— student Modeling

Kurt VanlLehn

Carnegie-Mellon University

In M. PO?LSOH & J. Richal."dson (Eds.) This chapter reviews the research literature concerned with the student
Foundations of Intelligent Tutoring modeling component of intelligent tutoring systems. An intelligent
Systems. Hillsdale, NJ: Erlbaum. tutoring system, or ITS, is a computer program that instructs the

1988. pgs. 55-78. student in an intelligent way. There is no accepted definition of what
it means to teach intelligently. However, a characteristic shared by
many I'TSs is that they infer a model of the student’s current
‘ understanding of the subject matter and use this individualized mode)
| to adapt the instruction to the student's needs. The component of
f an ITS that represents the student’s current state of knowledge is called
Fh(? student model. Inferring a student model is called diagnosis because
't 15 much like the medical task of inferring a hidden physiological
state (i.e.‘, a disease) from observable signs (i.e., symptoms). An ITS
; glagnosuc system uncovers a hidden cognitive state (the student’s
! nowledge of the subject matter) from observable behavior.
The student model and the diagnostic module are tightly
a prg‘:oven. The st.udent m.odel 1s a data structure, and diagnqsis is
tOgethzss "i“ha't manipulates it. The two components must be designed
This chr' his dES_lgn problgm is called the student modeling problem.
apter reviews solutions that have been found to the student

model; . .
¥ di eling problem and discusses the techniques that have been
1Scovereq,

inle

55

56 VANLEHN

THE STUDENT MODELING PROBLEM

Most design problems in computer science can be specified by
describing the desired output of the program and the available inpuy,
The design problem here i1s not, unfortunately, so neatly circumscribeqd.

Generally speaking, the input for diagnosis is garnered through
interaction with the student. The particular kinds of information
available to the diagnosis module depend on the overall ITS
application. The information could be answers to questions posed
by the I'TS, moves taken in a game, or commands issued to an editor.
In some applications, the student’s educational history is also available
to the diagnostic component.

The output from the diagnostic module 1s even harder to
circumscribe. In fact, it doesn’t even make sense to talk about the
product of diagnosis as “output” (here, the analogy to medical
diagnosis breaks down). Rather, the result is a data base, the student
model, which accurately reflects the student’s knowledge state. The
student model 1s drawn on by other I'TS modules for many purposes.
Following are listed some of the most common uses for the student
model.

Advancement. Some ITSs use a structured curriculum. A student
is moved to the next topic in the curriculum only when he or she
has mastered the current topic. In such applications, the student model
represents the student’s level of mastery. Periodically, the ITS asks
the student model for the level of mastery on the current topic, weighs
it, and decides whether to advance the student to the next topic. This
use of student models is called advancement. Advancement is useful
not only with linearly structured curricula, where instruction dwells
on one topic at a time, but also in componentially structured curricula,
where a student exercises several topics or skills at the same time.
For instance, in the WUSOR ITS (Goldstein, 1982), the student uses
several reasoning skills at the same time to hunt a beast in a maz€
filled with dangerous pits and bats. The techniques for estimaling
the dangerousness of caves can vary independently of the techniques
for determining what caves are likely to contain the beast. The ITS
can advance a student through the skill levels for assessing danger
independently of advancing the student through the skill of locaing
quarry. This illustrates how advancement is used in ITSs that do
not use a linearly structured curriculum.

Offering unsolicited advice. Some ITSs are like athletic coaches 11
that they offer advice only when they see that the student nee_ds 1t

3. STUDENT MODELING 5T

If the student is performipg we_ll, the coach remains sile{n. A goad
coach will also remain silent if the student makes a mistake in a
situation that is too complicated for a successful pedagogical
interaction to take place. In order to offer unsolicited advice at just
the right moments, the ITS must know the state of the student's
knowledge. For this, it reads the student model.

Problem generation. Some ITSs generate problems for the student
dynamically rather than sequencing through a predefined list of
problems or letting the student invent problems to solve. In many
applications, a good problem is just a little beyond the student’s current
capabilities. To find out where the student’s current capabilities lie,
the problem generation module consults the student model.

Adapting explanations. When good tutors explain something to the
student, they use only concepts that the student already understands.
For an ITS to issue good explanations, it must determine what the
student knows already. To do so, it consults the student model.

The preceding functions are some of the most common ways the
ITS components use the student model. Because there are so many
ways 10 use the student model, we cannot talk sensibly about the
output of the diagnosis module, nor can we classify student modeling
problems by the desired input-output relationship. What does make
sense is to classify these problems according to the structural properties
of the student model. For instance, the student model might represent
various levels of mastery of a subskill by a single bit (mastered versus
not yet mastered), by a number, or by a complicated qualitative
description. Such structural properties of the student model determine

how complicated the student modeling problem is and what kinds

of techniques are best suited for its solution.

A THREE-DIMENSIONAL SPACE OF STUDENT MODELS

This section reviews existing student modeling systems in the context
ofa classification based partially on structural properties of the student
model and partially on properties of the input available to the diagnosis
hma(:/(iutl)z.eA[lh.is writing, approximately 20 student modeling systems

n buil, and more are under development. There are many

diff, e -
crences among them. The classification presented here is intended

to ¢ . . .

n aP(Ur§ the differences in the student modeling problem that really
ake a differe

Correc,

: nce in the solution techniques. I this classification is
It can be used to predict what kinds of student modeling

58 VANLEHN | 3. STUDENT MODELING

——
e

techniques would be most useful for some new student modeling j it. Mental states includes intermediate and final states. Intermedidté: 2
problem. Needless to say, such a prediction would be only the starting : .a[es includes final states. R

. . . . st .
point in a long design process that results in a system adapted tq

The subject domain of programming provides good examples
the demands of a particular ITS. Indeed, as more I'TSs are constructed, of the bandwidth dimension because an ITS exists for each bandwidth;
the perception of what differences really matter can be expected to

category. Anderson’s LISP Tutor (Reiser, Anderson, & Farrell, 1985)
change. That change is one reason why ITS construction is still in contains a detailed model of the cognitive processes that Anderson

believes underlie the skill of programming. The tutor uses a menu-
driven interface to offer the student choices about what goals to attack
next, what strategies to use, what code fragments to write down, and
so on. The model aims to offer so many choices that any problem-
solving path that a student wants to take is available. The belief is
that the menus do not interfere with the path of mental states but
merely allow the I'TS to track the student’s cognitive progress. Thus,
the input to the diagnosis component is an approximation o a
sequence of mental states. The LISP Tutor nicely illustrates the
bandwidth level of mental states.

The Spade ITS (Miller, 1982) was never completed; but if it had
been, it would illustrate the second level of bandwidth. Spade acts
as a coach who watches a student program. The student uses a structure
editor, that is, an editor that knows about the programming language
and allows only syntactically legal edits. Spade sees all the intermediate
observable steps as the student creates a program. Unlike Anderson’s
LISP Tutor, Spade cannot see the student’s decisions about
programming goals and strategies. Its input bandwidth fits squarely
in the category of intermediate states.

In contrast, PROUST (Johnson & Soloway, 1984a; Johnson %
Soloway, 1984b) is given only the first complete program that the
student submits to a PASCAL. compiler. PROUST does not have access
to the student’s scratch work or incomplete programs. :

The bandwidth dimension is perhaps the most important of the
three dimensions. More so than the others, it determines the algorithm
u_sed for diagnosis. As is shown in Diagnostic Techniques, where
dlagqosis algorithms are discussed in detail, there are nine basic
algorithms. Five are useful with final state bandwidth systems, three
are apDrOPriale for intermediate state bandwidth systems, and one
' appropriate for mental states bandwidth systems.

the research stage and has not yet become a mature technology. In

short, the following classification is both heuristic and tentative.
The classification has three dimensions. The first one relates 1o

the input, and the others are structural properties of the student model.

Bandwidth

The input to the diagnosis unit consists of various kinds of information
about what the student is doing or saying. From this, the diagnosis
unit must infer what the student is thinking and believing. Clearly;
the less information the unit has, the harder its task is. The bandwidth
dimension 1s a rough categorization of the amount and quality of
the input.

Three levels of information suffice to capture most of the variation
among existing I'TSs. In order to explain them, we will assume that
students are solving problems posed either by themselves (e.g., What
cave shall I explore next?) or by the ITS (e.g., What is 283-119?) If
the problem solving takes more than a few milliseconds, then we can
safely assume that the students go through a series of mental states.
The highest bandwidth an ITS could attain would be a list of the
mental states that the students traverse as they solve problems. Human
mental states are not directly accessable by machines, so no ITS can
really achieve this “mental states” bandwidth. However, by asking
enough questions or by eliciting verbal protocols, an I'TS can obtain
indirect information that approximates the students’ mental states.
So the highest bandwidth category is approximate mental states.

In more complicated forms of problem solving, such as solving
algebraic equations or playing chess, the students make observable
changes that carry the problem from its initial unsolved state Lo 1t
final, solved state. This results in a series of observable intermediat¢
states, such as the midgame board positions in chess or the equali.OnS
written before the last equation during algebraic equation solYlﬂg-
Sometimes an I'TS has access to these intermediate states, and sometimes
it can see only the final state—that is, the answer. The other two
categories of bandwidth are final states and intermediate states.

To summarize, the three categories, from highest to Jowest
bandwidth, are mental states, intermediate states, and final states. Each
category 1s intended to include the information in the category beneath

Target Knowledge Type

S
dtudem models can actually solve the same problems that students

0 a . , i
70 and can therefore he used to predict the students’ answers. This

18 a disgj ich - :
Smdelsllngmshmg characteristic of the student models used in ITSs.

¥ . .
W models used in older systems for computer-based training

cannot actually generate problem solutions, although they may be
able to generate a probability of a correct solution.

Solving problems requires some kind of interpretation process
that applies knowledge in the student model to the problem. There
are two common types of interpretation, one for procedural knowledge
and one for declarative knowledge.! The interpreter for procedura]
knowledge 1s simple. It does not search but makes decisions baseq
on local knowledge. It is like a little man with a flashlight who can
see only a little way from the strand of knowledge he is standing
in; based on his view of the knowledge locale and the current state
of the problem, he decides which strand of knowledge to turn onto
and follow. A declarative interpreter constantly searches over its whole
knowledge base. It is like a librarian who searches out the answer
to a’'client’s query by searching reference books, assembling the facts,
and deducing the answer from them. Procedural knowledge
representations have been used for skills such as algebra equation
solving (Sleeman, 1982), game playing (Burton & Brown, 1982,
Goldstein, 1982; Goldstein & Carr, 1977), multicolumn arithmetic
(Brown & Burton, 1978; Burton, 1982; Langley & Ohlsson, 1984), and
solving calculus integrals (Kimball, 1982). Declarative knowledge
representations have been used for geography (Carbonell, 1976;
Carbonell & Collins, 1973; Grignetti, Hausman, & Gould, 1975) and
wecteorology (Stevens, Collins, & Goldin, 1982).

The distinction between procedural and declarative knowledge
is notorious in artificial intelligence as a fuzzy, seldom useful
differentiation. Because 1t is based on how much work the interpreter
does, and because work is an essentially continuous quality, the
boundary between them is not sharp and clear. For instance,
GUIDON's knowledge of medicine (Clancey, 1982) is partly
declarative—because it says what symptoms indicate which diseases—
and partly procedural—because it says which questions to ask the
patient under what circumstances. PROUST's knowledge of

programming (Johnson & Soloway, 1984a, 1984b) is even more difficult |

to classify. It is mostly about which PASCAL code templates to Us€
to achieve what purposes. In this respect, it is declarative knowledge
about PASCAL. However, a simple top-down programming strategy
readily converts this knowledge into programmer actions.
Nonetheless, the distinction between procedural and declara} /
knowledge is important here because the complexity of diagnosis 1%
directly proportional to the complexity of interpretation. In fact,
diagnosis is the inverse of interpretation. Interpretation takes @

ve

. . . . in
IThe section on directions {or future research discusses the student mOdel‘“Sg
problem for a third type of knowledge, qualitative mental models of complex syStE™

U

3. STUDENT MODELING 61
P
knowledge base and a prol_)lem and produces a solution. Diagnosis
takes a problem and a sglgtlon and produces.a knowledge base. Wh‘f“
declarative knowledge is interpreted, many items may b<.3 ac.cessed in
order to produce a solution. When declarative k'now_ledge is diagnosed,
the responsibility for a wrong answer may lie \.Nl[h any one of the
many items that could be accessed in prpducnng this answer. Ip general,
the more complicated the interpretation, the more complicated the
diagnosis. _ . . _

These considerations underlie a second dimension in the space
of student modeling problems, the type of knowledge in the student
model. The major distinction—procedural versus declarative—has
been mentioned already. It is useful to divide procedural knowledge
into two subcategories: flat and hierarchical. Hierarchical represen-
tations allow subgoaling; flat ones do not. For instance, the ACM
diagnosis system (Langley & Ohlsson, 1984) uses a flat representation
for a subtraction procedure. Operations such as taking a column
difference or adding 10 to a minuend digit are selected solely on the
basis of the current state of the problem. In the BUGGY diagnosis
systern (Brown & Burton, 1978), subtraction procedures are represented
as goal hierarchies with goals like “Borrow’ or “Borrow across zero.”
Operators are selected on the basis of the problem state and the currently
active subgoals.

The distinction between flat and hierarchical representations
affects the diagnosis. A diagnostic system for flat representation needs
to infer what problem-state conditions trigger each operator. This
is easy because the system can see both the problem states and the
operator applications. A diagnostic system for hierarchical represen-
tations needs to infer conditions and both the problem states and the
subgoals. But it cannot see the currently active subgoals, so its inference
problem is much harder.

In summary, there are three types of knowledge representation:
flat procedural, which makes the student modeling problem the easiest;
hierarchical procedural, which increases the difficulty of the student
modeling problem; and declarative, which makes the student modeling
problem most difficult.

Ditferences Between Student and Expert

ITTSS usually employ an expert model as well as a student mgdf?l-z
he €Xpert model is used for many purposes, such as providing
\\\

2 . oo f g
In this chapter, “expert’” is intended to mean a master of the ITS’s subject matter.

€ s 1 . . ;
ex. u.bjea matter is usually only a fraction of the knowledge possessed by a true
Pertin that arey.

62 VANLERN

explanations of the correct way to solve a problem. Because students
will (one hopes) move gradually from their inital state of knowledge
toward mastery, student models must be able to change gracefully
from representing novices to representing experts. Consequently, most
ITSs use the same knowledge representation language for both the
expert model and the student model. Conceptually, the ITS has one
knowledge base to represent the expert and a different knowledge base
to represent the student.

However, economy and other implementation considerations
frequently dictate a merger of the two models. The student model
1s represented as the expert model plus a collection of differences.
There are basically two kinds of differences: missing conceptions and
misconceptions. A missing conception is an itemn of knowledge that
the expert has and the student does not. A misconception is an item
that the student has and the expert does not.

Some student modeling systems can represent only missing
conceptions. Conceptually, the student model is a proper subset of
the expert model. Such student models are called overlay models
because the student model can be visualized as a.piece of paper with
holes punched in it that is laid over the expert model, permitting
only some knowledge to be accessible. A student model, therefore,
consists of the expert model plus a list of items that are missing.
A variant of overlay modeling puts weights on each element in the
expert knowledge base; for example, 1 indicates mastery, -1 indicates
ignorance, and 0.5 indicates partial mastery. Overlay models are the
most common type of student model.

Other systems represent both misconceptions and missing
conceptions. The most common type of student model in this class
employs a library of predefined misconceptions and missing
conceptions. The members of this library are called bugs. A student
model consists of an expert model plus a list of bugs. This bug library
technique is the second most common type of student modeling system.
This systemm diagnoses a student by finding bugs from the hbrary
that, when added to the expert model, yield a student model that
fits the student’s performance.

Assembling the library is the biggest hurdle in the bug library
approach. The library should be nearly complete. If a student has
a bug that is not in the library, then the student model will try to
(it the behavior with some combination of other bugs. It may totally
misdiagnose the student’s misconceptions.

There are only a few techniques for obtaining a bug library:

3. STUDENT MODELING 63

]. Bugs can be gleaned from literature, particularly from the older works
in the educational literature. For instance, Buswell (1926) listed
numerous “‘bad habits of thought” for arithmetic.

9. Bugs can be found by careful hand analysis of students’ behaviors. Hand
analysis of several thousand subtraction tests yielded a bug library of
104 bugs for Burton and Brown’s DEBUGGY program (Burton, 1982;
VanlLehn, 1982).

3. If there is a learning theory for the subject domain, it may be able
to predict the bugs that students have. For instance, Repair Theory
(Brown & VanLehn, 1980; VanLehn, 1982) predicts subtraction bugs.
When its predictions were added to DEBUGGY's library and students,
tests were reanalyzed, some of the students’ answers were fit much better
by the new bugs (Vanlehn, 1983). So, theory canbea valuable contributor
of bugs to a bug library.

An alternative to the bug library approach is to construct bugs
from a library of bug parts. Bugs are constructed during diagnosis
rather than being predefined. For instance, each bug constructed by
the ACM system (Langley & Ohlsson, 1984) is a production rule
consisting of a condition, which is a conjunction of predicates, and
a single action. The predicates and the action are drawn from
predefined libraries. If the predicate library has P predicates, and the
action library has A4 actions, then ACM can represent approximately
4 » 2°/distinct bugs. As in the bug library approach, a student model
may have more than one bug. So ACM can represent a very large
number of student models using only two small libraries of bug parts.
Of course, the libraries of bug parts must be assembled by the creators
of the ITS. The problems of filling these libraries are exactly analogous
o the problem of filling a bug library. However, because libraries
of bug parts are smaller, the problems may be casier to solve. This
approach to representing differences between the studentand the expert
is the newest and least common. Its properties are largely unknown.

To summarize, the three major techniques for representing
qifferences between the student ahd the expert are overlays, bug
libraries, and bug part libraries.

A Chart of the Space

The preceding section defined three dimensions of student models,
ach with three distinguished values. Figure 8.1 summarizes them.
U.n(_ler each dimension, the order of the categories corresponds to the
difficulty of the diagnostic problem, easiest first. There are 3° possible
Student models. The student models that make diagnosis easiest are

64 VANLEHN

overlay models on flat procedural knowledge, where the studen(’s
mental states are available to the diagnostic program. The hardeg
problem is a bug-parts-library student model over declarative
knowledge when only the final result of the student’s reasoning is
available to the diagnostic program.

Not all of the 27 possible types of student models have been
implemented. Figure 3.2 shows some of the existing student modeling
systems and their location in the space of the student models. The
bandwidth dimension is the Y-axis and the knowledge type dimension
1s the X-axis. The student-expert differences dimension is indicated
by asterisks: ** means a bug parts library, * means a bug library,

and no asterisks means an overlay. The ITSs referenced in the figure

are all quite complex, and there 1s ample room for disagreement over
how they should be classified.

DIAGNOSTIC TECHNIQUES

Nine diagnostic techniques have appeared so far in the I'TS literature.
This section reviews them one by one. Most techniques have been
used in just a few kinds of student models. As a framework for further
discussions, Figure 3.3 shows how the diagnostic techniques align
with the student models. The space of student models is shown in
the same format as Figure 3.2; but the cells are filled with the names
of 'the diagnostic techniques that have been employed in the
corresponding student modeling systems. It is important to note that
this chart is based on actual systems and the diagnostic techniques
they use. It is likely that some of the techniques can be used with
other types of student models.

Model Training

The model-tracing technique (Anderson, Boyle, & Yost, 1985) 1
probably the easiest technique to implement because it assumes that
all of the student’s significant mental states are available to the
diagnostic program. The basic idea 1s to use an underdetermined
interpreter for modeling problem solving. At each step in problem
solving, the underdetermined interpreter may suggest a whole set of
rules to be applied next, whereas a deterministic interpreter can suggest
only a single rule. The diagnostic algorithm fires all these suggest¢
rules, obtaining a set of possible next states. One of these states shqul.
correspond to the state generated by the student. If so, then 1t 15

1. Bandwidth -- How much of the student's activity is available to the

diagnos

tic program?

a. Mental states -- All the activity, both physical and mental,

is available.

b. Intermediate states -- All the observable, physical activity is

available.

c. Final states -- Only the final state -- the answer -- is available.

2. Knowledge Type -- What is the type of the subject matter knowledge?

a. Flat procedural -- Procedural knowledge without subgoaling.

b. Hierarchical procedural -- Procedural knowledge with subgoals.

C.

Declarative.

3. Student-Expert Difference -- How does the student model differ from the
expert model?

a. Overlay -- Some items in the expert model are missing.

b. Bug library -- In addition to missing knowledge, the student model
may have incorrect "buggy” knowledge. The bugs come from a

predefined library.

¢. Bug part library -- Bugs are assembled dynamically to fit the

student's behavior.

FIGURE 3.1 The three dimensions of student models.

Intermediate
States

\
Fing| .
States

\\

Procedural-flat

Procedural-Hierarchical

Declarative

*“*Kimball's calculus tutor

FiGu
HURE3.2 The space of student models.

**Anderson's LISP tutor GUIDON
**Anderson's Geometry tutor
WEST *“The MACSYMA Avisor :\i/(;:-:_\‘(OLAH
WUSOR **Spade
“*Image *GUIDON
. .,';MS. ‘BUGGY ‘MENO
.. IXie DEBUGGY *PROUST
ACM *IDEBUGGY
————

66 VANLEHN
Knowledge
type Procedural-fiat | Procedural-Hierarchical | Declarative
Bandwidth
Mental Model tracing
States

Intermediate | 55,6 tracing Plan recognition Expert
States ’ system

Decision tree
Generate and test
Interactive

Path finding
Condition
Induction

Generate
and test

Final
States

FIGURE 3.3 Diagnostic techniques.

reasonably certain that the student used the corresponding rule to
generate the next mental state and so must know that rule. The student
model is updated accordingly. The name model tracing comes from
the fact that the diagnostic program merely traces the (under-
determined) execution of the model and compares it to the student’s
activity.

Obviously, the model of problem solving must be highly plausible
psychologically for this technique to be applicable. Even if such a
model is available, practical deployment of this technique requires
solving several tricky technical issues. Here are just three: (a) What
should the system do if the student’s state does not match any of
the states produced by the rules in the model? (b) Suppose the student
generates a next state by guessing or by mistake; the system will

erroneously assume that the student knows the corresponding rule; .

(c) When should the system change its mind about its student model?

Path Finding

If the bandwidth is not high enough to warrant the assumption that
the student has applied just one mental rule, then model tracing 13
inapplicable. However, it is feasible to put a path-finding algorithm
in front of the model-tracing algorithm. Given two consecutive states,
it finds a path, or chain of rule applications, that takes the first st’a(C
into the second state. The path is then given to a model-tracing
algorithm, which treats it as a faithful rendition of the student’s mental
state sequence.

{
t
t
I
i
|

3. STUDENT MODELING _1!7 i

The main technical problem with path finding is that there are
usually many paths between the two given states. Should thg path
finder send all the paths to the .model tracer a_nd let it deal with the
ambiguity? Should it use heuristics to reject unllk.ely paths? (Ohblsson’s
DPF system [Ohlsson & Langley, 19851 takes this approach.) Should
it ask the students what they did? These 1ssues deserve further xesearch.

Condition Induction

Model tracing assumes that any two consecutive states in the student’s
problem solving can be connected by a rule in its model. This puts
strong demands on the completeness of the model. Overlay models
often will not work. Bug library models must contain a large number
of bugs. Bug part libraries are therefore used as the basis for student
modeling. Given two consecutive sates, the system construcls a rule
that converts one state to the other. Although there are potentially
many ways to construct such buggy rules, the only techmque that
has been tried so far is condition induction (Langley & Ohlsson, 1984).

This technique requires two libraries. One is a library of aperators
that convert one state to another. The other is a library of predicates.
The technique assumes that the operator library is rich enough that
any two consecutive mental states can be matched by applying some
operator. That operator becomes the action side of the production
rule that will be generated. The hard job is determining what logical
combination of predicates should constitute the condition side of Fhe
production. The condition should be true of states in which the rule
was applied and false otherwise. The system currently has one state
for which it is true; that is, the first state in the state pair. In order
to reliably induce a condition, it needs to examine more stales. T['IESG‘
states can come from a record of the student’s past problem solving.
The system can also delay construction of the rule until more siates
are examined in later problem solving. This technique seems (o require
much more data on the student’s problem solving than diagm).SllC
techniques for overlay models or bug library models do. This is just
what one would expect from information theory. The bug part library
€an represent many more hypotheses than the other kinds of models
N, s0 more data is needed to discriminate among them.

Plan Recognition

:nlpri_“dplf{, path finding followed by model tracing, with or without
W€ induction, can diagnose anything, However, when the paths

68 VANLEHN

—_——

between observable states get long, diagnosis may become infeasible
or unreliable. Plan recognition is a diagnostic technique that is smiliar
to path finding in that it is a front end to model tracing. However,
it is more effective than path finding for the special circumstances
in which it applies.

Plan recognition requires that the knowledge in the student model
be procedural and hierarchical and that all or nearly all of the physical,‘
observable states in the student’s problem solving be made available
to the diagnostic program. These two requirements together dictate
that an episode of problem solving can be analyzed as a tree. The
leaves of the tree are primitive actions, such as moving a chess piece
or writing an equation down. The nonleaf nodes in the tree are
subgoals, such as trying to take the opponent’s queen or factoring
x?2 + 3x - 1. The root node of the tree is the overall goal (e.g., Win
this chess game, or solve x[x + 4] -x = 1). Links between nodes in
the tree represent goal-subgoal relationships. Such a tree 1s often called
a plan—a misnomer from its early development in robotics. Plan
recognition is the process of inferring a plan tree when only its leaves
are given. Computationally, plan recognition is similar to parsing
a string with a context-free grammar—a parse tree is constructed whose
leaves are the elements of the string. The CIRRUS system, (VanLehn
and Garlick, 1987) uses parsing for plan recognition.

When plan recognition is used for diagnosis, it serves as a front
end to model tracing. Assuming that plan recognition can find a unique
plan tree that spans the student’s actions, then the student’s mental
path is assumed to be a depth-first, left-to-right traversal of the tree.
This' path can be input to a model-tracing algorithm, which updates
the student model accordingly.

There are two technical issues to confront: What if the plan
reccgnizer finds more than one tree that is consistent with the student’s
actions? What if it doesn’t find any? To avoid the second situation,
plan recognition systems often use bug library models rather than
overlay models. Bug part library models could also be used by taking
advantage of a machine-learning technique called learning by
completing explanations (VanLehn, 1987). The diagnosis programs
that have used plan recognition (Genesereth, 1982; London & Clancey,
1982; Miller, 1982) have been more concerned with the first problem,
that is, determining which plan tree among several trees consistent
with the student’s actions is most plausibly the student’s mental plan.
These programs use a variety of heuristics. ’

Issue Tracing

The model-tracing technique assumes that the rules in the student

R ——

T
t
i

3. STUDENT MODELING 68

o

model are a fairly accurate psychological model of the units of
knowledge employed by a student. In some cases, such a detailed model
of student cognition is infeasible or unnecessary. In particular, a fine-
grained student model is probably more work than it's worth if the
tutoring cannot be adapted to the intricactes of a particular student’s
misconceptions. For instance, a perfect model of a student’s subtraction
bug is necessary if the tutor’s remedy is merely to teach the procedure
over again. In general, the level of diagnosis and tutoring should
be the same.

If a coarse-grained student model is desired, then a variant of
model tracing called issue tracing is appropriate. It is based on
analyzing a short episode of problem solving into a set of microskills
or issues that are employed during that episode. The analysis does
not explicate how the issues interacted or what role they played in
the problem solving. It claims only that the 1ssues were used.

The WEST system (Burton & Brown, 1982) pioneered this
diagnostic technique. Iis task is to teach a simple board game. A turn
consists of choosing an arithmetic combination of three randomly
chosen numbers in such a way that the value of the expression, when
added to the current position of the player’s token, results in a new
position that is closer to the goal position. Expressions may contain
any arithmetic operation or parentheses. There are several tricks
involving “bumping” an opponent or taking a shortcut. WEST
analyzes a student’s move into several issues, including plus, minus,
times, divide, parentheses, bump, and shortcut. If a student forms
the expression 5*2 - 1, then the move is analyzed as involving the
issues times and minus, and not involving the others. The student’s
actual problem solving probably involved trying several expressions,
seeing where they moved the token, and selecting the expression that
maximized progress toward the goal. A model-tracing technique would
hav? to model this trial-and-error search in gory detail. The issue-
racing technique ignores the details. Its analysis claims only that
the student apparently understands these two issues because the
student’s move embodied them.

The first step in issue tracing is to analyze the student’s move
ar}d th_e expert’s move into issues. Each issue has two counters, used
and missed. Used counters are incremented for all the issues in the
f;}‘;‘i‘:ﬂ’s move. Missed counters are incremented for all the issues in
s higf?zgds T}?Oveithal are notin the student’s move. If the used countsl
the fssue Ift EmlSS-Ed counter is l.ow,-the student probably under.stiiln S
then 1, - i1 the missed counter is high and the used counter 15 ow,

the student probably does not understand the issue. If both

70 VANLEHN

counters are zero, the issue has not come up yet.?

This simple diagnostic procedure has a hidden problem. Ignorance
of any one of the issues involved in an expert’s move is sufficieng
to cause the student to overlook that move; yet issue tracing blames
all the issues evenly by incrementing all their missed counters. This
introduces some inaccuracy into the student model. WESTs solution
1s to require that the ratio missed/used be fairly high before it assumes
that the student needs tutoring on that issue. WUSOR (Goldstein,
1982; Goldstein & Carr, 1977) has a more complicated scheme. It has
a system of expectations about what issues are likely to be learned
first and what issues typically follow later.

These prior probabilities are folded into the evaluation of whether
a student knows an issue or not. Evaluations based on statistical
functions have been used in Kimball’s calculus tutor (Kimball, 1982)
and other systems for similar purposes.

|

Expert Systems

Clancey’s GUIDON system (Clancey, 1982) uses a large-grained student
model just as WEST and WUSOR do. Instead of issues, GUIDON
uses inference rules.. The rules concern medical diagnosis and model
moderately large chunks: of knowledge that summarize a variety of
cognitive operations. A typical rule is: ‘

¢

Rule 545 ;
if 1. the infection was acquired while the patient was hospitalized, and
2. the white blood cell count is less than 2.5 thousand,
then
a. there is strong evidence that the organism is E. coli, and

b. there is suggestive evidence that the organism is Klebsiella
pneumonia, and

c. there is suggestive evidence that the organism is Pseudomonas.

Because such rules are more complicated than issues, the diagnosts

31f both counters are high, the model is inadequate in some way. This situation
is called tear (Burton & Brown, 1982). In WEST, it occurred when the student’s objectivé
in the game was not what it was assumed to be (i.e., some students did not care z_lbOU‘
winning but just wanted to bump their opponent as often as possible). WEST is equlpl_)ed
to handle this. It searches for the student’s objective by generate and test. It has lists
of possible student objectives from which it can choose, and it then reanalyzes the
entire game using that objective. If the tear is reduced, then WEST has found the
student’s objective.

i
§
!

3. STUDENT MODELING 71

problem is harder. For instance, if a student is given a case that matches
the antecedent clauses in Rule 545, and yet the student hypothes.lzes
only one of the conclusions (e.g., conclu§1o_n (a), that the organism
is E. coli) but not the other two, then it is not c!ear whether the
student has used the rule or not. Another rule, triggered by some
other feature of the case, may have led the student 1o conclude that
the organism was E. coli. _

There are many possible ways for rules to interact. To handle
the myriad of combinations, GUIDON uses an expert systems
approach. It'has dozens of diagnostic rules such as this one:

if 1. the student’s hypotheses include ones that can be concluded by this
rule, and
2. the student’s hypotheses do not inetude all the conclusions ol this
rule,

then
a. decrease the degree of belief that the student knows this rule by 70%.

This particular diagnostic rule applies in the situation just descr.ibed.
GUIDON, which uses an overlay model with continuous weights,
accordingly downgrades the weight in the student model for Rule
545. o

The basic idea of the expert systems approach to diagnosis is
to provide diagnostic rules for all the situations that arise. Some
technical issues are: If two diagnostic rules match the current situation,
how are their conclusions combined? What if no diagnostic rule
matches? How much will diagnostic rules have to change if the rules
in the knowledge base for the task domain change?

Decision Trees

All diagnostic techniques must deal with the fact that students rarely
have just one knowledge deficit. They usually have several. Some of
the techniques described earlier—notably model tracing, path finding,
and plan recognition—assume that at most one rule- fires betw?eﬂ
consecutive mental states, so each deficit will show up in isolation
as a buggy rule application. Because bugs appear in isolation, each

Ug can be accurately diagnosed even when there are several of them.
Systems like WEST and GUIDON, which have less bandwidth, use
a less accurate description of knowledge deficits (e.g., weakness on
18sues), which allows them to model combinations of deficits simply.
The next three techniques aim for highly accurate diagnoses with

low bandwidihs. They all work with final states, which constitutes

72 VANLEHN

Problems: 50 712 ﬁ

-28 - 56
Answers:
0-N=0 30 656
N-M=|N - M| 38 744
Both 30 744

FIGURE 3.4 Two bugs, in isolation and co-occurring.

the lowest bandwidth in the student model space. The student models
are based on bug libraries. The bugs are highly accurate: When
installed, they predict the sequence of intermediate states and perhaps
even the sequence of mental states.

Diagnosis of multiple bugs would be simple if systems could
generate the symptoms of co-occurring bugs by taking the union of
the symptoms they display in isolation. This is not always possible.
To illustrate, Figure 8.4 shows two subtraction bugs, in isolation and
co-occurring. On the first problem, 50 - 38, the answer of the co-
occurring bugs, 30 equals the answer of the first bug in isolation.
On the second problem, 712 - 56, the answer matches the answer
of the second bug in isolation, even though the first bug also gets
this problem wrong when it occurs in isolation. When the second
bug occurs in isolation on 712 - 56, the borrow in the units column
changes the tens column to 0 - 5, which triggers the bug. When the
second bug occurs together with the first, it suppresses the borrow,
so the tens column remains 1 - 5, and the first bug 1s not triggered.
In this simple case, there is a causal interaction between the two bugs
that makes them manifest differently. In general, bugs can interact
in even more complex ways.

The decision-tree technique is a brute force approach to bug
compounding. It was employed by the BUGGY diagnostic system
(Brown & Burton, 1978). BUGGY enlarged the library of bugs by
forming all possible pairs. Because there were 55 bugs, this expansion
generated about 55%(= 3025) bug pairs. In order to efficiently diagnose
this many bugs, BUGGY preanalyzed the subtraction test that studenFS
were given and formed a decision tree that indexed the bugs by thelr
answers to the problems. The top node of the tree corresponds to
the first problem. Answers from all possible diagnoses (a diagnosts
is a bug or a bug pair) are collected. Most answers will be generat€
by several diagnoses. For each answer, a daughter node is attached
to the root node, labeled by the answer. Associated with each node

3. STUDENT MODELING 13

are the diagnoses that gave that answer. The tree-building operation
recurses, once for each new node, using the second test problem. When
BUGGY 1s finished, a huge tree has been built. Each diagnosis
corresponds to a path from the root to some leaf. If the test items
are well chosen, then every such path is unique—each leaf corresponds
to exactly one diagnosis. In general, it is very difficult to find a short
test with such high diagnostic capabilities. Burton (1982) discusses
this important issue further.

All this tree building occurs before any students are seen. It is
the most expensive part of the computation. Diagnosis of a student’s
answers is simple, at least in principle. If a student makes no careless
errors, then his or her answers are used to steer BUGGY on a path
from the root to the diagnosis that is appropriate. Of course, most
students do make unintentional ertors (often called slips, to distinguish
them from bug-generated errors), such as subtracting 9 - 5 and getting
8. Slips mean that a simple tree-walk will not always lead to a leal,
so BUGGY performs a tree search to find a diagnosis while allowing
a minimal number of slips.

The advantage of the decision-tree approach is that the tree search
is simple enough to be implemented on a microcomputer. A larger
computer can be used for the computationally intensive tree-building
process. The disadvantage of this technique is that it does not really
handle multiple co-occurring bugs. Instead, it computes in advance
all possible combinations (pairs, in BUGGY’s case) and treats the
bug combinations just like primitive bugs. This is usually too
expensive if more than two bugs can occur together. Burton’s hand
analysis of the data uncovered students with four co-occurring bugs.
For BUGGY to diagnose these students would require approximately
554(=9 million) bug tuples, which means a diagnostic tree with trillions
of nodes.

Generate and Test

l?EBUGGY (Burton, 1982) was designed to diagnose up to four or
five multiple co-occurring bugs. Unlike BUGGY, it does not calculate
the answers of co-occurring bugs in advance. Rather, it generates bug
combinations dynamically. It begins by finding a small set of bugs
that match some, but not necessarily all, of the student’s answers.
There might be 10 bugs in this set. It then forms all these bugs (about
100 bug pairs). It also makes pairs using a stored list of bugs that
are known to be difficult to spot because they are ‘often covered by
Ol:her bugs. From this set of perhaps 200 bugs, DEBUGGY sel.ecls
the ones that best match the student’s answers. Using these favoriles,

74 VANLEHN

———

the bug-compounding process occurs again and again until no further
improvement in the match is found. The resulting tuple of bugs is
output as DEBUGGY'’s diagnosis of the student.

DEBUGGY’s algorithm is a species of a very general technique
for diagnosis, called generate and test. The diagnostic algorithm
generates a set of diagnoses, finds the answers that each predicts, tests
those answers against the student’s answers, and keeps the ones that
match best. In general, generate and test is rather inefficient. Domain-
specilic heuristics are often needed in order to speed it up.

interactive Diagnosis

DEBUGGY and BUGGY work with a predefined subtraction test and
the student’s answers to it. Thus, they can be used as off-line diagnostic
systems: The teacher administers the test, mails the answers 1o
DEBUGGY, gets the diagnosis a few days later, and administers the
appropriate remedial instruction. VanLehn (1982) reported the results
of such a use of DEBUGGY.

Within a tutoring system, there is no need to stick with a fixed
list of test items. The system can choose a problem whose answer
will help diagnosis the most. IDEBUGGY (Burton, 1982) is such a
system. Given a set of diagnoses consistent with the students’ answers
so far, it tries to construct a subtraction problem that will cause each
diagnosis to generate a different answer. Thus, the problem splits
the hypothesis space, so to speak. It is not always possible to find
such a problem, so IDEBUGGY puts only a fixed amount of effort
into this strategy, then presents the best problem it has found so far
to the student. Still, the student can sometimes wait too long for
IDEBUGGY to present the next problem. Interactive diagnosis, where
the diagnosis algorithm drives the tutorial interaction, puts heavy
demands on the speed of the diagnostic algorithm. Nonetheless, it
can yield highly accurate diagnoses with many fewer test items than
a fixed-item test would require in order to achieve the same accuracy-
Reducing the length of the diagnostic session may reduce students’
fatigue and increase their willingness to cooperate.

RESEARCH ISSUES

Cognitive diagnosis is a new field, and there are vast numbers of
questions for research to address. There are many questions of the
form “Does technique X work well with student models of form Y

- 1982) sy

3. STUDENT MODELING 7§

on subject domain Z?” From an engineering and educational '
standpoint, these are the most important q.ueslions to addrt?ss, for
they turn a miscellaneous collection of techniques, each of which has
been used once or twice, into a well-understood technology. To this
collection of issues, I would nominate a few more that are not of
the XYZ form.

Most research has gone into finding diagnostic techniques that
can produce very detailed descriptions of the students’ knowledge,
Simpler techniques such as issue tracing produce less detailed
descriptions. There is a tacit assumption that tutoring based on fine-
grained student models will be more effective than tutoring based
on coarse-grained models. No one has attempted to check this
assumption. We need to know when fine-grained modeling 1s worth
the effort. This is not really a question of how to do student modeling
but, rather, when to do what kinds of student modeling. In order
to address this question, one could situate two or more student
modeling systems inside the same ITS and see which one tutors more
effecuvely. ,

Research oriented toward improving student modeling could go
in several directions. One is to employ explicit models of learning.
This topic was touched on in the WUSOR ITS (Goldstein & Carr,
1977; Goldstein, 1982). Incorporating models of learning into diagnosis
has much potential power because it can radically reduce the space
that the diagnostic algorithm must search.

Interactive diagnosis, where the diagnostic program selects
problems to pose to the student, is another technique that has great
potential power. It has been briefly explored with the IDEBUGGY
student modeling program (Burton, 1982), the GUIDON I'TS (Clancey,
1982), and the WHY project (Stevens, Collins, & Goldin, 1982). This
topic—the skill of posing problems—seems almost as rich as diagnosis,
which is the skill of interpreting the student’s answers to problems.

As user interfaces improve and powerful personal computers
become cheaper, we are likely to see more ITS designers choosing
the high bandwidth option, where the student’s behavior is very closely
monitored by the system. The amount of time between the student’s
acuons is one type of information that is available for free but that
so far has been ignored by every ITS I know of. Chronometric data
has b€§n used in psychology for years as a basis for deciding between
pPotential models of human cognition. It would be interesting to se¢
whether chronometric data would favor fine-grained student modeling.

MuCh of the early ITS research concerned students learning about
Physical systems. The SOPHIE project (Brown, Burton, & deKleer,
died students learning about electronic circuits. The WHY
(Stevens, Collins, & Goldin, 1982) studied rainfall. The Steamer

76 ° VANLEHN

—

project (Hollan, Hutchins, & Weitzman, 1984) studied naval steam
plants. These projects gradually evolved into long-term, basic research
on the mental models that people seem to employ for mentally
stimulating physical systems (Gentner & Stevens, 1984). Research opn
mental models has progressed to the point that it might be worth
reopening the investigation into I'T'Ss for physical systems. The student
modeling problem will be very difficult. The students’ responses
depends on mentally running a model constructed from their
understanding of the device. If the response is wrong, it could be
because of a bug in how they ran their mental model, or in how
they constructed it, or in both. Relative to the three-dimensional space
of student models, mental models are a brand-new knowledge type—
a new column 1in the chart of Figure 3.2—with unique new technical
issues to conquer.

REFERENCES

Anderson, J. R, Boyle, C., & Yost, G. (1985). The geometry tutor.. Proceedings of Ninth
International Joint Conference on Artificial Intelligence (pp. 1-7). Los Alos, CA:
Mor-an Kaufmann.

Brown, J. S., & VanLehn, K. (1980). Repair Theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 379-426.

Brown, J. S., & Burton, R. B. (1978). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 155-192.

Brown, J. S., Burton, R. B., & deKleer, J. (1982). Pedagogical, natural language and
knowledge engineering techniques in SOPHIE 1, Il and 1L In D. Sleeman & J.
S. Brown (Eds.), Intelligent tutoring systems (pp. 227-282). New York: Academic
Press.

Burton, R. B. (1982). DEBUGGY: Diagnosis of errors in basic mathematical skills.
In D. H. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems (pp. 157-183).
New York: Academic Press.

Burton, R. B, & Brown,]. S. (1982). An investigation of computer coaching for informal
learning activities. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems
(pp- 79-98). New York: Academic Press.

Buswell, G. T. (1926). Diagnostic studies in arithmetic. Chicago, IL: University of
Chicago Press.

Carbonell, R. (1970). Al in CAI: An artificial intelligence approach to computer aided
instruction. {EEE Transactions on Man-Machine Systems, 11, 190-202.

Carbonell, J. R., & Collins, A. (1973). Natural semantics in artificial intelligence
Proceedings of the Third International Joint Conference on Artificial Intelligence
(pp. 344-351). Los Altos, CA: Morgan Kaufmann.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D- |
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 201-225). London: Academic
Press.

Sleeman

3. STUDENT MODELING 77

Genesereth, M. R. (1982). The role of plans in intelligent teaching systems. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 137-155). New York: Academic

Press.)
Gentner, D., & Stevens, A. (1984). Mental models. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Goldstein, 1. (1982). The genetic graph: A representation for Athe evoluli(_)n of procedural
knowledge. In D. Sleeman & J. S. Brown (Eds.), Intelligent tuloring systems (pp.
51;77). New York: Academic Press.

Goldstein, 1., & Carr, B. (1977). The computer as coach: An athletic paradigm for
intellectual education. Proceedings of ACM77 (pp. 227-233).

Grignetti, M., Hausman, C., & Gould, L. (1975). ‘An intelligent on-line assistant and
tutor: NLS-Scholar. Proceedings of the National Computer Conference (pp. 715~
781).

Hollan), J.D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectable
simulation-based training system. The Al Magazine, 5(2), 15-27.

Johnson, L., & Soloway, E. (1984a). Intention-based diagnosis of programming errors.
Proceedings of American Associatjon of Artificial Intelligence Conference (pp. 162-
168). Los Altos, CA: Morgan Kaufmann.

Johnson, L., & Soloway, E. (1984b). PROUST: Knowledge-based program debugging.
Proceedings of the Seventh International Software Engineering Conference (pp- 369-
380).

Kimball, R. (1982). A self-improving tutor for symbolic integration. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 283-308). New York: Academic
Press.

Langley, P., & Ohlsson, S. (1984). Automated cognitive modeling. Proceedings of
American Assoctation of Artificial Intelligence (pp. 193-197). Los Altos, CA: Morgan
Kaufman.

London, B., & Clancey, W. J. (1982). Plan recognition strategies in student modeling:
Prediction and description. Proceedings of the American Association of Artifical
Intelligence Conference (pp. 193-197). Los Altos, CA: Morgan Kaufmann.

Miller, M. L. (1982). A structured planning and debugging environment for elementary
programming. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems
(pp. 119-135). New York: Academic Press.

Ohklsson, S., & Langley, P. (1985). Identifying solution paths in cognitive diagnoss
(Tech. Rep. CMU-RI-TR-84-7). Pittsburgh, PA: Carnegie-Mellon University, Robotic
Institute.

Reifﬁer’ B. V., Anderson, J. R., & Farrell, R. G. (1985). Dynamic student modeling
In an intelligent wutor for lisp programming. Proceedings of Ninth International
Joint Conference on Artificial Intelligence (pp. 8-14). Los Alws, CA: Morgan
Kaufman.

Sleeman, D. H. (1982). Assessing competence in basic algebra. In D. Sleeman & J.
lS). Brown (Eds.), Intelligent tutoring systems (pp. 186-199). New York: Academic

ress.

Stevens, A, Collins, A., & Goldin, S. E. (1982). Misconceptions in students’
understanding. In D. Sleeman & J. S. Brown (Eds.), Intelligent luloring systems

Va[fiz}:ﬁﬁ‘*)- New York: Academic Press. N - }

o (1982). Bugs are not enough: Empirical studies of bugs, impasses and

va':i[e)-;lrs 1 procedural S.klt“S. The Journal of Mathematical Behayi?r, 3(2), 3—71
AI-b:S) ;;h(IQSS). Felicity conditions for human skill acquisition: Validating an

VanLehn eK 1€ory (Tech. Rep. CI1S-21). Palo Alto, CA: Xerox Pglf) Allo Rese_arch Cemeltr.
1-40 » K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 3ty

78 VANLEHN

VanLehn. K., & Garlick, S. (1987). Cirrus: An automated protocol analysis \001.‘ In
P. Langley (Ed.), Proceedings of the Fourth Machine Learning Workshop. Los Altos,
CA: Morgan Kaufmann. |

