
What Does Digital Straightness Tell About

Digital Convexity ?

Tristan Roussillon⋆1, Laure Tougne1, and Isabelle Sivignon2

1 Université de Lyon,
Université Lyon 2, LIRIS, UMR5205, F-69676, FRANCE
{tristan.roussillon, laure.tougne}@liris.cnrs.fr

2 Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, FRANCE

isabelle.sivignon@liris.cnrs.fr

Abstract. The paper studies local convexity properties of parts of dig-
ital boundaries. An online and linear-time algorithm is introduced for
the decomposition of a digital boundary into convex and concave parts.
In addition, other data are computed at the same time without any ex-
tra cost: the hull of each convex or concave part as well as the Bezout
points of each edge of those hulls. The proposed algorithm involves well-
understood algorithms: adding a point to the front or removing a point
from the back of a digital straight segment and computing the set of
maximal segments. The output of the algorithm is useful either for a
polygonal representation of digital boundaries or for a segmentation into
circular arcs.

1 Introduction

The paper studies local convexity properties of parts of digital boundaries. As
shown in [Eck01], the convexity of a digital boundary cannot be decided locally
(where locally means in the 8-neighbourhood). Considering this fact, the follow-
ing question has been raised in [EDR04]: how far one can decide whether a part
of a digital boundary is convex or not by a method that is as local as possible?
Our answer is that a good neighbourhood for checking convexity is given by a
segment that cannot be extended either at the front or at the back.

An online and linear-time algorithm is introduced for the decomposition
of a digital boundary into convex and concave parts. The proposed algorithm
uses well-understood algorithms: adding a point to the front [DRR95] or re-
moving a point from the back [LVdV07] of a digital straight segment. The
core of the algorithm is similar to the one that computes the set of maximal
segments [FT99,LVdV07]. Hence, one single scan of a digital boundary by a
window corresponding to a digital straight segment is sufficient to decompose
the digital boundary into convex and concave parts. Our algorithm is on-line
(contrary to [Fes05,DRDR05]) and leads to a unique decomposition (contrary
to [DRRRD03]).

⋆ Author supported by a grant from the DGA

Moreover, other data are computed simultaneously. During the scan, the hull
of each convex or concave part as well as the Bezout points of each edge of each
hull are computed (we call hull a partial convex hull whose formal definition
is given in Section 3.1). To do this, some operations are added to the maximal
segments computation when the first and last leaning points of the current digital
straight segment merge or split.

The link between the leaning points of the maximal segments and the hull of
convex or concave parts has been investigated either for local estimators [dVLF07]
or for faithful polygonalizations [EDR04,DRDR06]. In this paper, the link be-
tween the hull of convex or concave parts and the leaning points of digital straight
segments that are not necessarily maximal is also studied.

In Section 2, definitions of digital boundary, digital straight segment, leaning
points and Bezout points are recalled in detail. The main contribution consists
of Proposition 2 and Corollary 1 proved in Section 3.2. These propositions yield
to Algorithm 2, which is an extended version of Algorithm 1. Applications of
these algorithms are discussed in Section 4.

2 Preliminaries

2.1 Digital Object and Digital Boundary

A binary image I is viewed as a subset of points of Z
2 that are located inside

a rectangle of size M × N . A digital object O ∈ I is a 4-connected subset
of Z

2, without hole (Fig. 1.a). Its complementary set Ō = I\O is the so-called
background. The digital boundary B of O is defined as the 8-connected clockwise-
oriented list of the digital points having at least one 4-neighbour in Ō (Fig. 1.b).

Each point of B is numbered according to its position in the list. The starting
point, which is arbitrarily chosen, is denoted by B0 and any arbitrary point of
the list is denoted by Bk. A part (BiBj) of B is the list of points that are ordered
increasingly from index i to j (Fig. 1.c).

(a) (b)

B0

B2

(B4B7)

(c)

Fig. 1. A digital object depicted with black disks (a). Its digital boundary (b). Notation
used (c)

2.2 Digital Straight Line

Definition 1 (Digital straight line [Rev91]) The set of digital points (x, y)
verifying µ ≤ ax−by < µ+max(|a|, |b|) belongs to the digital straight line (DSL)
D(a, b, µ) with slope a

b
and lower bound µ (with a, b, µ being integer such that

gcd(a, b) = 1).

The quantity ax − by, which is called the remainder, measures the distance
between (x, y) and D. Table 1 clusters the digital points of Z

2 into seven groups
according to their position with respect to D. Note that merging the last two
lines of Table 1 gives the two inequalities of definition 1.

position on the left on the right

strongly exterior ax− by < µ− 1 ax− by > µ + max(|a|, |b|)
weakly exterior ax− by = µ− 1 ax− by = µ + max(|a|, |b|)
weakly interior ax− by = µ ax− by = µ + max(|a|, |b|) − 1

strongly interior µ < ax− by < µ + max(|a|, |b|)− 1

Table 1. The digital points of Z
2 are divided into seven groups according to their

position with respect to the DSL D(a, b, µ)

Thanks to the vocabulary introduced in Table 1, two special kinds of points
are easily defined:

Definition 2 (Leaning points and Bezout points (Fig. 2.a)) The leaning
points (resp. Bezout points) of a DSL D are defined as the points that are weakly
interior (resp. exterior) to D.

The difference between two consecutive leaning points both located on the
left or right of D is the vector ~u = (b, a) (Fig. 2.b).

The Bezout points are closely related to the leaning points. Indeed, the Be-
zout points that are on the left or right of D may be computed from the leaning
points of the same side thanks to the well-known Bezout’s identity: vector ~v

(resp. ~w) of Fig. 2.b is such that det(~u,~v) equals -1 (resp. det(~u, ~w) equals 1)
(Fig. 2.b). Moreover, the leaning points on the left or right of D maps to the
Bezout points of the opposite side when shifted by a vector ~s that depends on
the slope of D. In the first octant, ~s = (0, 1) (Fig. 2.b).

2.3 Digital Straight Segment

Definition 3 (Digital straight segment) A part (BiBj) of B is a digital
straight segment (DSS) if and only if there exists a DSL containing it.

There are infinitely many DSL containing a DSS (BiBj). However, there is
always one DSL that is strictly bounding for (BiBj).

interior

exterior on the left

exterior on the right

(a)

~u

~u

~v

~v

~w
~s

~s

−~s

−~s

(b)

Fig. 2. The set of black disks lying between the two parallel dotted lines defines the
DSL D(2, 5, 0). The large black and white disks depict the leaning (weakly interior)
and Bezout (weakly exterior) points of D. In (b), vectors ~v, ~w and ~s show that the
Bezout points are closely related to the leaning points

Definition 4 A DSL is strictly bounding for a DSS (BiBj) if it has at least
three leaning points belonging to (BiBj). Moreover, at least one of them is a
leaning point that is on the left of the strictly bounding DSL and at least one of
them is a leaning point that is on the right of the strictly bounding DSL.

The recognition algorithm of Debled and Reveillès [DRR95] returns the pa-
rameters a, b, µ of the strictly bounding DSL containing a DSS.

When speaking about a DSS (its slope for instance), we automatically refer
to its strictly bounding DSL. Therefore, the exterior and interior points of a DSS
(BiBj) are defined as the exterior and interior points of the strictly bounding
DSL containing (BiBj). However, among all the leaning points of a DSS (BiBj),
only those contained in the DSS, with an index ranging from i to j, are retained.
Thus, the first (resp. last) leaning point is defined as the one with a minimal
(resp. maximal) index.

Definition 5 (Maximal segment) A DSS (BiBj) that cannot be extended at
the front (resp. at the back), i.e. (BiBj+1) (resp. (Bi−1Bj)) is not a DSS, is said
maximal at the front (resp. at the back). Moreover, a DSS that is both maximal
at the front and maximal at the back is a maximal segment.

There exist two algorithms to add [DRR95] or remove [LVdV07] a point at
one extremity of a DSS in constant time. Thanks to these two algorithms, the
computation of the whole set of maximal segments of a digital boundary is done
in linear time [FT99,LVdV07].

The set of maximal segments contains all DSS and all DSS segmentations
(Fig. 8.a), one of which has the minimal number of segments [FT05]. Estimations
of length [CK04], tangent [FT99,LVdV07] or curvature [FT99,CMT01] may be
derived from this set. Moreover, convex and convave parts are given by the slopes
of the maximal segments [Fes05,DRDR05].

3 Local Convexity and DSS

3.1 Definitions

Definition 6 (Convexity) A digital object O is convex if and only if the digital
points contained in belong to O only.

According to definition 6, the object illustrated in Fig. 1.a is convex, whereas
the object illustrated in Fig. 3.a is not convex.

Definition 7 hereafter is the analog of definition 6 for parts of digital bound-
aries and defines convex and concave parts with respect to the clockwise orien-
tation of the digital boundary.

Definition 7 (Convex and concave parts (Fig. 3.b and 3.c)) Let (BiBj)
be a part of a digital boundary B. The shortest polygonal line linking Bi and Bj

located on the left (resp. right) of (BiBj) is called the hull of (BiBj) and is

denoted by (BiBj) (resp. (BiBj)). (BiBj) is convex (resp. concave) if there is

no digital point between the polygonal line linking the points of (BiBj) and its

hull (BiBj) (resp. (BiBj)).

(a)

B11

B0

(b)

B9

B14

(c)

Fig. 3. In (a), the digital object depicted with black points is not convex because its
convex hull contains one background point. In (b), the part (B0B11) is convex because
there is no digital point between (B0B11) and (B0B11). Conversely, in (c), the part
(B9B14) is concave because there is no digital point between (B9B5) and (B0B14)

Similarly to the maximal segments, we define maximal convex and concave
parts:

Definition 8 (Maximal convex or concave parts) A convex part (BiBj) that
cannot be extended at the front (resp. at the back), i.e. (BiBj+1) (resp. (Bi−1Bj))
is not convex, is said maximal at the front (resp. at the back). Moreover, a max-
imal convex part is both maximal at the front and maximal at the back. Maximal
concave parts are similarly defined.

3.2 Main Results

A part (BiBj) contains a part (BiBl) (with i < l < j) that is supposed to be
convex. The case where (BiBl) is concave is symmetric.

Proposition 1 (proved in [DRRRD03]) shows in which cases the convex part
(BiBl) is not maximal.

Proposition 1 Let (BkBl) (with i < k < l) be a DSS that is maximal at the
back. (BiBl+1) is not convex if and only if Bl+1 is strongly exterior to the left
of (BkBl).

B0

B8

B9

B2

Fig. 4. (B2B8) is contained in a DSL of slope 2

5
. B9 is strongly exterior to the left of

this DSL, so (B0B9) is not convex

Furthermore, as shown in Lemma 1, there is a link between leaning points
of maximal segments and vertices of hulls. The part (BiBj) is supposed to be
convex. The case where (BiBj) is concave is symmetric.

Lemma 1 Let (BiBj) contain a maximal segment (BkBl). The leaning points

on the left of (BkBl) are vertices of (BiBj).

Proof. Let a
b

be the slope of the strictly bounding DSL of (BkBl). Since (BkBl)
is a maximal segment and (BiBj) is convex, all the points of (BiBj) that are not
in (BkBl) are on the right of the strictly bounding DSL of (BkBl) (Fig. 5). Let
L be a straight line of slope a

b
that is on the left of the strictly bounding DSL

of (BkBl). The first points hit by L while L is moving toward (BkBl) are the
leaning points on the left of (BkBl). By definition, they are vertices of (BiBj)
too.

The number of vertices of the convex hull of a convex boundary is greater
that the number of its maximal segments [dVLF07]. Thus, we cannot retrieve
all the vertices of (BiBj) from the leaning points of the maximal segments of
(BiBj). However, we can retrieve them in the course of the maximal segments
computation, from the leaning points of segments that are not maximal, but
either maximal at the front or at the back.

B0

B8

B11

B3

L

(a)

Fig. 5. The leaning point on the left of the maximal segment (B3B8) is a vertex of
(B0B11) because (B0B11) is convex.

Proposition 2 and Corollary 1 define the two events that provide a way of
finding, from a known vertex of (BiBj), the next vertex of (BiBj). Again, a part
(BiBj) contains a part (BiBl) (with i < l < j) that is supposed to be convex.
The case where (BiBl) is concave is symmetric.

Proposition 2 Let (BkBl) (with i < k < l) be a DSS that is maximal at the
back. If the point Bl+1 is exterior to the right of the strictly bounding DSS of
(BkBl), then the last leaning point on the left of (BkBl) is the next vertex of
(BiBj).

Proof. Let us denote by L the straight line passing through the first and last
leaning points on the left of (BkBl) (solid line of Fig. 6). By definition, Bl+1 +~s

is located on L if Bl+1 is weakly exterior to the right of D (Fig. 6) and strictly
on the right of L if Bl+1 is strongly exterior to the right of D.

Let us denote by α the slope of L. On the one hand, any straight line of
slope greater than α that leaves the leaning points on the left of (BkBl) on its
right side, leaves Bl+1 + ~s on its right side too. Since (BiBj) is convex, such a

line cannot contain an edge of (BiBj). On the other hand, any straight line that
separates the leaning points on the left of (BkBl) from Bl+1 + ~s has necessarily
a slope lower than α (like the dashed line in Fig. 6).

As (BkBl) is maximal at the back, the first leaning point on the left of
(BkBl) is a vertex of (BiBj) (Lemma 1). Thus, the last leaning point on the left

of (BkBl) is the next vertex of (BiBj). ⊓⊔

Corollary 1 Let (BkBl) (with i < k < l) be a DSS that is maximal at the front.
If (BkBl) has got only one leaning point and if (Bk+1Bl) has got strictly more
than one leaning point, then the last leaning point on the left of (Bk+1Bl) is the
next vertex of (BiBj).

B0

B9 B10

~s

B5

L

Fig. 6. B10 is weakly exterior to D(2, 5, 0). The first and last leaning points on the left
of (B0B9) (B0 and B5) and B10 + ~s are collinear. Since B0 is a vertex of (B0B10) by
hypothesis, B5 is the next vertex of (B0B10).

Fig. 7 illustrates Corollary 1.

B0

B3

B6

B8

B11

(a)

B1

B3

B6

B8

B11

(b)

Fig. 7. B0 is removed from the segment (B0B8) that is maximal at the front. Since B3

is a vertex of (B0B11) by hypothesis, B6 is the next vertex of (B0B11).

The proof of Corollary 1 is omitted because it is similar to the one of Propo-
sition 2.

4 New and Revisited Algorithms

In this section, algorithms are derived from Proposition 1 and Proposition 2
in order to (i) decompose a digital boundary into convex and concave parts
(Section 4.1), (ii) extract the hull of each convex or concave part (Section 4.2),
(iii) compute polygonal representations respecting convex and concave parts
(Section 4.3) and (iv) perform the preprocessing stage that optimizes the digital
arc segmentation (Section 4.4).

4.1 Decomposition into Convex and Concave Parts

A simple online and linear-time algorithm to decompose a given part of boundary
into convex and concave subparts is derived from Proposition 1 (Algorithm 1).

For sake of clarity, we assume in Algorithm 1 that the first retrieved subpart is
convex. The core of the algorithm is the scan of a part with a window corre-
sponding to a DSS as maximal as possible, like in the maximal segments com-
putation [FT99,LVdV07]. If a point that is strongly exterior to the left (resp.
right) of the current DSS is found (line 6), then a convex (resp. concave) part is
retrieved (line 7) and a new concave (resp. convex) part is searched (lines 8-9).

Algorithm 1: Decomposition into convex and concave parts

Input: a part (BiBj) of a boundary B

Output: The list L of convex and concave parts of (BiBj)
L ← ∅ ; /* list of convex and concave parts */1

x← true ; /* true if convex and false otherwise */2

k′ ← i ; /* beginning of the current segment */3

k← k′ ; /* beginning of the current convex or concave part */4

l← i + 1 ; /* index of the current point */5

while l ≤ j do6

l ← l + 1 ; /* add a point to the front */7

if (BkBl) is not a DSS then8

/* side(x) returns ‘left’ if x is true, ‘right’ otherwise */

if Bl is strongly exterior and on the (side(x)) of (BkBl−1) then9

L ← L+ (Bk′Bl−1) ; /* add this part to the decomposition */10

k′ ← k;11

x← ¬x ; /* from convex to concave and vice versa */12

if Bl is strongly exterior and on the (side(¬x)) of (BkBl−1) then13

while (BkBl) is not a DSS do14

k← k + 1 ; /* remove a point from the back */15

return L+ (Bk′Bl−1);16

Contrary to [Fes05] and [DRDR05], the algorithm is online, because the de-
composition is not derived from the slopes of the maximal segments but is given
in the course of the maximal segments computation.

In [CGRT04], the algorithm of [DRRRD03] for testing the convexity is used
in order to perform an online decomposition into convex and concave parts. But
the decomposition is greedy and results in a set of pairwise disjoint parts of the
boundary. Our decomposition is unique and results in a set of maximal convex
and concave parts. Furthermore, in the algorithm of [DRRRD03], each point is
processed three times at most, according to the authors, whereas in Algorithm 1,
because removing a point at the back of a DSS [LVdV07] is allowed, each point
is processed twice at most.

Fig. 8.b illustrates the decomposition. Notice that, as expected, the part
(B27B38), which is contained both in the convex part (B0B38) and the concave
one (B27B66), is a maximal segment.

In the next subsection, we go further and propose an online and linear-time
algorithm that provides the hull of each convex or concave parts.

4.2 Hull of Each Convex or Concave Parts

From Proposition 2 and Corollary 1, an online and linear-time algorithm is
derived to extract the hull of each convex and concave part (Algorithm 2).

Moreover, the Bezout points of the edges of the hull, that is the Bezout
points of the DSS whose extremities are the vertices of the edges of the hull,
are naturally extracted at the same time. Indeed, as the edges are given by the
leaning points on the left or right of a DSS, their Bezout points are computed
from the opposite leaning points of the DSS, thanks to ~s (Section 2.2).

Algorithm 2: Hull of each convex or concave part and its Bezout points

Input: a part (BiBj) of a boundary B

Output: The list L of leaning and Bezout points
x← true ; /* true if convex and false otherwise */1

k← i ; /* beginning of the current segment */2

l← i + 1 ; /* index of the current point */3

L ← Bk ; /* list of leaning and Bezout points */4

while l ≤ j do5

l ← l + 1 ; /* add a point to the front */6

/* side(x) means ‘left’ if x is true, ‘right’ otherwise */

if (BkBl) is a DSS then7

if Bl is weakly exterior and on the (side(¬x)) of (BkBl−1) then8

L ← L + the list of Bezout points on the (side(¬x)) of (BkBl−1)9

that are between the first and last opposite leaning points;
L ← L + the last leaning point on the (side(x)) of (BkBl−1);10

else11

if Bl is strongly exterior and on the (side(x)) of (BkBl−1) then12

x← ¬x ; /* from convex to concave and vice versa */13

if Bl is strongly exterior and on the (side(¬x)) of (BkBl−1) then14

while (BkBl) is not a DSS do15

k← k + 1 ; /* remove a point from the back */16

if (Bk−1Bl−1) has a unique leaning point on the (side(x)) and17

(BkBl−1) has more than one leaning point on the same side
then

L ← L + the list of Bezout points on the (side(¬x)) of18

(BkBl−1) between the first and last opposite leaning points;
L ← L + the last leaning point on the (side(x)) of (BkBl−1);19

return L;20

Algorithm 2 has an invariant : the first leaning point on the left or the
right of the current segment is always a vertex of the hull of the current part.
Since the current segment is either maximal at the front or at the back or both
during the maximal segments computation, the assumptions of Proposition 1,
Proposition 2 and Corollary 1 are fulfilled. Proposition 2 and Corollary 1 show
that the invariant is valid and guarantee that Algorithm 2 is correct.

To process strictly convex or concave parts is straightforward. However, a
change of convexity brings trickier issues because two hulls enclose a part that
is both convex and concave. As described in Section 4.3, the last points of the
first hull and the first points of the second hull are not stored in the list in order
to correctly link the two hulls.

4.3 Polygonal Representations

The output of Algorithm 2 may be modified to get different meaningful lists of
points. In Fig. 8.c, the set of black points depicts the leaning points retrieved
by Algorithm 2. The black polygonal line that goes through the black points
is a polygonal line respecting convex and concave parts. Indeed, in the strictly
convex and concave parts, the polygonal line is equal to their hull. In the parts
that are both convex and concave, the first leaning point of the maximal segment
of inflection is linked with the last one. For instance, in the maximal segment of
inflection (B27B38), B29 is linked with B36.

In Fig. 8.d, the set of black points depicts the leaning points retrieved by
Algorithm 2 in the convex parts. The set of white points depicts the leaning
points retrieved by Algorithm 2 in the concave parts, but shifted by ~s. For
instance, as the DSS from which B36 has been extracted is in the first octant,
B36 + ~s = B36 + (0, 1). The black polygonal line that goes through the whole
set of points faithfully represents the convex and concave parts. It is not hard
to show that this polygonal line is actually the minimum-length polygon (MLP)
between O and Ō [SCH72]. The MLP is reversible if two digitization schemes are
considered at the same time: Object Boundary Quantification (OBQ) for convex
parts and Background Boundary Quantification (BBQ) for concave parts. In
other words, the MLP of O equals the MLP of Ō. Thanks to these properties,
the MLP is a good perimeter estimator as experimentally shown in [CK04].

4.4 Digital Arc Segmentation

The list of points extracted thanks to Algorithm 2 is useful for circular arc seg-
mentation too. A common approach to the circular arc recognition is to search
Euclidean circles separating O from Ō. Elementary algorithms that retrieve the
set of separating circles are computationally expensive. That is why an optimi-
sation has been proposed in [CGRT04]. For each convex or concave part, the set
of points that have to be enclosed by the separating circles can be reduced to
the hull of the part. Moreover, the set of points that have not to be enclosed by
the separating circles can be reduced to some of the Bezout points of the edges
of the hull: those that are located near the bisector of each edge.

In Fig 8.e and 8.f, the black polygonal line separates O from Ō. The set of
black points depicts the vertices of the MLP. In Fig 8.e, the set of white points
depicts the Bezout points of the edges of the MLP. In Fig 8.f, only those that are
located near the bisector of each edge are depicted. An approach to the circular
arc segmentation is to iteratively search Euclidean circles separating the points
of the MLP from some of its Bezout points (Fig 8.f).

In [CGRT04], the extraction of these points consists of three steps. First,
the procedure of [DRRRD03] is used to decompose the digital curve into convex
and concave parts. Then, each part is decomposed into DSS [DRR95]. Finally,
the hull and Bezout points of each segment are computed with the extended
Euclid’s algorithm. Algorithm 2 provides in one scan the hull and Bezout points
of each convex or concave part. Taking only the Bezout points located near the
bisector of the two leaning points instead of all (lines 7 and 16 of Algorithm 2) is
sufficient to simply perform in one scan what is done in three steps in [CGRT04].

5 Conclusion

Algorithm 1 and Algorithm 2 are both similar to the algorithm that computes
the set of maximal segments [LVdV07]. As a consequence we can merge these
algorithms to get in one scan: (i) the set of maximal segments (Fig. 8.a) (ii)
the convex and concave parts (Fig. 8.b) (iii) the hull of each convex or concave
part and their Bezout points (Fig. 8.e). These data are useful for polygonal
representation (Fig. 8.c and 8.d) as well as for decomposition into circular arcs
(Fig. 8.f).

The algorithms presented in this paper are considerably neater than previous
ones [DRRRD03,DRDR05,CGRT04] because only one scan by a window corre-
sponding to a segment maximal either at the front or at the back is performed.
Each point is processed in a constant time twice at most and thus, the whole
algorithm is of order O(n) for a part of a digital boundary having n points.

References

[CGRT04] D. Coeurjolly, Y. Gérard, J-P. Reveillès, and L. Tougne. An Elementary
Algorithm for Digital Arc Segmentation. Discrete Applied Mathematics,
139(1-3):31–50, 2004.

[CK04] D. Coeurjolly and R. Klette. A Comparative Evaluation of Length Es-
timators of Digital Curves. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26:252–257, 2004.

[CMT01] D. Coeurjolly, S. Miguet, and L. Tougne. Discrete Curvature Based on
Osculating Circle Estimation. In 4th International Workshop on Visual
Form, 2001.

[DRDR05] H. Dorksen-Reiter and I. Debled-Rennesson. Convex and Concave Parts of
Digital Curves. Geometric Properties from Incomplete Data, 31:145–159,
2005.

[DRDR06] H. Dorksen-Reiter and I. Debled-Rennesson. A linear Algorithm for Polyg-
onal Representations of Digital Sets. In International Workshop in Com-
binatorial Image Analysis, pages 307–319, 2006.

[DRR95] I. Debled-Rennesson and J-P. Reveillès. A linear algorithm for segmen-
tation of digital curves. International Journal of Pattern Recognition and
Artificial Intelligence, 9:635–662, 1995.

[DRRRD03] I. Debled-Rennesson, J-L. Rémy, and J. Rouyer-Degli. Detection of
the Discrete Convexity of Polyominoes. Discrete Applied Mathematics,
125:115–133, 2003.

[dVLF07] F. de Vieilleville, J.-O. Lachaud, and F. Feschet. Maximal Digital Straight
Segments and Convergence of Discrete Geometric Estimators. Journal of
Mathematical Image and Vision, 27(2):471–502, 2007.

[Eck01] U. Eckhardt. Digital Lines and Digital Convexity. In Digital and Image
Geometry, pages 209–227, 2001.

[EDR04] U. Eckhardt and H. Dorksen-Reiter. Polygonal Representations of Digital
Sets. Algorithmica, 38(1):5–23, 2004.

[Fes05] F. Feschet. Canonical Representations of Discrete Curves. Pattern Anal-
ysis and Applications, 8:84–94, 2005.

[FT99] F. Feschet and L. Tougne. Optimal Time Computation of the Tangent of
a Discrete Curve: Application to the Curvature. In Discrete Geometry in
Computer Imagery, pages 31–40, 1999.

[FT05] F. Feschet and L. Tougne. On the Min DSS Problem of Closed Discrete
Curves. Discrete Applied Mathematics, 151:138–153, 2005.

[LVdV07] J.-O. Lachaud, A. Vialard, and F. de Vieilleville. Fast, Accurate and
Convergent Tangent Estimation on Digital Contours. Image and Vision
Computing, 25:1572–1587, 2007.

[Rev91] J-P Reveillès. Géométrie Discrète, calculs en nombres entiers et algorith-
mique. thèse d’etat, Université Louis Pasteur, 1991.

[SCH72] J. Sklansky, R. L. Chazin, and B. J. Hansen. Minimum-perimeter Polygons
of Digitized Silhouettes. IEEE Transactions on Computers, 21(3):260–268,
1972.

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) Maximal segments, (b) Convex and concave parts, (c) Polygonal representa-
tion respecting convex and concave parts, (d) Minimum-Length Polygon, (e) Minimum-
Length Polygon with its associated Bezout points, (e) List of sufficient points for the
digital arc segmentation

