UNIVERSITÉ
LUMIERE LYON 2

CITS

Robust decomposition of a digital curve into convex and concave parts

Tristan Roussillon，Isabelle Sivignon，Laure Tougne Laboratoire d＇InfoRmatique en Image et Systmes d＇information
UMR5205 CNRS／Universit de Lyon／Universit Lyon2
Universit Lyon2－5 avenue Pierre Mends France－ 69676 Bron cedex，France
tristan．roussillon＠liris．cnrs．fr

Abstract

We propose a linear in time and easy－to－implement algorithm that robustly decomposes a digital curve into convex and concave parts．This algorithm is based on classical tools in discrete and computational geometry：convex hull computation and Pick＇s formula．

Data

Fig．1：O（black disks）is bounded by C（squares） （left）The solid line that encloses $\mathrm{CH}(\mathrm{O})$ depicts $\mathcal{C H}(O)$ ．（middle）$P \in C$ is 0 －convex because $A(L(P))=0$ ．（right）$P \in C$ is neither 0 －convex nor 0 －concave because $A(L(P))=1$ and $A(R(P))=2$ ．

Update of $A(L(P))$（resp．$A(R(P))$ ）

Algorithm 1：addPoint（LDeque，leftArea， n, p ） Input：p ，the last of the n points of P
Output：$A(L(P))$
1 last＝LDeque．back（）；
2 LDeque．pop＿back（）；
3 prev＝LDeque．back（）；
$4 a=\mathcal{A}($ prev，last， ） ；
5 while $(a<0)$ do
6 leftArea＋＝｜a｜；
7 last＝prev；
8 LDeque．pop back（）；
9 prev＝LDeque．back（）；
$10 a=\mathcal{A}($ prev，last, p $)$ ；
11 LDeque．push $\operatorname{back}(p)$ ；
12 return leftArea－（（n－LDeque．size（））／2）；

Measures

convexity $(O)=\frac{A(C H(O))-A(O)}{A(C H(O))}$.
convexity $(P)=A(L(P)) / A(C H(O))$
concavity $(P)=A(R(P)) / A(C H(O))$ ．
Function A returns the digital area $A(O)$ of a digital object O（i．e．the number of digital points belong－ ing to O ）．The digital area is computed from the Euclidean area thanks to the Pick＇s formula．

Running of the update algorithm

$A(L(P))=2+5 / 2-7 / 2=1$ $A(R(P))=1.5+4 / 2-7 / 2=0$
a）
c）
e）

b）

d）

f）
$A(L(P))=5+2 / 2-8 / 2=2$
$A(R(P))=1.5+5 / 2-8 / 2=0$

Pick＇s formula

$\operatorname{InAndOn}(\mathcal{S})=\mathcal{A}(\mathcal{S})+\operatorname{On}(\mathcal{S}) / 2+1$.

Numerical examples

In Fig． 1 （left），$A_{O}=14.5+15 / 2+1, A_{C H(O)}=16.5+$ $13 / 2+1$ ．Then，convexity $(O)=\frac{(24-23)}{24}=\frac{1}{24}$ ． In Fig． 1 （right），$A(L(P))=2+7 / 2-9 / 2=1$ ， $A(R(P))=5.5+2 / 2-9 / 2=2$ ．Then，convexity $(P)=$ $\frac{1}{24}$ and concavity $(P)=\frac{2}{24}$ ．

Shape decomposition

Algorithm 2：AdHocSegmentation (C, k) Input：A curve C of n points and a threshold k

$1 \mathrm{i}=0$ ；

2 while $i<n$ do
$3 P=C_{0} ; \mathfrak{j}=0$ ； $\mathfrak{i + +}$ ；
4 while $\left(A\left(L\left(P \cup C_{i}\right)\right) \leq k\right)$ and $(i<n)$ do
$5 \mid P+=C_{i}$ ； $\mathrm{i}++$ ；
6 while $\left(A\left(L\left(P \cup C_{j}\right)\right) \leq k\right)$ and $(j>0)$ do
$7 \mid P+=C_{j}$ ； $\mathrm{j}-$－；
$8 P=C_{i} ; \mathfrak{j}=\mathrm{i} ; \mathrm{i}++$ ；
9 while $A\left(R\left(P \cup C_{i}\right)\right) \leq k$ and $(i<n)$ do
$10 \mid P+=C_{i} ;$ i $_{++}$；
while $A\left(R\left(P \cup C_{j}\right)\right) \leq k$ and $(j>0)$ do
$P+=C_{j} ; \mathrm{j}-$－；

Results

Conclusion and Perspectives

三 Linear in time and easy－to－implement algorithm．
\equiv Can be used to robustly detect digital straight line of any thickness．
三Can be used into a multiresolution framework．

