OPP by adding to θk+1 all the arguments that can be played
in the future by OPP (SE3), which are those that can attack the ad-
vanced supporting arguments. As indicated in the postconditions of
the support move, a counter move is allowed to be played next.

Move:
mk+1 = COUNTER(A).

Description:
this move advances a set of arguments that attacks all the argu-
ments presented so far.

Preconditions:

(CP1) k + 1 is even.

(CP2) A = βk ∪ S such that S ⊆ θk (i.e. A extends βk by S).

(CP3) A attacks hk and belongs to (or is) an admissible set.

(CP4) there is no A′ ∈ ∆k such that A′ ⊆ A.
Postconditions:

the next move should be SUPPORT.
Effect:

(CE1) πk+1 = πk/range
+(A).

(CE2) hk+1 = hk.

(CE3) θk+1 = θk.

(CE4) βk+1 = A.

(CE5) ∆k+1 = ∆k.

This move is advanced by OPP therefore k + 1 should be even
(CP1). It tries to extend the current block βk to another set of argu-
ments that attacks all the supporters presented so far (CP2 and CP3).
OPP does so by incorporating arguments from θk. The new current
block (βk+1 = A) or one of its subsets should have not been already
proven to be not a block (CP4). After advancing mk+1, πk+1 con-
tains all the arguments from πk+1 except those which are attacked by
A (CE1), thus they are spared from further use. Note that the spared
arguments may be readded afterwards, this is particularly the case
when we use retrace as we shall mention later.

Since A attacks all the supporting arguments so far provided, it is
considered the current block (CE4). The sets θk+1,∆k+1 and hk+1

are left unchanged (CE2, CE3 and CE5).
After a support move, OPP can also play a retrace move. This is

particularly needed when he is unable to play a counter move.

Move:
mk+1 = RETRACE(A, i).

Description:
this move retraces to the recent stage i from which it can extend
the current block of i.

Preconditions:

(RP1) k + 1 is even, i < k + 1 and i is odd.

(RP2) there is no set of arguments S ⊆ θk such that βk ∪ S is (or
belongs to) an admissible set and attacks hk.

(RP3) A = βi ∪ S such that S ⊆ θi.
(RP4) A attacks hi and belongs to (or is) an admissible set.

(RP5) there is no A′ ∈ ∆k such that A′ ⊆ A.
Postconditions:

the next move should be SUPPORT.
Effect:

(RE1) πk+1 = πi/range
+(A).

(RE2) hk+1 = hi.

(RE3) θk+1 = θi.

(RE4) βk+1 = A.

(RE5) ∆k+1 = ∆k ∪ βk.

When OPP cannot extend the current block βk with arguments
from θk (RP2), it should retrace back and choose other arguments.



The index i (which should be odd) determines the point of a support
move from which OPP can mount another line of attack. By starting
a new line of attack, OPP should opt for a new block that attacks all
the supporters from stage i up to the stage 1 (RP3) by extending βi
using θi. The new block βk+1 = A or one of its subsets should have
not been already proven to be not a block (CP5).

When the retrace move is advanced, πk+1 is reset to its ancient
state i in addition to excluding all the arguments that can be attacked
afterwards (RE1). The current block βk+1 is set to A (RE4), and
∆k+1 is set to ∆k ∪ βk (RE5), i.e. the block of stage k that OPP
could not extend. If one precondition is not satisfied OPP looks for
other stages to build a new attack. OPP follows the procedure:

Procedure 1. Let dn be a dialogue and mn be the last played move
such that Sp(mn) = SUPPORT. If OPP cannot play a counter move
mn+1 then it tries to play the retrace move mn+1 as follows: 6

1. do y = y−1 untilmy = RETRACE(A, x) ormy = SUPPORT(a).
2. if my = RETRACE(A, x) then:

(a) play mn+1 = RETRACE(A′, x) that respects the preconditions
and exit. If there isn’t such move then set y = x and goto 1.

3. if my = SUPPORT(a) then:

(b) play mn+1 = RETRACE(A′, y) that respects the preconditions
and exit. If there is no such move then goto 1.

OPP starts by looking for the most recent retrace or support move
(line 1). If a retrace move is found (line 2) then it tries to play a
retrace to stage x that respects the preconditions (line a) by looking
exhaustively for all possible sets A′ that makes the move respect the
preconditions. If he succeeds to play such move, the procedure exits.
Otherwise it continues the search by setting y to x. If a support move
my is found (line 3) then it plays a retrace with index to y. Otherwise,
it continues the search for other moves from which OPP can play.

The dialogue represents a compact representation of a tree where
nodes are arguments or set of arguments played by both parties.
Nodes in the odd levels are played by PRO and nodes in the even
level are played by OPP. This tree is called the dialogue tree. In this
tree retrace moves represent branching points.

Definition 14 (Dialogue tree). Given a dialogue dn =
(m1, . . . ,mn), its dialogue tree is a labeled tree T (dn) = (V,D)
where V is a set of nodes and D is a binary relation over V . T (dn)
is defined as follows: while n > 0, D(dn) is recursively defined as:
D(dn) = ∅ n = 1

D(dn−1) ∪ {(Arg(mi), Arg(mn))} n > 1, mn = RETRACE(A, i)

D(dn−1) ∪ {(Arg(mn−1), Arg(mn)} n > 1, mn 6= RETRACE(A, i)

The set of all nodes is defined as V = {Arg(mi) |mi ∈ dn} with
Arg(m1) as the root node of the tree. Note that |T (dn)| = |V| refers
to the size of the tree which is equal to the number of its nodes.

Note that this dialogue tree is similar to the well-known dispute
tree in the work of [17, 25]. The difference is in the nature of nodes
where the nodes of OPP in the dialogue tree contain set of arguments
as opposed to a dispute tree.

The dialogue tree enjoys the following properties.

Proposition 4. Le dn be a dialogue, T (dn) its dialogue tree and
Pre(T (dn)) the pre-order traversal of T (dn) with Seq(dn) =
(c1, . . . , cn) such that ci = Arg(mi). The following hold:

6 Note that y is initialized to n and x < y, and a, A are arbitrary (set of)
arguments respectively.

1. T (dn) is unique.
2. |dn| = |T (dn)|.
3. Pre(T (dn)) = Seq(dn).

What is left for the dialectical proof theory is to determine the
termination condition.

Definition 15 (Termination and wining). A dialogue dn is a termi-
nated dialogue if and only if neither PRO nor OPP can play a move.
The winner of dn is the player of the last move mn.

It is easy to determine the winner of a dialogue from its tree:

Proposition 5. Le dn be a dialogue, T (dn) its dialogue tree. The
following statements are equivalent:

• the length of the rightmost path is odd.
• PRO is the winner of dn.

We conclude the section by defining a dialectical proof.

Definition 16 (Dialectical proof). Given a queryQ and a terminated
dialogue dn aboutQ. We call dn a dialectical proof for the universal
acceptance ofQ if and only if PRO is the winner. 7

In Section 4 we provide the properties of the dialectical proof the-
ory. We now give an example to better illustrate it.

3 Illustrating Example
Consider the argumentation frameworkH of Figure 1. This argumen-
tation framework is coherent (preferred and stable extensions coin-
cide). Suppose that the gray-colored arguments support a query Q
(i.e. SUP(Q) = {a, d, e, l, h}). In what follows, we show how the
queryQ is universally accepted by providing a dialectical proof.

The dialectical proof is presented in Table 1 and its dialogue tree
is shown in Figure 2.

Figure 1: The argument graph. The circles are the extensions pre-
sented in an increasing order from E1 to E6 with the extension E1
being the inner circle and the extension E6 the outer circle.

At stage (0) the dialectical state is initialized as defined previously.
The dialogue starts at stage (1) by PRO playing the supporter a from
the available supporters in π0. When PRO plays a, the argument a is
moved from the available supporters π1 to the history of advanced
arguments h1 by PRO. The set of available attackers θ1 becomes the
set of all attackers that can attack h1. This means when the turn of

7 Otherwise it is called a dialectical proof for non-universal acceptance ofQ.



i Move πi hi θi βi ∆i

0 - {a, d, e, l, h} ∅ ∅ ∅ ∅
1 S(a) {d, e, l, h} {a} {g, i} ∅ ∅
2 C({g}) {e, l, h} {a} {g, i} {g} ∅
3 S(l) {e, h} {a, l} {g, i, c, b} {g} ∅
4 C({g, c}) {e, h} {a, l} {g, i, c, b} {g, c} ∅
5 S(e) {h} {a, l, e} {g, i, c, b, k} {g, c} ∅
6 R({i}, 1) {d, e, l, h} {a} {g, i} {i} {β5}
7 S(d) {e, l, h} {a, d} {g, i, f, j, b} {i} {β5}
8 C({i, f}) {l, h} {a, d} {g, i, f, j, b} {i, f} {β5}
9 S(h) {l} {a, d, h} {g, i, f, j, b, k} {i, f} {β5}
10 C({i, f, k}) {l} {a, d, h} {g, i, f, j, b, k} {i, f, k} {β5}
11 S(l) ∅ {a, d, h, l} {g, i, f, j, b, k, c} {i, f, k} {β5}
12 R({i, j}, 7) {e, l, h} {a, d} {g, i, f, j, b} {i, j} {β5, β11}
13 S(h) {e, l} {a, d, h} {g, i, f, j, b, k} {i, j} ∆12

14 C({i, j, k}) {l} {a, d, h} {g, i, f, j, b, k} {i, j, k} ∆12

15 S(l) ∅ {a, d, h, l} {g, i, f, j, b, k, c} {i, j, k} ∆12 ∪
{β14}

Table 1: A dialectical proof for the query Q. For space reasons
S(), C() and R() denote SUPPORT(), COUNTER() RETRACE()
respectively.

i Move πi hi θi βi

0 - {a, d, e, h} ∅ ∅ ∅
1 S(h) {a, d, e} {h} {k, f, b} ∅
2 C({k}) {a, d} {h} {k, f, b} {k}
3 S(a) {d} {a, h} {k, f, b, g, i} {k}
4 C({k, i}) {d} {a, h} {k, f, b, g, i} {k, i}
5 S(d) ∅ {d, a, h} {k, f, b, g, i, j} {k, i}
6 C({k, i, j}) ∅ {d, a, h} {k, f, b, g, i, j} {k, i, j}

Table 2: A dialectical proof for the non-universal acceptance of
Q′. Note that we omit ∆i as it is always empty in this example.

Figure 2: The dialogue tree for universal acceptance Q.

(a) Dialogue tree for the non-
universal acceptance ofQ′.

(b) Another dialogue tree for
the universal acceptance ofQ.

Figure 3: Dialogue trees for the the illustrating example.

OPP comes at stage (2) he shall choose from this set. At stage (2)
OPP advances a counter move with argument g that attacks all the
advanced supporters (i.e. h1 = {a}). After advancing such move, the
argument d is removed from the set of available arguments π2 since
g attacks d, thus PRO will not be able to play d. Since {g} attacks

all the supporters advanced so far, it becomes the current block, i.e.
β2 = {g}. At stage (3), PRO responds by a support move with the
argument l that is not attacked by the current block. At stage (4), OPP
extends the current block β3 = {g} by the argument c which attacks
l. Note that {g, c} is a subset of the admissible set {g, c, e}. Now,
β4 = {g, c} attacks all the presented supporters. At stage (5), PRO
presents another unattacked supporter (i.e. e). Note that the choice of
the supporters is arbitrary.

At stage (6), OPP could not extend the current block β5 into an-
other that attacks e too. Therefore OPP plays a retrace move R({i}, 1)
that can be read as “retrace to stage (1) and play a counter move with
{i}”. By doing so, OPP creates another line of dialogue and roll back
all the changes that have been made on the dialectical state up to the
stage (1). That is why at stage (6) the sets π6, h6 and θ6 are computed
with respect to π1, h1 and θ1. The current block is changed to {i}
and the ancient block β5 is moved to ∆6 = {β5}. The former would
say that this set or any of its supper sets will never form a block. This
is important to avoid unnecessary moves. The same thing happens
at stage (12) where OPP retraces to stage (7) because he could not
retrace to the stage (9). The current block β12 is set to {i, j} which
extends β7.

The dialogue continues until stage (15) where PRO plays a support
move with argument l against which OPP could neither attack nor
retrace to previous stages. For instance, OPP has not been able to
extend {i, j, k} by c because it would be conflicting (not admissible).
At this stage the dialogue ends and PRO is declared as the winner.

The dialogue tree in Figure 2 shows clearly the relation between
the advanced arguments played by both parties. The tree in Figure 3b
is another dialogue tree for another dialogue where PRO is the winner.
This can be easily observed since all leaf nodes are in odd levels.

Let us now take an example where the query is not universally
accepted. Consider a query Q′ that happens to have the supporters
SUP(Q′) = {a, d, e, h}. The dialogue is presented in Table 2 and
its dialogue tree is shown in Figure 3a. In this example, OPP has
been able to construct the block β6 = {k, i, j} in the last move
which attacks all the supporters. This made PRO unable to continue
the dialogue. Note that we do not allow retracing for PRO because
one block is sufficient to prove the non-universal acceptance.



4 Dialectical Proof Theory Properties
4.1 Finiteness, Soundness and Completeness
As indicated in [3, 21], finiteness or termination is an important prop-
erty for any dialogue, since a possibly infinite dialogue will fail to
meet the intended goal. In what follows we show how our dialectical
theory produces always finite dialogues.

To establish such property we need to show that for any dialogue
d its dialogue tree is finite. Such result can be established by showing
that the height of the tree is finite and that for each node the number
of its child nodes is finite.

Lemma 1. Let H be an argumentation framework, D∝ be the set
of all possible dialogues over H, Height(T (d)) is the height of the
tree T (d) and C(v) is the set of all child nodes of v. Given T (d) =
(V,D) of any d ∈ D∝ the following hold:

1. Height(T (d)) ∈ N.
2. ∀ v ∈ V , |C(v)| ∈ N.

Proof. Let us suppose that Height(T (d)) is infinite, and letP be the
longest path in T (d) starting from the root node. This means either
there are infinitely many supporting arguments used inP , or there are
some infinity repeated supporting arguments used in P . The first one
is impossible since we are dealing with finite argumentation frame-
work (the set of all arguments is finite). The second is impossible
since once an argument is played it cannot be advanced afterwards in
the same path (see SE1 of SUPPORT move).

Let us suppose that |C(v)| is infinite. This means that either (i) v
is a supporting argument and it has infinitely many attacker; or (ii) v
contains arguments that are advanced to attack previous supporters.
The first case is impossible since the argumentation framework is
finite, and the second is impossible since if it were the case then
PRO would be allowed to retrace against counter moves, which is
forbidden in our framework.

Now we can proceed to finiteness by showing the following.

Proposition 6 (Finiteness). Let H be an argumentation framework
and D∝ be the set of all possible dialogues over H. Then for every
d ∈ D∝: |d| ∈ N.

Proof. Let us suppose that d is infinite. This means, either (i)
Height(T (d)) is infinite; or (ii) there is a node in T (dn) with in-
finitely many child nodes. From the previous lemma, the two cases
are impossible.

In [3] an additional constraint has been added to finiteness, i.e. the
finitness of the moves’ contents. This constraint ensures that the ar-
guments advanced within the dialogue are finite. In our context we
distinguish tow cases, (i) the argument in the support moves should
be finite, and (ii) the set of arguments advanced in the counter moves
should be finite too. Fortunately, the two cases are verified in our
argumentation framework because the set of argumentsA for any ar-
gumentation framework over a possibly inconsistent knowledge base
(in our logical setting) is finite and the set of attackers for a given ar-
gument is finite. All in all, the argumentation framework is finite.

Before proceeding to soundness let us show that the dialectical
proof theory is consistent in the sense that there is no two dialogues
about a query Q such that PRO wins in the former and loses in the
later. Put differently, if one of the participant wins a dialogue about
a given query Q then we are sure that he will win all the other dia-
logues aboutQ.

Proposition 7 (Consistency). Let D∝Q ⊆ D∝ be the set of all dia-
logues aboutQ inH and let d ∈ D∝Q. Then, if d is won by PRO (resp.
OPP) then so are all d ∈ D∝Q.

This property is very important since we do not want to have a
dialectical proof theory that is contradictory. It turns out that this
property is important for soundness. In what follows, soundness is
characterized by the existence of a winning dialogue (by PRO or OPP).

Proposition 8 (Soundness). Given a dialogue d about the query Q,
if d is won by PRO thenQ is universally accepted.

Proof. Let us proceed by contradiction. Suppose that d is won by
PRO but Q is not universally accepted. On the one hand, recall that
if Q is not universally accepted then there exists a block B against
all Q’s supporters. On the other hand, if PRO has won d then PRO

could not find any block that attacks all supporters advanced in d.
This means that either (i) OPP search was not exhaustive or (ii) there
is no such block. As one can see, (ii) is in contradiction with the
assumption and (i) is in contradiction with the fact that the move
procedure is exhaustive.

If the dialectical proof theory is sound but does not provide di-
alectical proofs for all universally (resp. non-universally) accepted
queries then it would be incomplete.

Proposition 9 (Completeness). Given a queryQ. IfQ is universally
accepted then PRO wins any dialogue aboutQ.

Proof. By contradiction, if Q is universally accepted and PRO loses
then OPP has constructed a block βn forQ. This means thatQ is not
universally accepted, which is a contradiction.

In this subsection we have proved the finiteness, completeness and
soundness of the proposed theory as well as its consistency.

4.2 Dispute Complexity
In this subsection we are interested in the question of how many
moves the dialogue would contain for a query (at best-case) to estab-
lish its universal acceptance (non-universal acceptance). The work
of [17] introduced the so-called dispute complexity for a given argu-
ment in a given argumentation framework. We adapt this definition
and define the dispute complexity for a given query over a given in-
stantiated argumentation framework as follows.

Definition 17 (Dispute complexity). Let H be an argumentation
framework and Q be a query. The dispute complexity δ(H,Q) of
the queryQ inH is defined as follows:

δ(H,Q) = min(|d| : d is a terminated dialogue aboutQ inH)

The dispute complexity is the minimal number of moves that can
be used to prove thatQ is universally accepted or not universally ac-
cepted. The work of [17] has given an exact characterization of such
complexity for credulous acceptance by considering as an input the
argumentation framework and all admissible sets. Our goal in what
follows is to propose some bounds for such complexity in universal
(or non-universal) acceptance.

Let Q be a query, H an argumentation framework such that Q is
not universally accepted inH and C = {range−(a)|a ∈ SUP(Q)}.
We will use the following notations:

• MHS(H,Q) is the set of all minimal (w.r.t ⊆) hitting sets of C.
• MinBS(H,Q) denotes the set of all minimal (w.r.t ⊆) blocks.



• the block number ofQ inH is the size of the minimum block:
τ(H,Q) = min(|B| : B ∈ MinBS(H,Q)).

• the hitting set number is the size of the minimum hitting set of C:
α(H,Q) = min(|S| : S ∈ MHS(H,Q)).

The block number corresponds to the minimum block which is
the smallest block (w.r.t set-cardinality) among all blocks. Note that
it is not necessary that every minimum hitting set of C is a minimum
block (because a block imposes that its members have to belong to
the same admissible set). Therefore it is possible to have a block
which is minimum but does not correspond to any minimum/minimal
hitting set. In contrast, a minimum block has to be a hitting set. We
get the following straightforward relation.

Corollary 1. τ(H,Q) > α(H,Q).

In the context of a dialogue about a query Q, the minimum block
represents what the opponent would play in order to finish the dia-
logue as fast as possible. Therefore, the dispute complexity of non-
universal acceptance can be characterized by such number.

Proposition 10. For any terminated dialogue d aboutQ in an argu-
mentation frameworkH whereQ is not universally accepted:

δ(H,Q) = 2× τ(H,Q).

Sketch. If the size of the minimum block B equals n then at each
stage OPP will extend his current block by advancing one attacker
at each stage. Therefore, for each SUPPORT move we will have a
COUNTER move that extends the current block by one argument.
When the current block reaches the size n, that means OPP has played
all the arguments of the minimum block, PRO will have no support-
ing argument to advance, thus the dialogue terminates after 2 × n
moves.

The property above provides an exact bound for the dispute
complexity of the non-universal acceptance. The proposition be-
low gives the upper bound for universal acceptance. In order to de-
fine this we define the attack degree of Q in H as deg(H,Q) =
max(|range−(a)| : a ∈ P(Q)) such that P(Q) is the set all sup-
porting arguments that belongs to at least one minimum proponent
set. And the proponent number is the size of the minimum propo-
nent set ρ(H,Q) = min(|S| : S is a proponent set ofQ inH). It
is obvious that dialogues where PRO plays with minimum propo-
nent sets are shorter than all other dialogues. Because in the latter
dialogues PRO will play only the support moves that are needed to
terminate the dialogue. Let Θ(H,Q) be the size of the shortest dia-
logue where PRO plays only with a minimum proponent set. It is clear
that δ(H,Q) 6 Θ(H,Q). To bound δ(H,Q) we need to bound
Θ(H,Q). The latter can be bounded by imagining that the dialogue
tree would have at worst-case the height equals to 2 × ρ(H,Q) and
each proponent node (even-indexed) has exactly deg(H,Q) child
(worst-case). Therefore, the upper-bound for Θ(H,Q) is the size
(number of nodes) of the this dialogue tree.

Proposition 11. For any dialogue d about Q in an argumentation
frameworkH whereQ is universally accepted the following holds:

δ(H,Q) 6 2× (
deg(H,Q)ρ(H,Q) − 1

deg(H,Q)− 1
− 1)

Example 2. Consider the argumentation framework of Figure 1. Let
SUP(Q′′) = {a, d, e, l, h, k} be the set of supporters for an arbi-
trary universally accepted query Q′′. Then, the query has two mini-
mum proponent sets P = {{k, h}, {k, e}}. The attack degree ofQ′′

is max(1, 2, 3) = 3 for k, e, h respectively. The proponent number
is ρ(H,Q′′) = 2. The upper-bound is:

δ(H,Q′′) 6 2× (
32 − 1

3− 1
− 1) = 6

The real dispute complexity which corresponds to the shortest di-
alogue (S(e), C({k}), S(k), R({b}, 1), S(k)) is equal in this case to
δ(H,Q′′) = 5 < 6.

It is clear that the bounds proposed for the dispute complexity of
universal and non-universal acceptance are estimated in terms of the
proponent and the block numbers. Unfortunately, these numbers are
not given as inputs and they should be computed. It is obvious that
computing such numbers is hard [19] 8. Fortunately if one can esti-
mate the cardinality of the minimum hitting set one can easily esti-
mate the proponent or the block number. This can be achieved by us-
ing the results from [19] on the independence number in hypergraphs
which is the complement of the hitting set number (also known as the
transversal number).

5 Discussion and Conclusion

In this paper we have provided a dialectical proof theory for univer-
sal acceptance in coherent logic-based argumentation frameworks.
We proved its finiteness, soundness, completeness, consistency and
studied its dispute complexity.

It is important to point out that this dialectical proof theory can
also be used in abstract settings like the one in [2]. In this work,
Dung’s abstract framework [16] is used in decision-support systems
where arguments support different options (or decisions) and the fi-
nal decision is computed using Dung’s semantics. The author have
introduced the concept of universal acceptance for a given option
and shown that skeptical and universal are different. In fact, the dis-
tinction is important and practical since in certain decision making
situations we may opt for an option that is supported by different
arguments from different extensions but not supported by skeptical
arguments (as there may be none). Our dialectical proof theory can
offer an interesting feature in such settings, explanation. Dialectical
proof theories in general provide, as argued by [25], explanation as
to why a given output (option, conclusion, argument, etc.) is believed
to be accepted. So, alongside to its capability of computing the ac-
cepted outputs, it can explain why and how the output are accepted.
Aside from abstract settings, this intrinsic quality of explanation in
our dialectical proof theory can lend itself to other domains such as
(deductive) databases systems, more precisely in consistent query an-
swering over inconsistent knowledge bases [4, 22, 9]. In fact it has
been proven in [14] that the universal acceptance is equivalent to the
well-known consistent query answering semantics [4], so our dialec-
tical theory can be used in explaining why certain queries are entailed
or not under the consistent query answering semantics which would
have a great impact on the usability of such systems (as stipulated by
[24]).

As a final remark, it seems that the concept of “arguments sup-
porting a query” in our dialectical proof theory can somewhat be re-
lated to bipolar argumentation frameworks [13] that extends Dung’s
framework by a support relation between arguments. This will be
the subject of our future work. Another future work is to look at the
behavior of this dialectical proof theory on non-coherent or infinite
argumentation frameworks.

8 In fact they are equivalent to finding a minimum proponent or block for the
query, which would solve the problem in the first place.
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