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Abstract - This paper atempts {o rehabilitate student models
within intellipent tutoring systems, Recendy, some researchers
have questioned both the need for detailed student models and
the practical possibility of building them. We regard it as
axiomatic that any intelligent tutoring system needs a student
model. This paper suggests some practical guidelines and
changes in philosophical approach which may heip in building
effective stadent models.

1. -Introduclion

In a review of the 1987 "Artifieial Intelligence and Education™
Conference, Sandberg ( 1987) summarised 2 general opinion
that

“detailed user models do not necessarily enhance the

. capability of an intelligent tutoring system ... good
teaching can do without a detailed user model, because
in good teaching serious misconceptions are avoided,
and errors will be repaired on the spot ... it is
debatable whether the cost of constructing very
detailed, complex user models that are runnable and
have to be maintained all the fime js worthwhile in
terms of the gain in teaching efficiency.”

The aim of this paper is to rehearse the arguments for student

models in intelligent tutoring systems and to present a less

bleak prognosis of the possibility of actually constructing them. ‘

Opinions such as the above derjve from two sources:
- preconceptions about the potential roles of student
models;

.. 2. theoretical and practical difficulties in building and
using student models,
For the former, we offer some aliernadve, possibly more
productive, views of the potential roles of student models; for
the latter, we describe some more realistic, practically
achievable and useful goals for student modelling. In the next
section, the student modclling problem is reviewed and in the
following section some possible ways forward are suggesicd.

2.  The Student Modelling Problem

A pure version of the student modelling problem might be the
following:

Tutor: What is the integral with respect 1o x of
x4y {I+ x2)

Stedent: x + x3/3 4 tan x -

Tutor {thinks: How did she get that?): ...

A standard ITS approach might be to identify the set of
allowable transformations and 1o study student protocols 10
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build a catalogue of associated mistransformations. If there are
m possible transformations {m = 30 in this case), n
misgansformations for cach of these (say,n=5)anduprop
steps to a solution {say, p = 10), then there may be up 1o
{m*(n+1))? paths to analysc (about 1074), which is clearly
intractable.

We can, of course, eliminate the combinatorial explasion if we
cnsure that p=1, as in the Lisp mtor (Anderson and Reiser,
1985), constraining the student 1o the smallest analysable step,
with the consequent imposition of a rigid tutorial style,
However, we still have the considerable difficulty of
determining an appropriate ‘grain’ of detail in defining the
(mis)transformarions. [1 is relatively easy to InterTupt 2 stwdent
if she appears 10 be putting the clauses of a COND in the
wrong order, but much harder to realisc that she is doing so
because she has confused the ‘if-then-clse’ semantics with a
‘production-system-like' semantics, where all the true
conditions would be simultaneously acted upon.

Advocates of student models would wish to go beyond the
analysis of student performance in terms of surface mistakes.
They would like to isolate the underlying misconceptions
which are the ‘cause’ of the mistakes, because remedying such
misconceptions might eradicate 2 whole set of mistakes. But
defining, representing and recognising such misconceptions is
cven more difficult than identifying a procedural mistzke,

And then, some would say, the p=1 restriction and the usual
ITS analysis of student-input on a scnience-by-sentence basis
represenis a very weak view of student problem-solving,
Students do not always solve problems as finite automata,
responding only to the state they arc in - they develop goals,
plans and strategies. And indeed they should, and our ITS
student models should ideally include descriptions of these, to
permit discussions with students at this level, Unfortunately,
such goals are often mal-formed, idiosyncratic and difficult 10
identify automatically. For cxample, Unix experts know al]
sorts of hacks for achieving goals not nomnally associated with
the Unix commands actually used,

This would imply that our student model needs access to quite
specific information about the student's prior knowledge. This
prior knowledge may be such that an ITS would not have any a
priori reason for associating it with the topic of the tutorial
For example, Shrager's studics of how pecople lcamed by
cxperimentation how to Opcrate 2 programmable toy showed
that they drew analogies with other programmable devices,
clocks, and so on (Strager, 1987). I is difficelf 10 imagine
ITSs having aceess to commonsense knowledge of clocks and
thousands of similar objects just in casc a student should
happen to draw an analogy with them.

We know also that stdents’ Jeaming s influenced not only by
their general prior knowledge but also by the more immediate
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learning context  For example, students attempting physics

roblems draw surface analogies with immediately preceding
probicms (Kolodner, 1983). This, of course, implics that
ctudent models should ideally maintain an cpisodic memory in
order better 1o provoke productive analogies and to understand
the source of mistaken analogics.

And not only will students have different prior kmowledge and
learning expericnces, but they will have personal leamning
preferences, styles and strategics. Agazin, ideally these should
be modelled, so that an ITS may present material in a way
appropriate to the individual's leaming abilicies and perhaps to
address weaknesscs in those abilides.

Perhaps the student has particular interests, or an unusual
social background, or some personality characteristic, which, if
it were represented within the student model, might be used to
individualise the instruction.

In this way, the student modelling problem’ expands - from
computational questions, to representational issucs, through
plan rccognition, mental models, cpisodic memory to
individual differences - to encompass, it would seem, almost
all of cognitive science. One reaction o this is to conclude that
ITS research, and especially student modelling, is important
precisely because many fundamental cognitive science
questions have to be addressed.

Another reaction is 10 conclude that the student modelling
problem is overwhelming difficult, that with the curreat state of
knowledge there is no possibility of satisfactorily addressing
most of these cognitive science questions, and therefore that
ITS development had best proceed without student modcls at
2ll. 1 hope to show that this last conclusion is not jusufied.

3. Bypassing the student modelling problem

1t is not essential that ITTSs possess precise student models,
containing detailed representations of all the components
mentioned above, in order to be able to tutor students
satisfactorily. If we back off from the grand vision and adopt
more realistc aims, then solutions for some aspects of the
student modelling problem arc practically antainable and useful.
This approach will be described under four 'slogans'™:

Slogan 1: Avoid guessing - get the student to tell
you what you need to know

The problem illustrated above with the symbolic integration
question - that is, of inducing a student’s (mis)conceptions
from 2 problem-solution pair - may be, for ITS, a
non-problem.  Using pencil and paper, students do indeed
occasionally, through bravado or 2 misplaced sense of style,
write solutions down by inspection’, although this is very
much against the recommendations given in modern
classrooms, And with the older telerype-like interfaces to
ITSs, students may well have been sorely tempted to omit
intermediate steps 1o avoid laborious, error-prone typing. But
imagine how a student would solve symbolic integration
probiems with 2 modern WIMP imterface,

She might be presented with a meou of transformations o
apply. With any transformation (c.g. intcgration by parts), she
might be able 10 mzp the general form of the transformation
onto the specific example by selecting parts of the example
using the mouse, for example, w0 letu =1/ (1 + x?) of the
above example. Maybe there would be a ‘do_it" key to ensurc
there were no clerical slips. Perhaps the steps of the solution
would be displayed in an appropriate tree structure, mzking it
passible 1o see how the various steps relate to one another and
10 return o previous steps, if desired.
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The process of problem-solving is so much easier than with
older interfaces (and with pencil and paper) that we may expect
students to be much less inclined to omit intermediate steps.
But, morc importantly, with carcful design the intcraction may
provide the TS with precisely the information that it needs to
model the problem-solving process, c.g. 10 understand how the
student proposes to apply integration by parts - information that
is often difficult to infer even from a complete step-by-step
solution, Ideally, the information is provided by the siudent,
naturally and voluntary, while problem-solving (and not in
response 1o some interventionist ITS).

So, rather than attempting 1o develop betier ways of inferring
missing steps, a better goal for student modelling rescarch
might be to design interactions through which the information
necded for building student models is provided non-intrusively
as an intrinsic part of problem-solving.

It might immediatcly be objected that this would only provide
us with information about individual steps and not information
about the ‘goals and strategies’, which we have indicated it is
more important and useful to model.  An experiment reported
by Singley (1987) shows that this is not necessarily so.

He designed a system to help students leam 10 solve algebra
word problems about rates of change. He provided a menu of
available operators and 2 solution window. With the first
version of the system it was found that students performed
badly at solving problems, mzinly because they became
muddled as 1o where they were. As a result, a "goal window'
was included in which a student was required to ‘post’ the
goal(s) she was working on before selecting operators. For
example, in Figure 1(2) the "dp/dt : t" at the root of the tree
denotes that she is trying 1o find dp/dt in terms of t The ‘chain
nile’ is the proposed operator which, before it can be applied,
needs two sub-goals to be satisfied, namely “dp/ds : ¢* and
“ds/dt 1 t*. An opcn box around z node indicates the goal
currently being worked on, and a closed box (Figure 1(b))
indicates that a goal has been satisfied .
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Figure 1: Two images of the goal-posting window (from
Singley, 1987).




The hypothesis is that, for example, when she sees the two
closed boxes then she will have less difficulty in rccalling that
she was trying 1o apply the chain rule, which will improve
problem-solving and learning performance. But it may be that
the overhcad of ‘goal-posting’ actually interferes with
problem-solving. Experimental studies showed that, under the
conditions Singley specified, )

() goal-posting improved probluin-solving performance,
in that operator selections were made faster, there were fewer
‘illegal’ selections, and the solutions found were shorter;

(b) performance was improved even after the goal window
was removed - i.e. students had not just benefitted from a
temporary technological crutch but had leamed some
problem-solving skills;

{¢) the improvement transferred to other kinds of
(admittedly similar) problem, indicating that the skills learned
were not problem-specific tricks but werc more generatly
uscful.

One possible conclusion from this experiment is that we should
include a goal window in our problem-solving environments
and that this will facilitate student leamning, thereby reducing
the need for any ‘intelligent tutoring’ and hence student
modelling. However, the interpretation I would make is that it
may be possible to design such environments so that students
provide precisely the information ITSs need for student
modelling and have difficulty in inducing from performance
(namely, information about goals),

There are two main research questions (which my collcague
Michac] Twidale and I are investigating):

{a) how can the information provided by interactions with 2
goal window be used by an ITS to carry on discessions about
the student's goals? :

{b) whet kind of language should be provided for the
student 1 communicate her goals?

We have implemented a prototype logic tutor, a screen image of
which is shown in Figure 2. As usual, we have a menu of
operators (corresponding to rules of inference) and a solution
window. In addition, we provide a sct of plan schema (one or
more with each opcrator, indicating what goal the operator may
help achieve, and some, e.g. “contradiction™, which are
independent of particular operators). Pointing 10 a plan schema
shows an abstract form of the plan, which can be instantiated 10
the problem at hand if the student wishes (in the Figure the
student has just-instantiated the X of the plan schema to Q and
the Y to P&Q). Selecting a plan causes the instantiated form of
the plan to appear in the ‘goal window'. The student may then
select components of this plan to work on, which may of
coursc call up further sub-plans. The student’s progress
through the plans is automatically marked in the goal window
(the tick indicating achieved plans, the arrow pointing to the
current goal).

The student’s sclection and use of plans is monitored by the
system. The system may intervenc if a plan is deemed
inappropriate, writing a message in the ‘message window’ As
usual, it is difficult to say precisely what use an ITS should
make of its knowledge of student goals, when it should
intervene and how it should frame its interventons.

The use of plan schemas is not a general solution to the
problem of providing a language through which the student
ma2y express her goals, We had previously experimented with
the use of a menn of (about 30) stock phrases (e.g."in order
0", “it follows that”, ctc.) from which the student could select
and build up a natural language plan of any desired complexity.
We believed that the selecton of phrases would considerably
tasc the parsing problem. It tumed out that students could so
express plans in this domain, and that they could be parsed
rclatively easily, but that there were unfortunately too many
ambiguous phrases (c.g. "from x and y", meaning 'from lines

Sup Preve: Al
Ertar PeQ=d (PLQ) n
[ 1
ate i (1) P & a.i:
kN § P @ ¢ . R 7
it patnt | copy 55;
¥ selost H1Y
Trying to prows Q-3(P2Q) j H
1 =0 i
[ R 1) Mmme 7/ I
- rrfi)
{ ,1 2) Try to prowe FLE from § <- Pron tlkj
iiv], B
-y 3) Then prove §-3(F4Q) wing P
A
L ad
Trying to prowe G-X{PIQ)
o
1) dzsumg
it 2) Try ¢ pvet PAG fro=
u 3) Then prows Q-3(PLY) waing [P
A
w1
L4
pad Replecs: kg } vinq ’
™
J .
e
.
Figure 2: Monitonng plans in a logic tutor.
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;.and y of the proof so far’, or jus_in'g proof rules x gnd ¥y,
"and so on). i{owever, we are optimistic that the technique of
’ phrase selection 1o cxpress logical arguments may be adequate
in other domains. For cxample, we are looking at the
possibility of using the technique to express causal arguments
n cconomics, where clauses are usually of the form “x leads to
y", with numerous paraphrases.

Slogan 2: Don't diagnose what you can'( treat

The grand ambition to build high-fidelity student models can
casily obscure the fact that, in practical terms, student models
by themselves achicve nothing. Student models are merely
daia for the tutoring component of ITSs. It follows that there is
no practical benefit to be gained from incorporating in our
student models featurcs which the tutoring component makes
no use of, and there is no point the ITS labouring to idendfy
such features,

However, this assumes that our utoring component is given
and that we have only to inspect its code 10 discover the
features that our student model needs to identify. This is not
so: our understanding of tutoring expertise is not deep and it is
indeed a prime function of student modelling to drive this
understanding., The divisien of an ITS into the standard
‘subject, student, tutor' modules is an explicatory device, not a
guideline for ITS implementation. Mobus and Thole (1988)
seem 1o regret the fact that “their identification in current
systems is difficult or cven impossible to obtain because their
knowledge bases arc oftcn not as clearly separated as theory
postulates.” In my view, the student model and tutoring
procedure should be developed in tandem, not separately. Any
proposed feature of a student model should be explicidy linked
with 2 proposed processing of it by the wioring component,
and idezlly this processing should be linked with existing
educational evidence which justifies it

One implication of this suggestion is that the development of
the tutoring component is no longer 1o be left as an intuitive
2ftcrthought Iis contents are to be brought out into the open,
so that we may assess their implications for student modeiling
and their educatonal radonale. This, indeed, is happening.
For example, Clancey (1987), Mizoguchi, Ikeda 2nd Kakuso
{1988) and Woolf {1988) zll give dctails of tutoring
procedures. In general, the implications-are that, in practical
ierms, we can be much less demanding of our student models
2nd that the educational rationale is somewhat ad-hoc.

Imposing the <featurc : processing : evidence test, suggested
2bove, would, I suspect,render many of the discussions on
student models irrelevant  For example, the original genetic
graph proposal (Goldstein, 1982) suggested overlaying a
description of the student's “learning preferences™ on the links,
where these preferences seem to be described in terms of ™his
need for repetition, his degree of forgetfulness, and his
receptivity to advice.” What use the ttoring component was to
“‘zl.c of this information, and on what basis, was left to
nunen.

The same difficulty arises with most proposals to incorporate
‘ome description of ‘learner styles' in student models. These
Jroposals invariably quote Pask's holisUscrialist distinction
Pask, 1976) but are quite unable to point o any other learner
tvles which can be reliably identified by ITSs and which can
e associated with demonstrably effective differential
‘eatments by ITSs.

5 regards the idea that other individual differences, describing
tellectual abilisies, cognitive styles, academic motivation and
¢rsonality characteristics. should be represented within
‘udent models, then the literature on aptitude-treatment
ritraclions. reviewed by Como 2znd Snow (1986). is not
ITS‘-88 Montréal -
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encouraging. They conclude that future research is needed 10
identify likely aptitude variables and that, in any case, “practical
$yslems can use no more than a few control variables for
adaptive purposes” (e.g. two, perhaps intelligence and
motvation, for human teachers).

Slogan 3: Empathise with the student's beliefs,
don't label them as bugs

The general pereeption, reflected in the Sandberg quote above,
that student models in ITS are for remediation presents a
serious philosophical problem. It is the arrogant, ‘tutor knows
best' stylé of ITSs which alienates classroom teachers more
than any technical shoricomings. The standard ITS approach
of first defining a body of certified knowledge and then
devising ways to correct students’ understanding so that it
conforms to it does not accord with the philosophics of
cpisternologists, with or without an educational orieatation.
For example, Piaget urged us 1o appreciate that a child's
understanding was never merely wrong but that it made sense
to him in his own terms, if we a5 teachers could but understand
those terms. And philosophers of science, such as Popper,
have argued that the history of the development of scientific
knowledge demonstrates that we ought to regard all knowledge
as provisional and potentially falsifiable.

The idea that student models are for remediation is implicit in
both standard approaches 1o student modelling, the ‘mal-rule
approach’ and the ‘expert sysiem overlay zpproach’. Here |
will concentrate on the former.

In the mal-rule approach, two sets of productions are defined: z
“correct’ set, which if applied to the problem at hand gives 2
correct solution, and a ‘mal’ set, which consists of deformed
versions of the correet productions. If 2 member of the mal set
is used instead of its associated correct rule, then an incorrect
solution will (usually) be obtained. Qf course, the aim of the
ITS is to cradicate any mal-rules which may exist in the
student’s head (anything ‘mal’ elearly needs treatment).

Apart from philosophical misgivings, there are practical and
theorctical problems with this approach:

!. To label somcthing as incorrect and in nced of
remediation, an ITS needs to know what is 1o be deemed
‘correct’. Conscquently, the mal-rule approach is, in principle,
only possible where such a knowledge representation can be
specified, i.c. in closed-world, formal domains {such as
subrraction and Lisp programming), and even there there may
be many equivalent effective representations.

2. A mal-rule is to be undersicod 25 one which is
systematically applied instead of the correct rule. But how
‘systematic’ docs a mal-rule have o be to qualify as a mal-rule?
In an attempt to discover whether it is in fact the case that “there
is great systematicity in the appearance of {algebra) arors™
(Resnick, Caurinille-Marmeche and Mathicu, 1987), Payne
and Squibb (1987) analysed student ervors in solving linear
algebraic cquations. While they considered that they couid
identify 99 different mal-rules, over 0% of them were used on
less than 50% of the occasions when they could have been
used (and by the originzl Brown and vanlLehn (1980)
guidclines would not have qualified as mal-rules at ali).

3. The empirical data will indicate that some mal-rules are
mare common than others. It requires a theory of 'mal-rule
generaton’ to explain why this is s0. As Payne and Squibb
(1987) point out, 1t is difficult to sec how syntactic mechanisms
(such as repair theory (Brown and vanLehn, 1980)) can
¢xplain why the transformation:

A Mx+ N -> [M+ N

{cg 3Ix+4=5x+2 -> Tx=5x+2)
is more common than:

B: Mx+ N -> {M+N]

(g 3x+4=5x+2 -5 7=5x «2)




[This is so even when there are multiple x's in the cquation: the
bias is to be expected when there is only onc x.] The intuition
that A is ‘more sensible’ amounts 1o 2 belief that student
models need (o include descriptions of {partially formed)
conceptual knowledge in addition to purely procedural
knowledge. .

4. How consistent arc mal-rules across different
populations? Payne and Squibb (1987} found very little
overlap between the most common mal-rules at three different
schools (in fact, the 5 most common mal-rules at the three
schools gave 13 different mal-rules). This suggests that
theorics of mal-rule generation need 1o take more account of
educational experience and context than they currently do.

5. The developers of lists of mal-rules have many
decisions to make. In an algebra study, for example, do we
abstract over integers (but 0 and 1 are surely special ezses), do
we abstract over operatoers, do we consider permutations (e.g.
Mx+N, N+Mx) the same, and 50 on? The ally of mal-rules
depends on such decisions. Too many mal-rules leads 10 a
vacuous theory and computational inefficiency: too few
mal-rules obscures data which may be of theorctical
importance,

6. In gencral, there is a difficult knowledge Tepresentation
question which has been pre-empted by the mal-rule
terminology. Production rules may be suitable for modelling
procedural skills in closed, formal domains, but it is difficult 1o
sce how, even in principle, the mal-rule approach could be
2pplied 10 address misconceptions deriving from inzppropriaie
analogies, such zs those identified by Shrager (1987),
mentoned above. ;

7. Finally, and referring back to slogan 2, even if we
could reliably identify mal-rules, what should an ITS do zbout
them? According to Pintrich, Cross, Kozma and McKeachie
(1986), "once a bug has been accurately diagnosed, an
instructional prescription follows naturally”, but recently,
Sleeman (1987) has discovered that “even though [his system]
has a model for a student’s problem solving it has not so far
proved possible 1o remediate very effectively.”

If student models are not primarily for remediation, then what
other role may they have? In z recent review (Self, 1988), 1
identifed twenty diffcrent vses that had been found for student
models in existing ITSs. The largest class of uses was indeed
to do with remediation - but the next largest was what [ called
‘claborative’, i.c. 10 do with leading the student 10 claborate or
refine his current knowledge, not necessarily because a ‘bug’
had been identified and not necessarily towards some
pre-specified target kmowledge. This is the role that I would
enceurage for student models.

Sandberg's assertion that “good tcaching can do without 2
detailed user model, because in good teaching serious
misconceptions are avoided” is doubly misleading. First, good
teaching involves much more than the avoidance of
misconceptions. Secondly, teaching activities other than
remediation, c.g. provoking a student to question her own
beliefs, would benefit from having a detailed user model.

To escape from the remediationist view of student models, it
may perhaps help if we consider that student models are
intended to describe not what students know' but what they
‘believe’.  The former encourages ITS designers 1o impose
value judgements about the commectness or otherwise of this
‘knowledge’. Beliefs, on the other hand, are always
provisional and liable 10 be changed if their justifications are
seen to be inadequate or their implications seen to be
unreasonable. The student modelling problem then becomes
one of identifving what a student believes, and if possible why,
the belicfs being represented in their own 1erms, not with
respect 1o some target knowledge. The role of student models
would then be 1o help ITSs to provoke students 10 consider the
Justifications 2nd implications of their beliefs,
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Slogan 4: Don't feign omniscience - adopt a ‘faliible
collaborator’ role

The proposed change of ITS siyle, from knowledgable
remediator to empathetic belief elaborator, is not made solely
on philesophical grounds. There are also praciical reasons for
such a change.

For most of the subjects which we would like our ITSs to
address, deseribing a ‘comrect’ knowledge base, together with
an adequate description of potentizl student misconceptions, is

‘a practical impossibility. To attempt to conceal this under a

facade of omniscience is a risky business,

Most studies of human tutoring that I have seen have
concentrated on clucidating how 2 twior makes pedagogic use
of his own subject mater knowledge. It would be interesting
to know how human tutors help students in situations where
they lack subject matter knowledge. (My own experience is
that this situation prevails over the first!)

Clearly it is possible for 1utors to respond appropriately 1o
questions for which they do not know the answers: "Why are
cooling towers the shape they are”™ “Are all modem
acroplancs powered by turbines? “How can mercury be 2
metal?" and so on. We can respond in a varicty of ways, such
as giving suggestions about where to find relevant informaton,
joining in an auempt to answer the question by reasoning from
shared ‘common sense’ knowledge, probing the student’s
preconceptions behind the question, 2nd so on. In many ways,
these would be better responses than direct answers even if we
were abie 10 give them, because, of course, they go bevond
mere factual knowledge to address problem-sol ving and
learning skills which are, one hopes, of genera) uuliny. s it
possible for an ITS to play a similar rolc?

We have been toying with the idea of building an ITS which
deliberately does not have the knowledge which the student is
endeavouring to acquirc. For example, to take a somewha
artificial situation, imagine that the student and the ITS have
access 1o a database giving details of the properties of al} the
chemical elements, and that the student is trying to discover
why certain clements arc called ‘metals’, some ‘nonmetals’ and
others “scmimetals’. The ITS would not itself know the rules
{if any) which map scts of propertics onto these elassifications.
The student may ask for specific information ("What is the
boiling point of mercury?”), probe hypotheses ("Are all metals
solid?"), offer thoughts ("Maybe all nonmetals are sofi "), make
straicgic comments ("Let's look at magnetic propertics™), ask
for specific help (“List the boiling points we've seen so far),
seck general help ("What next?'), etc.

The role of the ITS is to act as a collaborator in this endeavour,
by giving (or indeed taking) strategic advice, derived not from
its prior knowledge of the concepts concerned, but from its
undersianding of how to set about developing such hypotheses
in general and s knowledge of the particular information
which the student has asked for. The perceived style of the
ITS is all-important: if the system were to say “Those last two
metals were both shiny - perhaps they all are”, this would have
1o be understood by the student not as an unsubde hint (the
tutor knowing perfectly well that all metals are shiny), butas a
genuine, hopefully useful, but possibly mistiken, comment.

How could it be made to work? The ITS needs o be able 10
work out what a student may reasonabiy be expected 1o infer
(or not 1@ anfer) from the dita she sees. In ather words, in this
casc. the ITS needs 2 machine leaming program capable of
inferring concepts from cxamples in a psychologically plausible
way. The I'TS would use such 2 program in two wavs: figg,
for building a student model describing the student’s belicfs
about the concepts (again. as above. these are nat 10 be fudeed




by the ITS as correct or not, but, if necessary, as 'interesting’
or justified by the evidence or not), and secondly, 1o work out
which information would enable it (the ITS) and, it is 10 be
hoped, the student 1o refine those beliefs, in particular, 1o find
information capable of falsifying them.

We adupied the focussing algorithm for concept leaming to try
10 build these student models (Gilmore and Self, 1988), but we
encounicred three particular problems:

1. Wc had underestimated the volw.e of prior knowledge
which such an ITS would aced. Only with Al machine
learming progrzms does the closed world assumption hold.
Students bring to bear all sorts of ‘common knowledge' (such
as that ‘icmperatures arc precisely given, but colours arc
imprecisely described in English’, boiling points arc related 1o
meiting points but probably not to conductivity') which an ITS
would need aceess 10, even if it is not to know specifically
what is to be leamed by the student. Perhaps the approach of
explanation-based leaming would have been a better choice
than the similarity-based learning of focussing.
Explanation-based lcaming emphasises the role of domain
knowledge in promoting learning from z single example, rather
than by gencralising over scveral examples.

2. The perceived sctting was 100 sterile: we could not
imagine many students being sufficienty motivaied to explore
the database in the way assumed. Leaming concepts is not an
abstract game: concepts are learned for a purpose (1o help solve
problems or to mzke sensc of a story, say). Without knowing
why the student is trying to discover what a metal is it is not
possible for an ITS 10 determine whether her beliefs about the
concep! are adequate for the present purpose. Conceplual
learning nzeds 1o be embedded within a problem sening.

3. We had litide idea of how 10 suppont colizborative
dizlogues, in which both participanis are 10 be seen 25 of ‘equal
s1atus’, or whether students would, in fact, welcome such 2
style of interaction with 2 computer. The benefits claimned for
humzan-human collaborzation (c.g. Slavin, 1983) may result
more from social and motivational effects than process effects,
and may therefore disappear even if the swdeni-computer
collzboration is carefully designed.

However, the exercise was producdve in two ways, First, it
showed that educationalists were mare responsive 1o the idea of
a computer collaborztor than to that of a computer tutor, Of
course, ‘collaborative leaming' is very much in vogue in
modemn classrooms 2nd we may simply have triggered a
positive reaction. On the other hand, they may have grounds
for believing that students learn more productively by
discussing problems with peers than by being tutored by
‘experts’ such as themselves.

Secondly, it caused us 1o re-think the rolc of a student model.
In 2 convendonal ITS, the student model is an intemal data
structure purporting to describe the student which is used
furtively by the ITS to determine tutorial actions. (Incidentatly,
it is questionable whether such a student model is legal - in the
U.K., at least, all data about individuals has to be registered
with the Data Protection Registrar and accessible to the
individuals concerned!) In a collaborative ITS, there is no need
to hide the student model from the student - in 2 sense, it
represents 2 shared understanding of the problem and with the
more ‘open’ philosophy, it may well help, or challenge, the
student to be aware of what the system thinks she believes.

Indced, it would be 2 salutary principle 1o insist that all student
models be made open 1o the student. This might benefit [TS
design by reducing the templation 10 inclede crude, ad-hoc
classifications, and. more importanty, may lead to educational
benefits as it might well provoke the student 1o reflect on her
own understanding. To promote siudent reflection and 1o
foster collaborative learning it would noi be necessary 10
develop the high-fidelity studen: models needed for
femediation.
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A collaborative intecraction may also help the student develop a
more favourable sclf-image and a better view of how
knowledge is acquired, Instead of being perpetually corrected,
with the imputation of incompetence or stupidity, she may see
how her own understanding reasonably develops. A
‘knowledgeable’ ITS commenting that "that is a perfectly
rcasonable misconception but .7 would be scen as
patronising: a collaborative I'TS would carry the same message
without needing to verbalise it.

In a related exercise, we are considering whether it may be
possible for an ITS to understand, and comment upon, 2
student's strategy, without attempting 10 understand the subject
matter. With the Algebraland sysiem (Foss, 1987), a student
solves algebra problems and has the search space displayed
graphically 1o reflect upon, Algebral.and does not attempt to
tutor the student. But by analysing the shape of the search
space and simple syntacuc propertics of the nodes of the graph
(and nor by tying to understand the problem-solving process
in depth), it is possible to determine potentially useful feztures
of the space, such as when students tend to abandon a solution
path, where they tend 10 back up to, which nodes seemtobe a
source of difficulty, whether the secarch is in any way
systematic, and so on. Consequenty, it may be possible for 2n
ITS 1o give strategic advice to 2 student, from the evidence of
structural properties of the search space.

We zre looking at the ways students use hypertext systems, ¢.g
conuaining a classical Greek dictionary, 1o answer questons
such as "Describe the main adversaries faced by Jason in the
Argonautica”, It is clearly not possible 10 apply machine
leaming techniques to fearn, as stdents would, from reading
the dictonary text We are hoping to be able 1o make sufficient
sensc of their search spaces, without understanding any of the
subject matter, 10 enable an ITS 1o give stategic advice to
students. )

However, there is an apparcnt logical flaw in the argument that
ITSs do not need subject knowledge, but rather need
knowliedge of strategic leaming skills, so that ITSs may
promote the lcaming of those strategic skills, which we may
consider more important than mere facrual knowledge, For, by
a similar argument, perhaps ITSs do not need learning skills
cither, but rather need knowledge of how 10 develop leaming
skills (and so on). But for all practical purposes, and [ suspect
for a1l theoretical ones too (for the skills at "higher levels may
not be significantly different from those at lower ones), there
arc only a very small number (c.g- 2} of such levels.

4, Conclusions

This review of the role of student models in ITSs is intended 10
show that, while rescarch in student models is potentially
capable of embracing aimost all the problems in cognitive
science and that there is therefore no realistic possibility of
building student models which meet all the objectives of [TS
designers, there are nevertheless several ways in which, by
changing our design principles and our philosophical approach,
we may build ITSs in which student models play a significant
role.
v

Several suggestions have been made, perhaps the most
important of which are;

1. To design student-computer interactions in which the
information needed (especially about the student's goals) by the
ITS 10 build a student model are provided naturally by the
student while using the ITS, and does not have 1o be inferred
by the ITS from inadequate data.

2. To explicitly link the proposed contents of student
models with specific 1utorizl actions, ideally supporied by
educanonal evidence, in order 1o clanfy what 15 really needed
(and not needed) an the student model




3. To avoid viewing student models solely as devices to
support remediation, which is ofien perceived as implying a
behaviourist philosophy of leaming and which often cannot be
satisfactonily achieved anyway because of various difficulties
with the ‘mal-rule’ approach to student modelling.

4. To usc student models ‘constructively’ by regarding
the contents as representing student beliefs, with no value
judgements imposed by the ITS, the ITS's role being to help
the student elaborate those belicfs.

5. To make the contents of the student mode] open to the
student, in order to provoke the student to reflect upon its
contenis and to remove all pretence that the ITS has a perfect
understanding of the student (and that ITS designers should
build systems which procced as though they do).

6. To develop ITSs which adopt 2 more collaborative
role, rather than a directive one, for then the style corresponds
to a betier philosophy of how knowledge is acquired and we do
not have 1o seek such a high degree of fidelity in the student
model.

"It is not often thet any man can have so much
knowledge of another, as is necessary 1o make
instrucrion usefud.”

Samuel Johnson (1752), The Rambler, p87.
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