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Abstract. The reconstruction of noisy digital shapes is a complex ques-
tion and a lot of contributions have been proposed to address this prob-
lem, including blurred segment decomposition or adaptive tangential cov-
ering for instance. In this article, we propose a novel approach combining
multi-scale and irregular isothetic representations of the input contour,
as an extension of a previous work [Vacavant et al., A Combined Multi-
Scale/Irregular Algorithm for the Vectorization of Noisy Digital Con-
tours, CVIU 2013]. Our new algorithm improves the representation of
the contour by 1-D intervals, and achieves afterwards the decomposition
of the contour into maximal arcs or segments. Our experiments with
synthetic and real images show that our contribution can be employed
as a relevant option for noisy shape reconstruction.

Keywords: Digital shape analysis, Irregular isothetic grids, Multi-scale
analysis, Decomposition into maximal arcs, Decomposition into maximal
segments

1 Introduction

The representation of digital contours is an important task in image analysis
applications, since binary shapes obtained by image processing algorithms (pre-
processing and segmentation) may be altered by noise. A lot of efforts have been
made on these algorithms to produce smooth contours, by developing sophisti-
cated deblurring and denoising algorithms [14], or by integrating regularization
terms in segmentation process for instance [26]. However, these approaches sig-
nificantly raise the computational complexity of the complete image analysis
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pipeline, and include other input-noise-dependent parameters to be tediously
set for any new specific applications.

Hence, another approach consists in obtaining a faithful geometrical rep-
resentation directly from any noisy digital contours. A lot of research works
have addressed this question by fitting parametric curves (e.g. B-splines, ratio-
nal Gaussian curves) to the input points [4, 8, 10]. These approaches require a
parameter depending on input noise scale, in order to fit the objective function
at best. In general, they do not use the fact that digital points belong to Z2, as
this is always the case in the image plane.

Input
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Fig. 1. Global pipeline of our approach. Input: a noisy contour. Output: maximal ge-
ometric primitives. Stages are: 1- Extraction of a multi-scale representation (unsuper-
vised geometric noise detector); 2- Irregular isothetic representation (non overlapping
cells) in X and Y directions; 3- 1-D intervals representation; 4- Fusion of the two
directions to achieve a faithful geometric structure of the input contour.

In the digital geometry community, an important literature has been dedi-
cated to this problem since the 80’s, by representing contours with several kinds
of primitives (segments, arcs of circle). Thanks to theoretical concepts designed
in digital geometry, these approaches extend the scheme of vectorization, well-
known in document analysis [3], consisting in converting pixels to line segments.
In particular, some publications tackle the issue of fitting both straight segments
and circular arcs to digital contours at the same time. The famous approach of
Rosin and West [18] relies on least square fitting and is non parametric. Another
parametric technique has been designed by Hilaire and Tombre [9], based on the
notions of fuzzy digital segments and fuzzy digital arcs, and Faure and Feschet
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[5] by using α-thick decomposition and combinatorial optimization. All of them
are robust and accurate whilst the former two suffer from a high time complex-
ity and are restricted to one pixel wide digital curves. Since multi-primitives
decomposition can be viewed as a competition between primitives, the complex-
ity can be tackled with an efficient and unified representation of the multiple
decompositions with all individuals primitives. Relying on the work of Feschet
and Tougne [6], each decomposition can be represented by a circular arc-graph in
linear-time. Decomposition into several primitives can be solved in O(qn) where
q is the minimum number of intersecting primitives in the graph [2]. Other recent
methods from state-of-the-art opt for different strategies, such as the adaptation
of tangential cover [15] or the detection of dominant points [16].

In this article, we propose a novel unsupervised approach for reconstructing
noisy digital contours by combining multi-scale and irregular isothetic represen-
tations as presented in Fig. 1. The complete pipeline of our approach works as
follows. From an input (supposedly noisy) closed contour obtained from any im-
age (first column), we first extract a multi-scale object, containing overlapping
boxes, with an unsupervised geometric noise detector (second column). We then
represent this structure by irregular isothetic objects that is with cells without
any overlapping (third column). This is done by following two directions (X and
Y axes) simultaneously. Then these two X and Y axis aligned boxes are rep-
resented as lists of 1-D intervals between irregular cells (fourth column). Then,
we combine both intervals to achieve a faithful geometric structure of the in-
put contour using both X and Y oriented segments (fifth column) in a unified
representation of the contour. At the end (sixth column) we compute maximal
primitives within this last representation using the same Generalized Linear Pro-
gramming approach for segments and arcs allowing us to produce decomposition
of the contour into maximal straight line segments or circular arcs.

The article is organized as follows. In Section 2, we present the first step of
our approach, aiming at representing the input contour as a multi-scale set of
bounding boxes. These are then analyzed and converted into irregular isothetic
structures, exposed in Section 3. Then, we describe the way to obtain decompo-
sitions into maximal primitives (Section 4), and experimental results with real
and synthetic contours (Section 5) before concluding this article in Section 6.

2 Multi-Scale Noise Detection

The noise level detection on a digital contour is an important problem, which
can influence the quality of geometric estimators or contour representation al-
gorithms. From the digital geometry domain, a method was proposed to auto-
matically detect the amount of noise present on a digital structure [11]. This
detection is based on the meaningful scale detection computed from asymptotic
properties of the maximal segments. In particular, it is based on a theorem de-
scribing the evolution of the lengths of the maximal segments computed on the
border of a shape on finer and finer grid sizes [13]. From such a multiscale analy-
sis, the proposed algorithm consists in constructing, for each contour points C, a
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Fig. 2. Conversion of two noisy digital contours into meaningful scales (first row) and
illustration of the multicale profiles for two points A and B (second row)

multiscale profile (P(C)) defined by the segment length of all segments covering
P for larger and larger grid sizes h (see graph of Fig. 2 second row). From each
profile, the noise level is determined by the first scale (nu) minus one for which
the slope of P is decreasing and follows the awaited theoretical bounds between
h−

1
2 and h−

1
3 if C is on a non null curvature area and near h−1 on flat part. On

the examples of Fig. 2, the noise levels of points A are 0 since P(A) is always
decreasing and B for the circle (resp. flower) has a noise level of 3 (resp. 3) since
P(B) is increasing until scale 4 (resp. 3). This uncertainty can be represented as
boxes and as exposed in Fig. 2 first row, a high noise in the contour will lead to
a large box, and vice-versa. The algorithm can be tested on-line from any digital
contour given by a netizen [12].

3 Irregular Isothetic Cyclic Representation

In this section, we first recall the I-grid (Irregular Isothetic grid) model [22]:

Definition 1 (2-D I-grid). Let R be a closed rectangular subset of R2. A 2-D
I-grid G is a tiling of R with closed rectangular cells whose edges are parallel to
the X and Y axes, and whose interiors have a pairwise empty intersection. The
position of each cell R is given by its center point (xR, yR) ∈ R2 and its length
along X and Y axes by (lxR, l

y
R) ∈ R∗+

2.

This model permits to generalize many irregular image representations such as
quad-trees, kd-trees, run-length encodings, and the geometry of frames encoded
within video coding standards like MPEG, H.264, etc. For the rest of the article,
we consider the following definitions for I-grids.
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Definition 2 (ve−adjacency and e−adjacency). Let R1 and R2 be two cells.
R1 and R2 are ve−adjacent (vertex and edge adjacent) if :

or

 |xR1
− xR2

| = lxR1
+lxR2

2 and |yR1
− yR2

| ≤
lyR1

+lyR2

2

|yR1
− yR2

| =
lyR1

+lyR2

2 and |xR1
− xR2

| ≤ lxR1
+lxR2

2

R1 and R2 are e−adjacent (edge adjacent) if we consider an exclusive “or” and
strict inequalities in the above ve−adjacency definition. The letter k may be
interpreted as e or ve in the following definitions.

A k-path from R to R′ is a sequence of cells (Ri)1≤i≤n with R = R1 and R′ = Rn

such that for any i, 2 ≤ i < n, Ri is k-adjacent to Ri−1 and Ri+1.
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Fig. 3. From the meaningful scales of the Circle sample, we reconstruct a set of k-arcs
converted to a k-curve thanks to the underlying graph (b). (c) presents a part of the
cells obtained with intervals (red)

Definition 3 (k-curve). Let A = (Ri)1≤i≤n be a k-path from R1 to Rn. Then
A is a k-curve iff each cell Ri has exactly two k-adjacent cells in A.

As shown in Fig. 2, the meaningful boxes (denoted afterwards by the set
M) overlap and thus cannot be viewed as an irregular isothetic object directly
(Definition 1). However each one contains a given number of pixels (at the initial
resolution) so that the set of boxes M covers a subset of the input image. This
subset P, which is an irregular isothetic object, is transformed into k-arcs, i.e.
open k-curves, and the respective adjacencies relations between arcs is repre-
sented by a Reeb graph structure [22], as illustrated in Fig. 3a [21, 23]. In that
graph, each edge is associated to an irregular k-arc reconstructed. This process is
driven by considering a given order relation, along X or Y axis (in this figure, X
axis has been chosen). With the support of the Reeb graph, we are then able to
produce a cyclic representation of the contour by parsing k-arcs in a given order
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(e.g. clock-wise from the top-most element). We also remove extra branches of
the graph, i.e. edges corresponding to k-arcs not belonging to the cycle (asso-
ciated to red parts in Fig. 3a). In particular, graph edges comporting a node
of degree 1 are removed. At the end of this process, we obtain a single k-curve
(Fig. 3b), associated to a cyclic graph, and we consider the interface (Euclidean
segment shared) between two consecutive cells in the k-curve, i.e. 1-D intervals.

By combining the intervals computed from both X and Y axes, we have thus
two lists of segments representing the input contour, denoted by SX and SY ,
as shown in Fig. 4a. We set the internal and external points of these straight
segments (black and white points in Fig. 4b) by considering the barycenter of
the global shape as we did in [21].

(a) (b) (c) (d)

Fig. 4. A part of the two sets SX (black) and SY (red) intervals from the Flower sample
(a), and converted into a single set of intervals SXY (b). Internal points are dotted in
white, external ones in black. We also illustrate some cases of our process, with specific
examples of segments s, sx and sy (see text) in (c) and (d). In the images, red intervals
are already in place in SXY and green ones are to be processed from SX , SY

We then build a single list of intervals SXY = {SXY [i]}1≤i≤n with X- and Y -
aligned elements by first removing segments from SY intersecting one or several
ones in SX (see again Fig. 4a and b). The converse choice can done (i.e. removing
segments from SX overlapping some of SY ), nevertheless, our option leads to a
faithful representation of the input contour, as exposed later in experiments.

Then, we simultaneously parse the sets SX and SY to construct this list by
a linear and incremental approach, according to the size of these two lists. At
an iteration of this process, consider the last segment added in SXY , denoted
by s, and the next segments to be added from SX and SY , denoted by sx and
sy respectively. We add in SXY the closest interval from s. As an illustration, in
Fig. 4c, we add sy, and in Fig. 4d, sx.

During this process, adding segments of SX and SY in SXY is realized in in
O(|SX |+ |SY |). We can observe that we build a valid list of segments in SXY ,
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since two successive segments in the final list (not sharing the same end point)
respect this condition:

−−−−→
SXY [i].

−−−−−−−−−−−−−−→
SXY

[
(i+ 1)mod n

]
≥ 0, ∀i = 1, . . . , n, (1)

wherein each segment is considered as a vector with the orientation given by
internal and external endpoints. For instance, in Fig. 4c, −→s .−→sy = 0 and are
added successively in SXY , in Fig. 4d, −→s .−→sx = 0, and any two consecutive
parallel segments SXY [i] and SXY [i+1] will respect a strict positive dot product
in Eq. 1. The validity of the list SXY also means that the list of internal points
are ordered in the clockwise order, and follow the curvilinear abscissa of the
input contour (and this is the same for the list of external points).

4 Recognition of Straight Segments and Circular Arcs

Even if the arrangement of straight segments in SXY is not completely random,
it lacks regularity. For instance, the X-coordinates of the endpoints do not nec-
essarily increase and for this reason, we cannot use the algorithm of O’Rourke
[17] for the recognition of straight segments.

In this work, you use a general algorithm for the recognition of both straight
segments and circular arcs, formulated as two instances of a Generalized Linear
Programming (GLP) problem [1].

Our notations and definitions follow [1]. A GLP problem is a family H of
constraints and an objective function ω from subfamilies of H to some totally
ordered set S. In addition, H and ω must be such that:
(C1) Monotonicity : ∀F ⊆ G ⊆ H, ω(F ) ≤ ω(G),
(C2) Locality : ∀F ⊆ G ⊆ H s.t. ω(F ) = ω(G) and for each h ∈ H: ω(F ∪ h) >

ω(F ) iff ω(G ∪ h) > ω(G).

Note that the set S must contain a special maximal element Ω so that G ⊆ H
is unfeasible if ω(G) = Ω and feasible otherwise.

In our framework, the constraint set H is given by the endpoints of the set
of the n straight segments of SXY , with n ≥ 1. Each straight segment has two
endpoints: one with label “white”, the other with label “black”, as depicted
in Fig. 4b. Let us denote the set of white (resp. black) endpoints by P ◦ :=
{p◦i }i=1...n (resp. P • := {p•i }i=1...n). Let P (resp. D) be the set of all possible
half-planes (resp. disks). For a given X ∈ {P,D}, we want to find a shape X ∈ X
that contains one point set, e.g. P ◦, but not the other. In other words, we want
to find X ∈ X under the constraint set H := {h2i−1, h2i}i=1...n, where

∀i = 1, . . . , n, h2i−1 := p•i ∈ X, h2i := p◦i /∈ X. (2)

The problem is unfeasible if it does not exist such a X, but feasible otherwise.
In the latter case, we search for X minimizing a given objective function.

For any X ∈ {P,D}, there exists an objective function ωX so that (C1) and
(C2) are true, which means that the above problem reduces to a GLP problem.
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The objective function ωD is chosen to either return Ω if the problem is unfeasible
or the radius of a smallest separating disk for H otherwise. By definition, the
pair (H,ωD) satisfies the monotonicity condition (C1), which coarsely says that
the larger the constraint set is, the larger the smallest separating disk for this set
is. In addition, since n ≥ 1, the smallest separating disk, if it exists, is unique,
which implies locality (C2).

The objective function ωP returns Ω if the problem is unfeasible. Otherwise,
the convex hulls of the point set to enclose and the point set to not enclose are
well-defined because n ≥ 1 and do not intersect. In this case, ωP returns the
inverse of the minimal distance between the two convex hulls. The inverse is
taken so that adding a non-redundant constraint makes the objective function
increase. Again, the pair (H,ωP) satisfies conditions (C1) and (C2). As a result,
depending on ωX, we have to solve two different kinds of GLP problem.

There exists an easy-to-implement and randomized algorithm that solves
these two kinds of GLP problem in expected linear-time [20]. It comes from the
well-known randomized algorithm for the smallest enclosing circle problem [25].
It takes a pair (H,ωX) and returns a basis, ie. a minimal subfamily B ∈ H
such that ωX(B) = ωX(H). The combinatorial dimension d of the problem is the
maximum size of any basis for any feasible family. For instance, d = 3 for ωD
(resp. ωP) because at most three constraints uniquely define a disk (resp. the
width between two convex polygons).

The algorithm is incremental and recursive. It may be coarsely described as
follows. We iteratively add constraints. For each constraint, we check whether
the new constraint violates the current basis or not. If yes, then we try to update
the basis from the new constraint by recursively calling the same algorithm with
all the previous constraints.

It is useful to have an on-line algorithm in order to compute the whole set of
maximal segments [7] or arcs [19]. Since the original algorithm [20] is incremental,
adding the constraints in order straightforwardly leads to an on-line algorithm.
The drawback is that the random order can be used only in the recursive calls but
not during the constraint discovery, which results to an increase of the expected
time-complexity from linear to quadratic. However, we experimentally observe
short running times. The next section shows results of our pipeline, employing
this on-line algorithm for the reconstruction of maximal segments or arcs.

5 Experimental Results

We first present in Fig. 5 the whole set of maximal segments and arcs for
the Flower image. Contrary to the previous work dedicated to pure vector-
ization [23], we do not calculate a unique polyline from a complex structure of
k-arcs. Thanks to the cyclic irregular representation of the input contour, we are
capable of reconstructing maximal primitives, bounded by 1-D intervals, whose
lengths only depend on local input noise. Without any parameter, we obtain
faithful representations of noisy shapes. Moreover, the results do not depend on
any starting point, as it could be the case for other methodologies employing
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(a) Maximal straight segments (b) Maximal circular arcs

Fig. 5. Top: Decomposition into maximal segments (a) and maximal arcs (b) in a part
of the Flower sample (green primitives), superimposed on input intervals (presented as
in Fig. 4). Center and bottom: The maximal primitives are shown over original digital
contour of Flower and Circle
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greedy algorithms. Even in the case of an high amount of local noise, our algo-
rithm successfully reconstructs sets of primitives, as illustrated in Fig. 5 (bottom)
wherein the input digital contour is significantly corrupted and contains large
discontinuities and holes (top-right of the shape). As in [21], we can also obtain
the circle passing through the contour, by choosing maximal arcs (Fig. 5b).

We finally present the meaningful representation, and sets of maximal straight
segments and circular arcs obtained with our algorithm, for two real images,
in Fig. 6 (one contour) and Fig. 7 (two contours). The Char image leads to a
noisy contour (Fig. 6b), which is accurately represented thanks to our algorithm.
Maximal primitives (Fig. 6e,f) represent the complete contour, while one of our
previous contributions (d) [23], an accurate vectorization by MLP (or Minimum
Length Polyline), misses a part of the object, and produces abrupt angles in
round parts. The Sign image (350×350 pixels) allows us to test the scalability of
our method. The contours we have extracted generate a high number of mean-
ingful boxes (1,364 boxes for external part, 1,234 for internal part) that we have
processed without any extra effort.

(a) Meaningful boxes

(b) Input contour

(c) 1-D intervals

(d) Polyline (MLP)

(e) Maximal segments

(f) Maximal arcs

Fig. 6. Results of our algorithm with the real image Char of size 185×85 pixels
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(a) Meaningful boxes (b) Maximal segments (c) Maximal circular arcs

Fig. 7. Results of our algorithm with the real image Sign of size 350×350 pixels

6 Conclusion and Future Works

In this article, we have proposed a novel approach combining multi-scale and
irregular isothetic representations for the geometrical reconstruction of digital
noisy contours. Our algorithm calculates a set of 1-D bounding intervals of the
input shape, which permits to apply an on-line and incremental recognition
algorithm. Our contribution has been successfully applied on synthetic and real
images, encouraging us to exploit it in concrete image analysis contexts, and to
investigate several lines of research.

Our first concern will consists in adapting the tangential cover approach [6] to
our cyclic irregular representation. This will enable the calculation of a structure
containing successive primitives, instead of overlapping maximal segments or
arcs. Second, we would like to compare our contribution with other methods
selected from state-of-the-art, e.g. [15, 16], and to test their robustness [24] with
challenging data-sets of binary shapes, such as KIMIA. As a longer term, we
plan to investigate the more general question of reconstructing digital shapes
with other geometrical primitives, like B-splines and other parametric curves,
with a similar framework we have presented herein.
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