
2D topological map isomorphism for multi-label
simple transformation definition

Guillaume Damiand, Tristan Roussillon, and Christine Solnon

Université de Lyon, CNRS, LIRIS, UMR5205, INSA-Lyon, F-69622 France

Abstract. A 2D topological map allows one to fully describe the topol-
ogy of a labeled image. In this paper we introduce new tools for compar-
ing the topology of two labeled images. First we define 2D topological
map isomorphism. We show that isomorphic topological maps correspond
to homeomorphic embeddings in the plane and we give a polynomial-time
algorithm for deciding of topological map isomorphism. Then we use this
notion to give a generic definition of multi-label simple transformation
as a set of transformations of labels of pixels which does not modify the
topology of the labeled image. We illustrate the interest of multi-label
simple transformation by generating look-up tables of small transforma-
tions preserving the topology. Combinatorial maps; 2D topological maps
isomorphism; labeled image; simple points; simple sets.

1 Introduction

Image processing often needs to group pixels into clusters having some common
properties (which can be colorimetric, semantic, geometric. . .). One way to de-
scribe these clusters is to use labeled images where a label is associated with
each pixel. Given two labeled images, it is interesting to be able to decide if they
have the same topology. This can be useful for example for object tracking or
image analysis. A related question is to decide whether a labeled image can be
transformed into another one while preserving the topology of the partition. This
second question is interesting to propose a deformable model with a topological
control for example. In this paper, these two problems are addressed.

Many data-structures were proposed to describe the topology of labeled im-
ages. A well-known one is the Region Adjacency Graph (RAG) [12]: the image
is partitioned into regions corresponding to sets of connected pixels; the RAG
associates a node with every region and an edge with every pair of adjacent re-
gions. RAGs are used in different image processings like image segmentation [14]
or object recognition [9]. However a RAG does not fully describe the topology of
a partition in regions: it does not represent multi-adjacency relations nor the or-
der of adjacent regions when turning around a given region. Thus two partitions
having different topologies may be described by isomorphic RAGs.

2D topological maps [3] are more powerful data structures for describing
the topology of subdivided objects as they fully describe the topology of la-
beled images. They combine 2D combinatorial maps (2-maps [10]), describing

2 Guillaume Damiand, Tristan Roussillon, and Christine Solnon

the topology of subdivided objects (multi-adjacency relations as well as the order
of adjacent regions when turning around a given region) with enclosure trees,
describing region enclosure relations.

In this paper, we define isomorphism between topological maps and we show
that two labeled images are homeomorphic if their associated topological maps
are isomorphic. We describe a polynomial-time algorithm for checking whether
two topological maps are isomorphic, thus providing an efficient way of deciding
whether two labeled images are homeomorphic. Then we use the isomorphism
definition of topological maps in order to give a simple definition of multi-label
simple transformation (called ML-simple), i.e. a set of modifications of labels of
pixels that preserve the topology of the whole partition. Lastly we use all these
tools in order to generate different look-up tables of ML-simple transformations
allowing to test in amortized constant time if two local configurations are equiv-
alent, and allowing to retrieve in linear time in the size of the output all the
configurations that are equivalent.

In Sect. 2 we introduce all the preliminary notions on labeled images, com-
binatorial maps, isomorphism and homotopic deformation. In Sect. 3 we de-
fine topological map isomorphism and present the algorithm allowing to test
if two topological maps are isomorphic. Section 4 introduces the definition of
ML-simple transformation and shows that it is possible to restrict the test of
topological map isomorphism on bounding boxes around the modified pixels. In
Sect. 5 we present the construction of look-up tables of ML-simple transforma-
tions. We conclude and give some perspectives in Sect. 6.

2 Preliminary Notions

2.1 Labeled Images and Partitions into Regions

A 2D labeled image is a triple (Id, L, l), where Id ⊆ Z2 is a set of pixels (the image
domain), L is a finite set of labels, and l : Z2 → L is a labeling function which
associates a label with every pixel. Two pixels p1 = (x, y) and p2 = (x′, y′) are 4-
adjacent (resp. 8-adjacent) if |x−x′|+|y−y′| = 1 (resp. max(|x−x′|, |y−y′|) = 1).
A k-path (with k = 4 or 8) is a sequence of pixels such that two consecutive pixels
of the sequence are k-adjacent. A set of pixels S is k-connected if for each pair
of pixels (p1, p2) ∈ S2 there is a k-path from p1 to p2 having all its pixels in S.

A region in a labeled image i = (Id, L, l) is a maximal set of 4-connected
pixels having the same label. An additional region is defined, denoted infinite(i),
which is the complement of Id, i.e., infinite(i) = Z2 \ Id. The set of regions of i,
including infinite(i), is denoted regions(i) and is a partition of Z2.

A region R is enclosed in another region R′ if all 8-paths from one pixel
of R to a pixel of infinite(i) contains at least one pixel of R′. Region R is
directly enclosed in R′ if there is no region R′′ 6= R′ such that R is enclosed in
R′′ and R′′ is enclosed in R′. Every region except the infinite one has exactly
one direct enclosing region whereas it may have 0, 1 or more directly enclosed
regions. Direct enclosure relations may be described by an enclosure tree rooted
in infinite(i) (see Fig. 1 for an example of a partition).

Topological map isomorphism and multi-label simple transformation 3

Digital contours of regions are made explicit by using the interpixel topology
[8]. In interpixel topology, the cellular decomposition of the euclidean space
R2 into regular elements is considered. Pixels are 2-dimensional elements (unit
squares), linels are 1-dimensional elements (unit segments) and pointels are 0-
dimensional elements (points). Two linels are connected if they share a pointel
in their boundary. A frontier between two regions R and R′ is a maximal set of
connected linels separating pixels belonging to R and R′.

The boundary of a region R is the set of linels which separate pixels of R
from 4-adjacent pixels not in R. This boundary is partitioned in two sets: the
external boundary contains the linels separating R from non enclosed regions;
internal boundaries contain the linels separating R from its enclosed regions.
Note that every region except the infinite one has a non empty external boundary
whereas it may have an empty internal boundary. The infinite region has an
empty external boundary but its internal boundary is not empty (unless Id = ∅).

2.2 Combinatorial Maps

Combinatorial maps [10] were defined to describe the subdivision of objects
in cells (vertices, edges, faces. . .) plus the incidence and adjacency relations
between these cells. In 2D, a combinatorial map (2-map) can be seen as a graph
where each edge is cut in two darts (also known as half-edges). Darts are oriented
and two relations are defined on the set of darts: β1(d) is the dart following d
when turning around the face which contains d and β2(d) is the dart opposite
to d in the face adjacent to the face which contains d. More formally, a 2-map
is defined by a triple M = (D,β1, β2) such that D is a finite set of darts, β1 is
a permutation on D, and β2 is an involution on D. A 2-map is connected if for
every pair of darts (d, d′) ∈ D2, there exists a sequence of darts (d1, . . . , dn) such
that d1 = d, dn = d′, and ∀1 ≤ i < n, di+1 = β1(di) or di+1 = β2(di).

An example of 2-map is given in Fig. 1(b). This combinatorial map contains
16 darts (drawn by oriented curves). Two darts linked by β1 are drawn consec-
utively (e.g. β1(10) = 11). Note that a dart may be linked with itself in case of
loops (e.g. β1(1) = 1). Two darts linked by β2 are drawn in parallel and have
reverse orientations (e.g. β2(1) = 2 or β2(10) = 3). This 2-map is not connected
and is composed of 3 different connected components.

2.3 Topological Maps

A topological map is a combinatorial data-structure which fully describes the
topology of a partition into regions of a labeled image. It is composed of three
parts: a combinatorial map describing the adjacency relations between regions
in an ordered way, an enclosure tree describing the direct enclosure relations
between regions and an interpixel matrix describing the geometry of the different
contours. In this paper, we focus on topology and do not use geometry so that
we do not consider the interpixel matrix.

Definition 1 (2D topological map). Given a 2D labeled image i = (Id, L, l),
its 2D topological map is defined by TM(i) = (M,T, r, d) where:

4 Guillaume Damiand, Tristan Roussillon, and Christine Solnon

R
1

R
2

R
3

R
4 R

5

R
6

infinite

(a)

1

2

7
8

9

5

6

3
4

13

15

14
16

10
12

11

(b)

R
2

R
4

R
6

R
5

R
3

R
1

infinite

(c)

Fig. 1. Example of topological map. (a) A labeled image i. (b) The minimal combina-
torial map describing i. (c) The region enclosure tree.

– M = (D,β1, β2) is a 2-map such that each face of M corresponds to a
boundary of a region of i, and β2 describes adjacency relationships between
the faces. Furthermore, M is minimal in its number of darts;

– T = (N,E) is an enclosure tree of regions: each node of T corresponds to a
region of i, and has a child for every region which is directly enclosed in it;
the root of T is infinite(i);

– r : D → N associates each dart d ∈ D with the region r(d) ∈ N whose
boundary contains d;

– d : N → D associates each region R ∈ N with a dart d(R) ∈ D which is a
dart of the face corresponding to the external boundary of R, except for the
infinite region which does not have an external boundary so that d(infinite(i))
belongs to its internal boundary.

Given a 2D labeled image, its topological map is unique (up to isomorphism
between 2-maps). Indeed, the 2-map is minimal in number of darts. Thus, each
pair of darts (d, β2(d)) describes a frontier between two regions R and R′ (i.e. a
maximal set of connected linels separating pixels belonging to R and R′).

In a 2D topological map, each region is represented as a node in the enclosure
tree and as face(s) in the 2-map (see example in Fig. 1). Two 4-adjacent regions
share a common frontier represented as pair(s) of darts linked by β2 in the 2-
map. In Fig. 1, darts 8 and 12 represent the frontier between regions R1 and
R5. The relation between two 8-adjacent but not 4-adjacent regions is implicitly
represented by a third region, which is 4-adjacent to both. In Fig. 1, the two
consecutive darts 13 and 14, linked by β1, which represent one internal boundary
of region R1, are respectively linked by β2 to darts 15 and 16, which represent
the external boundary of regions R2 and R3.

2.4 Isomorphisms and Signatures

Two 2-maps M = (D,β1, β2) and M ′ = (D′, β′1, β
′
2) are isomorphic if there exists

a bijection f : D → D′ (called map isomorphism function) such that ∀d ∈ D,
∀i ∈ {1, 2}, f(βi(d)) = β′i(f(d)) [10]. In [7], map signatures are defined such
that two connected 2-maps are isomorphic iff their signatures are equal. Given

Topological map isomorphism and multi-label simple transformation 5

a connected map M = (D,β1, β2) such that |D| = k, the signature of M is a
sequence of 2k integer values σ(M) =< d1, d2, . . . , d2k >, with di ∈ [1; k] for
all i ∈ [1; 2k]. This signature may be used to define the canonical form of M :
canonical(M) = (D′, β′1, β

′
2) with D′ = {1, . . . , k} and ∀i ∈ D′, β′1(i) = d2i−1

and β′2(i) = d2i (see [7] for more details).

Two trees T = (N,E) and T ′ = (N ′, E′) are isomorphic if there exists a
bijection f : N → N ′ (called tree isomorphism function) such that ∀u, v ∈
N, (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′. If the trees are rooted in r and r′, respectively,
then f must map the roots of the trees, i.e., f(r) = r′. If the complexity of graph
isomorphism is still an open question, the complexity of tree isomorphism is
polynomial and [1] describes an algorithm in O(|N |) which associates signatures
with nodes of the trees. The algorithm of [1] may be extended to integrate labels
in signatures: the signature of a leaf is its label; the signature of a node which is
not a leaf is the concatenation of its label with the sorted sequence of its children
signatures concatenated with the corresponding edge labels.

2.5 Transformations Preserving Topology

In digital topology, the topology of a binary image is usually defined from a
pair of adjacency relations (e.g. 4 for one label, 8 for the other) so that a digital
version of the Jordan Curve theorem holds [13]. The drawback of this popular
solution is that we have two adjacency relations for one partition. Its topology
may change if we interchange the two colors, because the chosen adjacency pair is
not an intrinsic feature of the partition, but depends on the object to represent.
There is no good choice if the topology of the object is intricate (e.g. there
are many nested connected components) or if both labels represent regions of
interest. This is especially true for images of more than two labels.

In a binary image, a point is simple if its label can be changed without chang-
ing the connectedness properties of the support of either label [13]. This concept
can be extended to labeled images if we independently consider the support of
each label and its complement. However, to take into account the adjacency re-
lations between regions, it is proposed in [2] to also consider the union of two
labels. A generalization of this idea may be found in [11]. In [6], a new definition
of multi-label simple point is proposed to guarantee that the topology of a parti-
tion is preserved when a pixel is flipped from a region to an adjacent region. The
drawback of these methods is that only elementary transformations are taken
into account. However, two partitions can be homeomorphic even if there does
not exist a sequence of elementary transformations mapping the two partitions.

In this work, we represent a labeled image by a topological map, which is
an intrinsic feature of its partition into regions. Isomorphism between two topo-
logical maps, which is equivalent to homeomorphism between two partitions,
provides a way of deciding whether a global transformation preserves the topol-
ogy of the partition or not.

6 Guillaume Damiand, Tristan Roussillon, and Christine Solnon

R1

R2 R3 R4

infinite

R1

R2 R3 R4

infinite

R1

R2 R3 R4

infinite

R1

R2 R3 R4

infiniteInfinite

R3

R2

R1

R5 R5

Infinite

R1

R3R2

Images

2−maps

Trees

(a) (b) (c) (d) (e) (f)

R3R2 R4R3R2 R4
R3R2 R4

R3

R1 R2

R2 R3

R4R1 R1

R2 R3

R1

R2 R3

R4

R1R1

R2

R3
R3

R2

R1

R1

R1 R5

R4R2 R3

R2 R4R3

R1

R1 R5

R2 R3 R4

R1

R5 R5

Fig. 2. Examples of non isomorphic topological maps. (a) and (b) have isomorphic
trees but not isomorphic 2-maps (R2 and R4 are not adjacent in (a) whereas they are
8-adjacent in (b)). (c) and (d) have isomorphic 2-maps but not isomorphic trees. (e) and
(f) have isomorphic trees and 2-maps, but isomorphism functions are not compatible.

3 Topological Map Isomorphism

In [5], 2-map isomorphism is extended to consider plane isomorphism, i.e. isomor-
phism between connected 2-maps drawn on the plane. This preliminary definition
is extended here to 2D topological maps by considering additional information
given by region enclosure trees.

Definition 2 (2D topological map isomorphism). Two 2D topological maps
TM = (M = (D,β1, β2), T = (N,E), r, d) and TM ′ = (M ′ = (D′, β′1, β

′
2), T ′ =

(N ′, E′), r′, d′) are isomorphic iff: (1) there exists a map isomorphism function
fm : D → D′; (2) there exists a tree isomorphism function ft : N → N ′; (3) two
faces of M and M ′ are matched by fm iff the corresponding regions of T and T ′

are matched by ft, i.e., ∀di ∈ D: ft(r(di)) = r′(fm(di)).

As illustrated in Fig. 2, the three conditions of Def. 2 are necessary to ensure
topological map isomorphism. Moreover, Def. 2 leads to the following result:

Theorem 1. Let i and i′ be two labeled images, and TM(i) and TM(i′) be
their associated 2D topological maps. TM(i) and TM(i′) are isomorphic iff the
partitions into regions of i and i′ are homeomorphic embeddings in the plane.

Two embeddings are homeomorphic in the plane when they describe the
same regions and the same adjacency relations and region enclosure relations.

In [15] the definition of maptree is given. This is a 2D combinatorial map
plus a black and white adjacency tree. This tree has one white node for each
region of the partition and one black node for each connected component of
the combinatorial map (no two adjacent nodes have the same color). The white

Topological map isomorphism and multi-label simple transformation 7

father (resp. sons) of a black node is the region (resp. regions) corresponding to
the external face (resp. internal faces) incident to a same connected component
of the combinatorial map. It is thus easy to see that a maptree is equivalent to
a topological map.

Proposition 1 in [15] proves that a maptree provides a unique representation
(up to homeomorphism of the sphere) of the embedding of a non-connected
combinatorial map. Moreover, if the maptree is rooted, the representation is
unique up to homeomorphism of the plane. Theorem 1 is a direct consequence
of this proposition.

Now, let us describe an algorithm for deciding whether two 2D topologi-
cal maps are isomorphic or not. Let us consider a 2D topological map TM =
(M,T = (N,E), r, d). Each node R ∈ N of the region enclosure tree corresponds
to an image region and is associated with a dart d(R) which belongs to a face
of a connected component of M . Let us note FR the face of M which contains
d(R), and MR the connected component of M which contains d(R). We label
the tree T = (N,E) by defining the labeling function λ as follows:

– every region R ∈ N is labeled with the signature of the connected component
of M which contains d(R), i.e., λ(R) = σ(MR);

– every edge (R,R′) ∈ E is labeled with the smallest dart of the face corre-
sponding to FR in canonical(MR).

The labeling of the region enclosure trees provides a way of deciding whether
two 2D topological maps are isomorphic or not:

Theorem 2. Two 2D topological maps are isomorphic iff their labeled region
enclosure trees are isomorphic.

Indeed, the labels associated with the nodes ensure that two regions mapped
by a tree isomorphism function actually belong to isomorphic connected compo-
nents of the 2-maps; the labels associated with the edges ensure that two regions
mapped by a tree isomorphism function are enclosed in regions which correspond
to a same face in the canonical form of the corresponding connected components
of the 2-maps.

Hence, to decide whether two 2D topological maps are isomorphic we first
compute the labeling functions of the region enclosure trees and then use the
algorithm of [1] to decide whether the two trees are isomorphic. The time com-
plexity of the construction of the labeling function mainly involves computing
the signature and the canonical form of each connected component of the 2-map.
This may be done in O(k · t2) where k is the number of connected components of
the 2-map and t is the maximum number of darts in a connected component (see
Property 10 of [7]). The time complexity for deciding whether two labeled trees
are isomorphic is linear w.r.t. the number of nodes, i.e., the number of regions.

Our contribution here is the definition of 2D topological map isomorphism
(which could be also given for maptrees) and the description of a polynomial
time algorithm for deciding of isomorphism. The second main contribution of this
paper, given in the next section, is the definition of ML-simple transformation.

8 Guillaume Damiand, Tristan Roussillon, and Christine Solnon

2R1R 4R 5R3R 7R 8R 9R6R

2R’1R’ 4R’ 5R’3R’ 7R’ 8R’ 9R’6R’

2R1R 4R 5R3R 7R 8R 9R6R

2R’1R’ 4R’ 5R’3R’ 7R’ 8R’ 9R’6R’

Fig. 3. Two partitions having homeomorphic embeddings in the plane. In the left
image, there is no ML-simple transformation of less than 9 pixels. A possible ML-
simple transformation is the one modifying simultaneously the labels of the 9 pixels of
a same line and giving the right image.

4 ML-simple Transformation

Given a labeled image (Id, L, l), the goal is to modify the label of some pixels
while preserving the topology of the partition. To achieve this goal, we start to
define what is a transformation in a labeled image.

Definition 3 (Transformation). Given a 2D labeled image i = (Id, L, l), a
transformation T is a set of pairs {(p1, v1), . . . , (pn, vn)}, with ∀k ∈ {1, . . . , n},
pk ∈ Id a pixel and vk ∈ L a label. The labeled image obtained by applying
transformation T on i is the labeled image T (i) = (Id, L, l

′) such that ∀k ∈
{1, . . . , n}, l′(pk) = vk and ∀p ∈ Z2 \ {p1, . . . , pn}, l′(p) = l(p).

Now, thanks to the definition of transformation and the definition of topo-
logical map isomorphism, it is straightforward to define the notion of ML-simple
Transformation (ML stands for multi-label). Intuitively a transformation is ML-
simple if the two topological maps of the initial image and of the transformed
image are isomorphic.

Definition 4 (ML-simple transformation). Let i = (Id, L, l) be a 2D la-
beled image. A transformation T on i is ML-simple if TM(i) is isomorphic to
TM(T (i)).

Theorem 1 says that two isomorphic topological maps represent two home-
omorphic embeddings in the plane, thus an ML-simple transformation does not
modify the topology of the embedding in the plane. Note that a ML-simple trans-
formation that modifies only one pixel corresponds to the notion of ML-simple
point [6]. Figure 3 shows that transformation of many pixels could be required
in some configurations. In this example, there is no ML-simple transformation
of sets having less than 9 pixels.

The definition of ML-simple transformation gives a straightforward way to
test if a transformation is ML-simple: this may be done by computing the two
topological maps and testing if they are isomorphic. This simple algorithm can
be improved thanks to Theorem 3, which shows that it is enough to compare
subimages surrounding the pixels of the transformation.

Given a transformation T on a labeled image (Id, L, l), let (Id|T , L, l)
be the subimage concerned by the transformation. More precisely,

Topological map isomorphism and multi-label simple transformation 9

2R

1R 5R

4R3R 2R

1R

3R 4R

5R

Fig. 4. Two partitions having homeomorphic embeddings in the plane. There is no
sequence of flips of ML-simple points allowing to transform the image to the left in the
image to the right. However there is a sequence of ML-simple transformations of four
pixels which transforms the left image into the right one.

min(Id|T) = (min{p1.x, . . . , pk.x} − 1,min{p1.y, . . . , pk.y} − 1) and
max(Id|T) = (max{p1.x, . . . , pk.x} + 1,max{p1.y, . . . , pk.y} + 1) are the
two extremal pixels of the bounding box lying at distance 1 from the extremal
points of T . In other words, (Id|T , L, l) is the subimage enclosing all the pixels
of the transformation by a border of 1 pixel in thickness.

Theorem 3 shows that it is enough to compare the topological map of the
subimage (Id|T , L, l) before and after the transformation in order to test if a
transformation is ML-simple.

Theorem 3. Let i = (Id, L, l) be a 2D labeled image and T be a transformation
on i. T is ML-simple for i iff T is ML-simple for (Id|T , L, l).

The main argument of the proof uses the fact that the labels of the pixels in
the complement of Id|T are not modified by the transformation, nor the pixels
in the border of Id|T (because the bounding box has been enlarged by a band
of 1 pixel in thickness). Intuitively, this band of pixels around the bounding box
guarantees that the frontiers are preserved between Id|T and its complement.

5 Look-up Tables of ML-simple Transformations

One interest of ML-simple transformations is to allow more deformations pre-
serving the topology than ML-simple points. This is illustrated in the example
given in Fig. 4. Both partitions are two homeomorphic embeddings in the plane,
however there is no sequence of flips of ML-simple points allowing to transform
the image on the left into the image on the right. This becomes possible if we
use ML-simple transformations instead of flips of ML-simple points.

Deforming a labeled image while preserving the topology of the partition in
regions can be done by searching for a ML-simple transformation and applying
it. Given a local configuration of pixels, the question is thus to find all the possi-
ble ML-simple transformations of the current configuration. Indeed Theorem 3
ensures that the ML-simple transformation test can be restricted to the local
window around the modified pixels.

To answer this question in an efficient way, we generated look-up tables of
ML-simple transformations of three sizes (sx, sy): 1×1 (which is thus equivalent

10 Guillaume Damiand, Tristan Roussillon, and Christine Solnon

to the notion of ML-simple point), 2×1 and 1×2 (modification of two 4-adjacent
pixels) and 2× 2 (modification of four pixels forming a square).

To generate these look-up tables, we first generated all the possible labeled
images of size (sx + 2, sy + 2). We associate to each image i a bitset b(i) having
2 × (sx + 2) × (sy + 2) bits. Bit number 2 × (x + y × (sx + 2)) is equal to 1
if pixel (x, y) belongs to the same region as pixel (x − 1, y), and bit number
1 + 2× (x+ y × (sx + 2)) is equal to 1 if pixel (x, y) belongs to the same region
as pixel (x, y − 1). Each bitset describes a labeled image up to relabeling of
labels, which is what we want since configurations do not consider the value of
the labels but only the partition in regions.

The different bitsets are stored in two data-structures. The first one is an
array of lists of bitsets, each element of the array being the list of all the bitsets
having the same values in their boundaries and having isomorphic topological
maps. Each list contains all the possible ML-simple transformations of a given
configuration, i.e. all the local configurations belonging to the same equivalence
class. The second data structure is an associative array (for example a hash-
table) allowing to retrieve, given a bitset, the index of its equivalence class in
the array of lists.

Thanks to these two data-structures, it is easy to test if two local configura-
tions (of a given size) are equivalent by computing their two bitsets (by a linear
scan of the pixels of the two images) and computing their two indices of their
equivalence class. If the two indices are equal, the two configurations are topo-
logically equivalent. Thanks to the hash-table, this can be done in amortized
constant time.

Moreover, given a local configuration, we can directly apply successively all
the possible ML-simple transformations (of a given size) while preserving the
topology of the partition. We first compute the bitset of the local configuration
and get the index of its equivalence class. Thanks to this index, we have a direct
access to the list of all the bitsets belonging to the same equivalence class, i.e.
having the same topology. For each bitset in the list, we can locally modify the
labeled image according to the label of pixels not modified by the transformation
(belonging to the boundary of the image) and we are sure that the modified image
has the same topology as the initial one.

Table 1 shows some information on the generated look-up tables with size
1×1, 2×1 and 2×2. The number of configurations increases quickly as the size of
the ML-transformation increases. The number of equivalence classes is significant
(between 75% and 84% of the total number of configurations). Indeed there are
many non ML-simple configurations. Lastly, we can notice the important time
required to compute the look-up tables (about 2 hours for 2×2 pixels), however
this generation was done only once as a preprocessing step.

An upper bound on the number of configurations can be computed. For a
transformation of size (sx, sy), there are p = (sx+2)×(sy+2) pixels. If we denote
by k the number of different labels, each pixel can be labeled with an integer
between 1 and k (k ∈ {1, . . . , p}). Thus the number of different configurations
with k labels is p!

(p−k)! and the total number of configurations is
∑p

k=1
p!

(p−k)! ,

Topological map isomorphism and multi-label simple transformation 11

size nb configs nb classes time max/classe

1 × 1 1 002 850 0.04s 3
2 × 1 16 239 13 211 5.4s 6
2 × 2 756 436 567 728 7042.s 30

Table 1. Generation of look-up tables of all ML-simple transformations of size 1 × 1,
2×1 and 2×2. nb configs is the total number of configurations, nb classes the number of
equivalence classes, time the time spent to compute the look-up tables and max/classe
the maximal number of elements belonging to the same class.

that is 986 409 (resp. 1 302 061 344 and 56 874 039 553 216) for size 1 × 1 (resp.
2×1 and 2×2). We can observe a major difference between these results and the
experimental ones because the previous formula gives an upper bound and not
exactly the number of configurations. Indeed, different permutations of labels
can give the same configuration (i.e. the same partition into regions) while they
could be recounted several times in the formula. Note also that it is very difficult
to estimate the number of classes, and to give a better upper bound than the
total number of configurations.

6 Conclusion

In this paper, we defined the isomorphism between 2D topological maps and
showed that two topological maps are isomorphic if and only if the corresponding
images are homeomorphic embeddings in the plane. Thanks to this definition,
we defined the ML-simple transformation as a set of modifications of labels of
pixels that preserve the topology of the partition. Thanks to these notions, we
were able to generate different look-up tables of ML-simple transformations for
different sizes of modified pixels.

Topological map isomorphism could be helpful in work that need to verify
that modifications preserve the topology of the partition. This is for example
the case for rigid transformation, where it is possible to use topological map
isomorphism as a control tool to check the results of the transformation.

The look-up tables will serve in order to propose more deformations in our
framework of deformable partition [4]. We hope that these new deformations will
improve the previous results since with ML-simple points, final results of the
deformation process are sometimes blocked in local configurations that can not
be modified with ML-simple points. Moreover, we want to increase the speed of
the simulation thanks to the access in amortized constant time to the elements of
the table. Note that it is possible to use directly the topological map isomorphism
in order to test if a transformation is ML-simple. This possibility is particularly
interesting in order to use transformations of a large number of pixels.

Our first perspective is the extension of this work to 3D, where topologi-
cal maps and signatures are already defined. The only problem to solve is the
position of fictive edges in 3D topological maps. We must propose a canonical
representation for these edges in order to retrieve the property that two maps

12 Guillaume Damiand, Tristan Roussillon, and Christine Solnon

are isomorphic if the corresponding images are homeomorphic embeddings in the
3D Euclidean space. Our second perspective is the generation of look-up tables
with bigger size. The problem is then the memory storage of these tables while
keeping an efficient access to all the elements.

Acknowledgement: This work has been partially supported by the French Na-
tional Agency (ANR), projects DigitalSnow ANR-11-BS02-009 and Solstice
ANR-13-BS02-01.

References

1. Aho A.V., Hopcroft J.E., and Ullman J.D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. P.-L. Bazin, L. M. Ellingsen, and D. L Pham. Digital homeomorphisms in de-
formable registration. In Proc. of IPMI, volume 20, pages 211–222, January 2007.

3. G. Damiand, Y. Bertrand, and C. Fiorio. Topological model for two-dimensional
image representation: Definition and optimal extraction algorithm. Computer Vi-
sion and Image Understanding, 93(2):111–154, February 2004.

4. G. Damiand, A. Dupas, and J.-O. Lachaud. Combining topological maps, multi-
label simple points, and minimum-length polygons for efficient digital partition
model. In Proc. of IWCIA, volume 6636 of LNCS, pages 56–69, Madrid, Spain,
May 2011. Springer Berlin/Heidelberg.

5. G. Damiand, C. Solnon, C. de la Higuera, J.-C. Janodet, and E. Samuel. Poly-
nomial algorithms for subisomorphism of nd open combinatorial maps. Computer
Vision and Image Understanding, 115(7):996–1010, July 2011.

6. A. Dupas, G. Damiand, and J.-O. Lachaud. Multi-label simple points definition
for 3d images digital deformable model. In Proc. of DGCI, volume 5810 of LNCS,
pages 156–167, Montréal, Canada, September 2009. Springer Berlin/Heidelberg.

7. S. Gosselin, G. Damiand, and C. Solnon. Efficient search of combinatorial maps
using signatures. Theoretical Computer Science, 412(15):1392–1405, March 2011.

8. E. Khalimsky, R. Kopperman, and P.R. Meyer. Computer graphics and connected
topologies on finite ordered sets. Topology and its Applications, 36:1–17, 1990.

9. P. Le Bodic, H. Locteau, S. Adam, P. Héroux, Y. Lecourtier, and A. Knippel.
Symbol detection using region adjacency graphs and integer linear programming.
In Proc. of ICDAR, pages 1320–1324, Barcelona, Spain, July 2009. IEEE Computer
Society.

10. P. Lienhardt. N-Dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational Geometry and Applications,
4(3):275–324, 1994.

11. L. Mazo. A framework for label images. In Proc. of CTIC, volume 7309 of LNCS,
pages 1–10. Springer Berlin Heidelberg, 2012.

12. A. Rosenfeld. Adjacency in digital pictures. Information and Control, 26(1):24–33,
1974.

13. A. Rosenfeld. Digital Topology. The american Mathematical monthly, 86(8):621–
630, 1979.

14. A. Trémeau and P. Colantoni. Regions adjacency graph applied to color image
segmentation. IEEE Transactions on Image Processing, 9:735–744, 2000.

15. M. Worboys. The maptree: A fine-grained formal representation of space. In
Geographic Information Science, volume 7478 of LNCS, pages 298–310. Springer
Berlin Heidelberg, 2012.

