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Abstract

The shape of sedimentary particles is an important property, from which geographical

hypotheses related to abrasion, distance of transport, river behavior, etc. can be formulated.

In this paper, we use digital image analysis, especially discrete geometry, to automatically

compute some shape parameters such as roundness i.e. a measure of how much the corners

and edges of a particle have been worn away.

In contrast to previous works in which traditional digital images analysis techniques such

as Fourier transform (Diepenbroek et al., 1992, Sedimentology, 39) are used, we opted

for a discrete geometry approach that allowed us to implement Wadell’s original index

(Wadell, 1932, Journal of Geology, 40) which is known to be more accurate, but more

time consuming to implement in the field (Pissart et al., 1998, Géomorphologie: relief,

processus, environnement, 3).
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Our implementation of Wadell’s original index is highly correlated (92%) with the round-

ness classes of Krumbein’s chart, used as a ground-truth (Krumbein, 1941, Journal of Sed-

imentary Petrology, 11, 2). In addition, we show that other geometrical parameters, which

are easier to compute, can be used to provide good approximations of roundness.

We also used our shape parameters to study a set of pebbles digital images taken from

the Progo basin river network (Indonesia). The results we obtained are in agreement with

previous works and open new possibilities for geomorphologists thanks to automatic com-

putation.

Key words: Sedimentary particle, Shape description, Discrete geometry, Roundness,

Physical abrasion, Bedload transport, River continuum

1 Introduction1

The shape of sedimentary particles is an important property from which geograph-2

ical hypotheses related to abrasion, distance of transport, river behavior, etc. can3

be formulated (e.g. Krumbein, 1941). The main shape features are form or spheric-4

ity (a sphere similarity measure), roundness (a measure of how much the corners5

and edges of a pebble have been worn away) and surface texture (a measure of6

small-scale features) (Diepenbroek et al., 1992).7

Roundness of a particle was initially defined by Wadell (1932). This method of8

estimating roundness is infrequently used even though it is known to be more ac-9

curate than other methods (Pissart et al., 1998), because the required number of10

measurements is time consuming. For each particle, the radius of curvature of each11

corner has to be measured either on three orthogonal planes or on the silhouette.12

A corner is defined as a part of the contour for which the radius of curvature is13

lower than the radius of the largest inscribed circle. The ratio between the mean14
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radius of curvature of the corners and the radius of the largest inscribed circle de-15

fines the roundness measure (Wadell, 1932) (figure 1). No definition of curvature16

was given in the original paper. In order to shorten the time required to estimate17

roundness, Krumbein (1941) created a chart (figure 2). Krumbein’s chart shows18

examples of pebbles for which the roundness of their silhouette has been calcu-19

lated using Wadell’s method and clusters them into 9 classes. Some field guidelines20

(Bunte and Abt, 2001) recommend a visual estimate of pebble roundness based on21

the chart. In order to shorten the measurement time while keeping a certain objec-22

tivity, some authors have proposed indices that were inspired by Wadell’s index, but23

easier to calculate (e.g. Cailleux, 1947). Pissart et al. (1998) found that the Cailleux24

and Krumbein methods give similar results on average, with the Krumbein method25

being much quicker.26

Fig. 1. Roundness definition (Wadell, 1932). On the one hand, the radius r1, r2 et r3, being

smaller than the radius R of the largest inscribed circle, define and measure corners. On the

other hand, the circle without label, being greater than the radius R of the largest inscribed

circle, does not define nor measure a corner. As a consequence, roundness is the average of

r1, r2, r3.

Our objective is to reduce the subjectivity and time measurement required for the27

estimation of pebble roundness by providing an automatic computation method28

for Wadell’s index. Although several methods have been proposed that provide an29

estimate that is linearly correlated with the values given by the Krumbein’s chart,30
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Fig. 2. Krumbein’s chart (Krumbein, 1941).

a method that automatically calculates Wadell’s original index has not yet been31

developped.32

One of the roundness determination methods is based on the Fourier transform. A33

well-known method has been proposed by Diepenbroek et al. (1992). This method34

takes as input the polar coordinates of a sample of 64 points of the particle bound-35

ary, spaced at equal angular intervals. The Fourier transform is computed from the36

distance to the centroid. The weighted sum of the amplitudes of the first 24 coeffi-37

cients of the Fourier transform is a roundness estimate. To remove size information,38

the coefficients are divided by the zeroth coefficient. In addition, sphericity aspect39

is eliminated by subtracting the spectrum of the best approximating ellipse from40

that spectrum. The measure obtained was found to be linearly correlated (94%)41

with the values of Krumbein’s chart.42

An alternative method using mathematical morphology was proposed by Drevin43

and Vincent (2002). The idea is to apply a morphological opening on a particle44
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silhouette. The morphological opening consists of an erosion and a dilation with a45

same structuring element, so that some shape features like ’cape’ or ’isthmus’ are46

removed without a contraction of the silhouette. The ratio between the particle area47

before and after the morphological opening is a roundness measure again linearly48

correlated (96%) with the values of Krumbein’s chart, with a circular structuring49

element of radius equal to 42% of the radius of the largest inscribed circle.50

The aim of this paper is to develop a method to automatically calculate the Wadell’s51

pioneering roundness index, as well as the index of Drevin and Vincent (2002). We52

will also develop new indices based on particule geometry to study roundness with53

respect to form and size, notably the ratio between perimeters of the silhouette and54

of the best approximating ellipse, which has been positively correlated to the val-55

ues of the Krumbein’s chart. As we choose to focus on geometrical parameters, we56

do not implement parameters that use signal processing like the index proposed by57

Diepenbroek et al. (1992). This work should help to accelerate the sediment sam-58

pling process in river studies and allow the development of geographical hypotheses59

related to sediment particle roundness at the river network scale.60

The paper is organised as follows. In section 2, we describe the shape parameters61

we implemented and give some details about the implementation of the Wadell’s62

index. In section 3, we compare different shape parameters using Krumbein’s chart.63

Experiments are described in section 4 with real images. Conclusions and future64

research directions are presented in section 5.65
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2 Computation of shape parameters using discrete geometry66

In this section we consider a binary image of a pebble. The image has been taken67

such that it coincides with the maximum projection plane of the pebble (this is what68

we called the silhouette of the particle in figure 3). From this silhouette we compute69

one size parameter and some form and roundness parameters.70

(a) (b) (c)

Fig. 3. A silhouette of a particle in (a) and its boundary in (b). The polygonalisation of the

boundary is in (c).

2.1 Size parameter71

Traditionally, the most frequently used size parameters are the lengths of the three72

representative axes: a (major axis), b (medium axis), c (minor axis). Using the ro-73

tating calipers algorithm (Toussaint, 1983), a basic tool of computational geometry74

(Preparata and Shamos, 1985), we can easily estimate a and b from the silhouette75

of a particle. The idea is to rotate two parallel lines around the silhouette, such that76

the silhouette is enclosed by the two lines and the two lines touch the silhouette:77

a is the maximum distance between such parallel lines and b is the minimum dis-78

tance between such parallel lines. We take b as a measure of the particle size, the79
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so-called b-axis of the particles (Bunte and Abt, 2001).80

2.2 Form parameters81

Circularity, defined as the ratio between the perimeters of the silhouette and of a82

disk of same area as the silhouette, is a basic descriptor in digital image analysis.83

It can be seen as a two-dimensional equivalent of sphericity. If PS and AS denote84

respectively the perimeter and the area of the silhouette, the formula is:85

circularity =
PS

2
√
ASπ

(1)

Before computing the perimeter and area of the silhouette, we extracted the bound-86

ary of the silhouette by contour tracking and we polygonalised the sequence of87

8-connected pixels with a digital straight segment recognition algorithm (Debled-88

Rennesson and Reveilles, 1995) (figure 3). Next, area and perimeter were computed89

from the obtained polygon.90

From a theoretical point of view, we used the arithmetical definition of the digital91

straight line, which leads to an algorithm that is linear in time with integer-only92

computations. In addition, it is proven that if the image resolution is infinitely high,93

then the perimeter and area estimations are infinitely close to the true values (Klette94

and Zunic, 2000).95

However circularity is difficult to interpret because it confounds size, elongation,96

convexity and roundness information. We propose to study these parameters inde-97

pendently and their definitions are given hereafter:98

Elongation is easy to compute and is equal to the ratio between b and a.99
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elongation =
b

a
(2)

Convexity is defined as the ratio between the area of the silhouette (AS) and of100

the convex hull of the silhouette (ACH ). A convex hull is defined as the minimal101

convex polygon covering of an object. The convex hull has been thoroughly studied102

in computational geometry (Preparata and Shamos, 1985) and is computed here103

with the algorithm of Melkman (1987).104

convexity =
AS

ACH

(3)

2.3 Roundness parameters105

Wadell defined his roundness index as follow:106

rW =
1

k.R

k∑

i=1

ri (4)

where ri is the radius of curvature that is smaller than or equal to the radius of107

curvature R of the largest inscribed disk at a pixel on the boundary of the pebble108

silhouette and k is the number of such radii.109

The implementation of rW followed three steps:110

(1) The radius of curvature at each pixel was estimated in a robust way using an111

algorithm illustrated in figure 4 (Nguyen and Debled-Rennesson, 2007).112

First, the longest sequences of 8-connected pixels lying between two paral-113

lel straight lines separated by a given distance d to the left and to the right of114

P were identified. In figure 4 and hereafter d = 2. The end of the sequence of115
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P

L

R

Fig. 4. An example of the computation of the radius of curvature at a pixel P . The radius

of curvature is the radius of the circle (dotted line) passing through LPR.

8-connected pixels to the left (resp. to the right) of P is denoted by L (resp.116

R). Next, the radius of the circumcircle of the triangle LPR was computed.117

This procedure was repeated for each pixel.118

(2) The radius of the largest inscribed disk is calculted using the distance trans-119

form of the silhouette. The distance transform is a frequently-used tool in120

discrete geometry that consists of labelling each pixel of the silhouette by its121

distance to the nearest pixel not belonging to the silhouette (figure 5). It was122

computed using the efficient algorithm of Hirata (1996).123

(3) rW was calculated using equation 4. Only the pixels with a radius of curvature124

smaller or equal than the radius of curvature of the largest inscribed disk were125

taken into account (figure 6).126

For comparison, we also calculated the roundness measure proposed by Drevin and127

Vincent (2002). This parameter is also geometrical because the basic morphological128

operations are related to the distance transform, the tool used to compute the radius129

of the largest inscribed disk.130
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Fig. 5. Distance transform of a pebble silhouette. Each pixel is filled with a grey level

according to its distance to the nearest pixel not belonging to the silhouette (modulo 10).

The radius of the largest inscribed circle is 40.6.

rD =
AS⊕C(o,rc)⊖C(o,rc)

AS

(5)

where AS⊕C(o,rc)⊖C(o,rc) denotes the area of the silhouette after a morphological131

opening with a circular structuring element C of center o and radius rc. As in132

equations 1 and 3, AS denotes the area of the silhouette. Operators ⊕ and ⊖ de-133

note Minkowski’s addition (dilatation or thresholding in the distance transform of134

the complementary set of the silhouette) and Minkowski’s subtraction (erosion or135

thresholding in the distance transform of the silhouette) respectively. The radius rc136

of the circular structuring element was fixed to 75% of the radius R of the largest137

inscribed disk. This is the percentage for which rD had the best correlation with138

the values of Krumbein’s chart (section 3).139

As stated above, we chose to focus on geometrical parameters and therefore we140
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Fig. 6. The radius of curvature is computed for each pixel. The darker the pixel, the smaller

the radius of the curvature. Only pixels whose radius of curvature is less than the radius

of the largest inscribed circle, are taken into account in the roundness calculation. The

roundness is the ratio between the average of the radius of curvature of retained pixels

(28.5) and the radius of the largest inscribed circle (40.6), that is 0.70.

do not implement parameters based on signal processing like the one proposed by141

(Diepenbroek et al., 1992).142

Finally, because it has been previously correlated to the Wadell’s index (Cottet,143

2006), we also computed the ratio between the perimeter of the sihouette (PS) and144

of the best approximating ellipse (Pe) as a last roundness measure as follows:145

rP =
PS

Pe

(6)

Since circularity, which consists in comparing the silhouette with a circle, in-146

cludes both size, elongation and roundness information, the idea is to compare the147

silhouette with an ellipse, instead of a circle, to remove size and elongation aspects148
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and capture only the roundness.149

2.4 Behavior of shape parameters with respect to resolution150

In this section, the behavior of our shape parameters is studied with respect to151

resolution. We used synthetic images, so that the resolution was controlled and the152

true values of our shape parameters were known.153

We assumed an orthogonal grid with a uniform spacing denoted by l between the154

grid points. We assumed that in a digital image, pixels are grid points. The res-155

olution of the image r is defined as r = 1/l. Geometrical shapes were digitized156

such that pixels located inside and outside the shape were labelled object and back-157

ground respectively. To increase the resolution r, we may shrink the grid as well as158

leave the grid fixed and dilate the shape (Klette and Zunic, 2000). Therefore, tthe159

shape parameters introduced above were computed on digitized ellipses of increas-160

ing size (figure 7). An ellipse was used instead of a polygon (or a circle that is a161

specific case of the ellipse), because most of parameters, which are based on digital162

straight segment recognition (circularity, convexity, rP , rW ), are more accurate163

when the geometrical shape is a polygon and an ellipse thus allowed us to test the164

worst-case scenario.165

The curves of three of the five parameters (convexity, circularity, rP ) are really166

smooth and converge very quickly towards the true values (1, approximately 0.83167

and 1 respectively). These parameters are computed thanks to very accurate perime-168

ter and area estimators. The curves of the two others (rD and rW ) are less smooth169

and converge more slowly to constant values as the size of the digitized ellipses in-170

creases. The true values of rD and rW are difficult to compute. However, a coarse171
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Fig. 7. Shape parameters introduced in section 2 (circ: circularity, conv: convexity, rD:

Drevin’s roundness, rW : Wadell’s roundness, rP : ratio between perimeters of the sihouette

and of the best approximating ellipse) over perimeter of digital ellipses. A digital ellipse is

the set of pixels the center of which is located inside a euclidean ellipse. The elongation of

the digital ellipses is fixed and equals 1/2, whereas the perimeter ranges from 10 to 1000.

estimation of ground truth (e.g. around 0.6 or 0.65 for rW ) as well as the accuracy172

of the tools used for the computation (an exact euclidean distance transform and173

a robust curvature estimation for rW ) allow confidence that the computed values174

approach the true values.175

The above analysis suggests that to remove the influence of the resolution, a silhou-176

ette minimum size has to be used. To do so, a threshold on the shape perimeter is177

set: beyond this threshold, the error is considered acceptable. In figure 7, the error178

is less than 10% for all shape parameters above a perimeter of 150 pixels. We con-179

clude that measures are accurate for all shape parameters, if the perimeter of the180
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extracted boundary of each pebble is above this value.181

3 Correlations study using Krumbein’s chart182

In table 1, the correlation between the individual mean values of the shape param-183

eters and Krumbein’s chart roundness values are given in column 2 and 3, respec-184

tively.

correlation coefficient

shape parameters individual values (n = 81) mean values (n = 9)

b 0.065 0.153

b/a 0.057 0.199

rD 0.847 0.967

rW 0.919 0.992

rP 0.899 0.979

circularity -0.844 -0.984

convexity 0.895 0.972

Table 1

Correlation between shape parameters values and Krumbein’s chart ones (b: size, b/a: elon-

gation, rD: Drevin’s roundness, rW : Wadell’s roundness, rP : ratio between perimeters of

the sihouette and of the best approximating ellipse).
185

Our implementation of Wadell’s index is the shape parameter that provides the best186

results with a linear correlation of 92%. This is reassuring since Krumbein (1941)187
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used the method proposed by Wadell (1932) to divide his standard profiles into188

9 classes having the same roundness value (section 1). Table 1 also shows that189

the form parameters of circularity, convexity and rP are also linearly correlated190

with Krumbein roundness values. However, the correlation coefficients found are191

lower than the values given in the litterature (section 1). For instance, our imple-192

mentation of Drevin’s parameter provides a linear correlation of 85% compared to193

96% in Drevin and Vincent (2002). The discrepancy may be related to differences194

of implementation (our distance transform is not an approximation but is exact)195

and of quality of the input image (quality of Krumbein’s chart, acquisition process,196

resolution, and so on).197

In figure 8, rW is plotted against the Krumbein roundness classes (rK). The slope198

of the least square regression line is greater than 2, whereas its y-intercept is around199

of -0.7, what is far of the straight line of slope 1 and y-intercept 0. Intraclass vari-200

ance is higher than expected whereas interclass variance is lower than expected. The201

source of this variance is the lack of corner and curvature definitions in the original202

paper of Wadell (1932) (section 1). This methodologic gap could also explain the203

high inter-observer variability of Cailleux roundness index noticed in Pissart et al.204

(1998).205

To end this section, we also studied the correlation between each pair of shape pa-206

rameters and found the following result: there is no correlation between the round-207

ness parameters rD, rW or rP and elongation or size.208
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4 Assessment of the longitudinal pattern of particule abrasion209

We used our shape parameters in order to study real pebbles from digital images,210

collected in the bed of the Progo, an Indonesian river located on Java Island near211

Yogyakarta. The river is 135 km long, has a catchment of 2400 km2 and drains sev-212

eral volcanos, such as the Merapi, still active on the east side (2900 m in elevation)213

and also the Sumbing and the Sundoro on the west side (3200 m and 3100 m in214

elevation respectively). The source of the river is on the northern side of Mount215

Sundoro at 2500 m in elevation (figure 9). 2500 pebbles were randomly sampled in216

the bed, with 2 to 5 photos being taken on 25 stations located at various distances217

from the source (in average every 5 km). We analysed an average of 105 pebbles218

per station (min = 73; max = 154) whose boundary varies between 150 and 620219

pixels (mean: 330 +/- 70 pixels).220

In a first step we detected pebbles with clustering methods, transforming the orig-221

inal color image into a binary image as shown in figure 10. In a second step, we222

extracted the boundaries from pebbles silhouettes to compute the shape parameters223

described in section 2. For each sample of pebbles (around 100 pebbles per sam-224

ple), characterized by its distance from the source, we computed the average value225

of each shape parameter as well as their confidence level of 0.95, each pebble being226

picked up randomly.227

Figure 11 depicts the longitudinal pattern of each parameter along the river course.228

The different parameters do not show a well structured trend from the mouth to the229

ocean, which demonstrates the complex origin of the particles located in the main230

stem. The clearest longitudinal trend was obtained by the convexity (r2=0.035).231

While each parameter has a unique pattern, rP and circularity are highly cor-232
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related (the coefficient of determination r2 equals -0.928) as are convexity and233

circularity (r2=-0.899). rW is the parameter that is the most least correlated with234

the others. The best correlation is observed for rD (r2=0.76) and the coefficient of235

determination is less than 0.63 for the three others. A similar general pattern can be236

nevertheless observed from most of the parameters:237

(1) Angular particles are preferentially observed in the upstream section with238

a clear trend in roundness development from km 0 to km 20 for rP , rD,239

convexity and circularity, and until km 50 for rW . Therefore, the least240

round particles are generally observed at the source station (rW , rD, cirularity,241

convexity and rP parameters).242

(2) For all parameters, a significant decrease in roundness is also observed in the243

middle of the section (km 60 to km 80).244

(3) Downstream of km 80, all of the parameters exhibit a significant increase245

in roundness until km 100 but then, they are fairly constant until km 130.246

With the exception of rW , the roundness estimates are here similar or slightly247

higher (convexity and rP ) than those observed between km 25 to km 50.248

The most rounded particles are observed at the downstream station or close249

to it (rP , circularity, convexity). Downstream, rW does not readjust to the250

disruption that occurs in the middle section and does not reach the highest251

values until around km 50-55.252

From a thematic point of view, a nice trend in roundness is observed in the upstream253

part of the catchment. This trend is clear because no main tributary providing less254

rounded particles disrupts the abrasion process. The delivery of the Kali Galeh at255

km 21 is the only perturbance detected by some of the parameters but it does not256

counteract the trend. It is then possible to fit a law for predicting roundness process257

in such an andesitic environment using rW (rW = 0.002 Km + 0.69 ; r2 = 0.87)258
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or rP parameter (Log(rP) = 0.009 Log(Km) + 0.69 ; r2 = 0.90). These results also259

underline that such parameters are powerful enough to determine a roundness trend260

over long distances (e.g. 20 to 50 km) whereas previous works had indicated that261

roundness only significantly affected particles near the source (the first km) after262

which it was constant in a downstream direction (Pissart et al. (1998) for exam-263

ple). The parameters are also robust enough to highlight the major disruption in264

the roundness trends due to sediment delivery in the middle section from the active265

Merapi volcano located on the east side. This area is a major source of angular ma-266

terial that disrupt the longitudinal trend. The distance from the peak of Merapi to267

the main stem is only 25-30 km. It is then interesting to see that the rW and rD268

values reached in this section (km 60-80) are then very similar to those observed269

at km 25-30 of the main stem, which may inducates that the abrasion process on270

the Merapi slopes is similar to that observed on the Sandoro, which is a much older271

volcano. The decrease in roundness already occurs by the km 62 and km 67 sta-272

tions, which is before the confluence with the Kali Elo and Kali Pabelan that drain273

the Merapi. This indicates that the delivery is not only linked to the river network274

itself but also from unherited material provided by the Merapi, stored in the allu-275

vial corridor and delivered by bank erosion. The trends observed downstream the276

area influenced by the Merapi are more difficult to interpret because the different277

indicators have contrasting patterns. This raises the possibility of using the differ-278

ent parameters in combination in order to characterise on a long continuum the279

abrasion process and the possible substitution of macro-scale to micro-scale shape280

changes as far as the particle abrades over a few kilometers. In the downstream281

context of the Progo basin, some parameters, mainly circularity and convexity,282

may be more powerful for characterising roundness trend when particle corners are283

already smoothed. We may then hypothesise that rW would be a better discrimi-284

nant parameter of roundness upstream in a context of angular particles whereas rP ,285
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convexity and circularity would be more powerful downstream when the particle286

corners are already smoothed and the abrasion affects the shape itself.287

5 Conclusion and perspectives288

These new computer developments are a powerful tool to better understand in field289

abrasion processes. The automatic imagery procedure allows us to replace the easy-290

to-collect indices such as Krumbein visual classes and the Cailleux index with the291

most precise roundness parameter, rW . From this preliminary field analysis, it is292

clear that the implementation of the rW parameter is useful because it provides a293

quantification of corner abrasion of particles, which is not entirely the case with294

the other parameters that are more sensitive to the particle shape than the corner295

shapes. By providing both corner and shape parameters, the developments allow296

us to study the abrasion process over a long spatial continuum. We can expect that297

rW is the most robust in the source context as it is based on all the corners and298

really describe the corner abrasion, whereas rP , convexity or circularity provide299

indications at a macro-scale of abrasion effects on the particle shape. The field ex-300

ample has been based on average values, but a multivariate analysis is a challenging301

issue that could better explore the variability of roundness parameters observed at302

each of the stations and its evolution downstream. It has also been shown that the303

resolution may affect the quality of the results but that the parameters are fairly ro-304

bust and allow the comparison of pebbles of various sizes from photos of different305

resolutions. Threshold values in term of resolution (e.g., number of pixels per peb-306

ble perimeter) are provided to correctly specify the field collection requirements in307

term of photo resolution and minimum particle size.308
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Fig. 8. Correlation between rW and the Krumbein roundness classes (rK) computed on

individual values in (a) (each crosses depict a silhouette of Krumbein’s chart) and on mean

values in (b) (the nine cross depicts the nine roundness classes of Krumbein’s chart).
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Fig. 9. The catchment of the Progo River, Java island, Indonesia. Note the structure of

the hydrographic network that is strongly controlled by the volvanoes. The 25 stations

are located along the main stem from the Sundoro volcano to the Indian Ocean and their

distances to the source (in km) are indicated.
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(a)

(b) (c)

Fig. 10. A image of sample pebbles with boundaries extracted in white (a). The extraction is

performed by contour tracking in the binary image (b). The last is computed with clustering

methods applied to the original color image (c).
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Fig. 11. Longitudinal pattern of our implementation of Wadell’s method (rW ), Drevin’s

method (rD), perimeter ratio (rP ), circularity and convexity from the source of the

Progo (km 0) to the ocean (km 130).
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