UNIVERSITÉ LUMIĖRE LYON 2

Cers

On Three Constrained Versions of the Digital Circular Arc Recognition Problem

Tristan Roussillon，Isabelle Sivignon，Laure Tougne Laboratoire d＇InfoRmatique en Image et Systèmes d＇information

Université Lyon2－ 5 avenue Pierre Mendès France－ 69676 Bron cedex，France
tristan．roussillon＠liris．cnrs．fr

Abstract

We propose a simple and linear－time algorithm for solving three subproblems ：online recognition of digital circular arcs coming from the digitization of a disk having either a given radius，a boundary that is incident with a given point，or a center that is on a given straight line． Solving these subproblems is interesting in itself，but also provides a way for segmenting digital curves into digital circular arcs（DCAs）．

Data

（a）object

- 。。○。。
- 。○．○。
－•••
（c）digital disk
（b）contour

（d）DCA

Problem

Computing the parameters of the set of Eu－ clidean disks $\mathcal{D}(\omega, r)$ separating $B_{\left(C_{i} C_{j}\right)}$ from $\bar{B}_{\left(C_{i} C_{j}\right)}$ ，such that $r=r_{0}$（e）， \mathcal{D} touches a fixed point $P_{0}(\mathrm{f}), \omega$ belongs to a fixed straight line $\mathcal{L}_{0}(\mathrm{~g})$ ．

Three classes of constrained disks ：

（e）given ra－ dius	（f）given point
（g）center on	
a line	

Method

三 A point of support is a point of $B_{\left(C_{i} C_{j}\right)}$ or $\bar{B}_{\left(C_{i} C_{j}\right)}$ that is located on the boundary of a constrained disk separating $B_{\left(C_{i} C_{i}\right)}$ from $\bar{B}_{\left(C_{i} C_{i}\right)}$ ．
三 The inner（resp．outer）circular hull of a sequence of points L is a subsequence of L such that，for each pair of consecutive points，all the points of L belong（resp．do not belong）to the constrained disk defined by the two points．
\equiv The points of support of $B_{\left(C_{i} C_{j}\right)}$（resp． $\left.\bar{B}_{\left(C_{i} C_{j}\right)}\right)$ are consecutive points of the inner circular hull of $B_{\left(C_{i} C_{i}\right)}$（resp．outer circular hull of $\left.\bar{B}_{\left(C_{i} C_{j}\right)}\right)$ ．
引 The separating constrained disks are implicitely described by the points of support．

Computation of the separating constrained disks

Online computation ：
ミ black point in area 1 or white point in area 3 ：stop，there is no separating constrained disks
引 black point in area 3 or white point in area 1 ：ok，nothing to do．
引 black point or white point in area 2 ：ok，update of the circular hulls and update of the points of support．

DCA recognition

Results

Conclusion

ミSimple，online，linear－time algorithm．

\equiv Integer－only computations．
\equiv Can be used to fastly segment a digital curves into digital circular arcs．

