

On Three Constrained Versions of the Digital Circular Arc Recognition Problem

Tristan Roussillon, Isabelle Sivignon, Laure Tougne Laboratoire d'InfoRmatique en Image et Systèmes d'information Université Lyon2 - 5 avenue Pierre Mendès France - 69676 Bron cedex, France tristan.roussillon@liris.cnrs.fr

Abstract

We propose a simple and linear-time algorithm for solving three subproblems : online recognition of digital circular arcs coming from the digitization of a disk having either a given radius, a boundary that is incident with a given point, or a center that is on a given straight line. Solving these subproblems is interesting in itself, but also provides a way for segmenting digital curves into digital circular arcs (DCAs).

Data

Problem

dius

Computing the parameters of the set of Euclidean disks $\mathcal{D}(\omega, r)$ separating $B_{(C_i C_j)}$ from $\bar{B}_{(C_iC_j)}$, such that $r = r_0$ (e), \mathcal{D} touches a fixed point P_0 (f), ω belongs to a fixed straight line \mathcal{L}_0 (g).

Three classes of constrained disks :

given

(f) (e) given rapoint

(g) center on a line

DCA recognition

Method

- **a** A point of support is a point of $B_{(C_iC_i)}$ or $\overline{B}_{(C_iC_i)}$ that is located on the boundary of a constrained disk separating $B_{(C_iC_i)}$ from $\overline{B}_{(C_iC_i)}$.
- The inner (resp. outer) *circular hull* of a sequence of points *L* is a subsequence of *L* such that, for each pair of consecutive points, all the points of *L* belong (resp. do not belong) to the constrained disk defined by the two points.
- **The points of support of** $B_{(C_iC_i)}$ (resp. $\overline{B}_{(C_iC_i)}$) are consecutive points of the inner circular hull of $B_{(C_iC_i)}$ (resp. outer circular hull of $\overline{B}_{(C_iC_i)}$).
- The separating constrained disks are implicitly described by the points of support.

Computation of the separating constrained disks

(k) center on a line

Online computation :

- Is black point in area 1 or white point in area 3 : stop, there is no separating constrained disks.
- **=** black point in area 3 or white point in area 1 : ok, nothing to do.
- black point or white point in area 2 : ok, update of the circular hulls and update of the points of support.

(n) smallest separating disk

(o) separating constrained disks

 $\sim P_1$

Results

Conclusion

Simple, online, linear-time algorithm.

Integer-only computations.

E Can be used to fastly segment a digital curves into digital circular arcs.