Ca
FRASCATI . May 1933

]

P

i/"r

I

A

g
,j:.
3? _
_Ef v STUDENT MODELS: WHAT USE ARE THEY?
—6’ N
-E: g ‘ - - ‘¥
22) Johm Self, Centre for Research on Computers and Learning, University
-~ S of Lancaster -
o I
3 .o ABSTRACT
i - The importance of student models to effective intelligent computer-
3 L aided instruction (ICAI) is often taken to be self-ayident and as.a
: :Z; result the precise role of student models tends not to be cleariy
£ o defined. Rather than attempt to derive such a definition from

educational principles, this paper reviews the actual uses which have
been found for student models in existing ICAI systems. Twenty
functions are identified in six categories: corrective, elaborative,
strategic, diagnostic, predictive and evaluative.

1. INTRODUCTION

The standard view of ICAI systems is that they consist of three modules: the
subject material, the student model and a teaching procedure {Clancey, 1986).
0f these, it is the student model component which gives ICAl research its
distinctive flavour, so much so that the development of student models has
become an end in jtsalf, it being taken as axjomatic that student models are
essential to effective ICAI. Of course the student model is to be used by the
teaching procedure - but how and why? We could try to answer this questian by
studying human tutoring expertise but [fear this will not be fruitful because
human tutors use rather different student models (and perhaps not optimally).
Instead, [propose to review the [CAI literature to identify the uses to which
student models have actually been put, this to be regarded as a preliminary
step to specifying when those uses are appropriate.

The student model is that part of an ICAI system which enables it to answer
questions about the student using the system. Questions are broadly of four
types: what can the student do, what does the student know about, what type of
student is he or she, and what has the student done? So a student model may be
considered a 4-tuple “pP,C,T,H™, where P describes procedural knowledge, C
conceptual knowledge, T individual traits and H the history.

Typical members of P are procedures for performing multicolumn. subtraction,

symbolic integration or medical diagnosis. (These procedures may, of course,
have bugs.} C might contain descriptions, expressed as frames, schema,
networks or similar data structures, of the meaning of concepts such as prime
number, metal or hepatitis. The distinction between P and C is not clear-cut.
Taken together, K=P+(, they dascribe what the student knows. T is typically a
set of jabels, e.g. introvert, blind, bored, etc., describing the student.

Some of the labels are assumed constant for the purposes of the ICAI system. H
may be a transcript of the interactive session, summarised and interpreted to
describe significant events.

An ICAL system is designed to develop what is described by K. The student
model is maintained to aid this development.

2. FUNCTIONS OF STUDENT MODELS

The functions of student models may be classified into 6 types:
{1} corrective: to help eradicate bugs in what is described in K.

Working Conference ‘Al Tocis in Educatien' Salf

Conference Version of paper for IFIP/TC3 Frascati May, +(98

(2) elaborative: to help extend what is described by K (which may be considered
‘correct' but 'incomplete').

(3) strategic: to help initiate more significant changes in tutorial strategy

than the tactical decisions of (1) and (2) above.

(4) diagnostic: to help resolve the contents of K or what is described by X.

(5) predictive: to help determine the student's likely response to tutorial
actions.

(6) evaluative: to help assess the student or ICAI system.

3. CORRECTIVE FUNCTIONS

[f K is represented as a buggy variation B(K') of some desired knowledge X',
then the student model may help in functions intended to eradicate the bug.

3.1 Bug identification

A pre-stored natural language description of 8 may be presentad to the student:
You multiplied the number of the multiplicand by the number directly
beneath it in the multiplier and you wrote down the carried ignoring
the units number. (MULT)

g+ References for all systems mentioned are given in the Appendix.

This simply involves looking up B in a 'bug library'. The same message is
given to all students when considered appropriate. LISP-ITS also associates a
message with all buggy rules, but the message is a template to be instantiated
to the problem-solving context and may provide a hint toward the correct
solution, although neither of these features is illustrated in published
examples:

You should combine the first Tist and the second 1ist,but LIST is not
the right function ... LIST just wraps parens around its arguments.

The message depends (at most) on the present problem-solving context, i.e. on
the contents of H, not those of K. The LISP-ITS messages are supposed to
“describe why the answer is wrong",

PROUST makes a mere serious attempt to relate messages to context. This is
possible because it does in fact analyse the context (i.e. the complete
program), unlike LISP-ITS. The general form of PROUST's messages saems to be
“solution-specific statement” “general principle”: :

You left out the initializations for the variables HIGHRAIN, ...
Programs should not fetch values from uninitialized variables!

You used a WHILE statement at line 19 where you should have used an
IF. WHILE and IF are NOT equivalent in this context; using WHILE in
place of IF can result in infinite loops.

As these examples demonstrate, the messages do not have to be a paraphrase or
summary of the entry in the bug library (e.g. the second message is not
directly related to the description of the ‘'while-for-if' bug). The entry may
be regarded as a computational device for accessing a deeper misconception. The
message associated with the entry can address the misconception rather than the
bug. For example, in LMS, the message associated with the M1BRA? mal-rule
could discuss the commutativity of multiplication, rather than the mal-rule
itself. PROUST's “general principle” is presumably intended to relate to
possible misconceptions and to prevent mere patching of surface errors.

However, tying the message explicitly to the bug entry gives the potential
advantage that the bug identification may be dynamically generated. This would

Working Conference 'AI Tools in Education' Self page |

Conference Version of paper for I[FIP/TC3 Frascati May, 198

avoid the laborious pre-specification of messages and their resultant
inflexibility. For example,

Are you arguing then, that if you take any two places in the Northern
Hemisphere, the one which is further north will have the lower
average winter temperature? (WHY)

may De generated from an internal description of a buggy procedure for
predicting temperatures. This technique is implicit in the description of WHY,
but has not been implemented. A similar technique is conceivable for LISP-
ITS's buggy rules. The technique is, of course, mandatory if B is produced by
some generative theory of bugs, such as repa:r theory (Brown and vaniehn,

1970), rather than looked up in a library, since there is nothing with wh1ch to
associate pre-specified messages.

In general, it is necessary for an element of P or C to be described
meaningfully to a student. There are no programs which dynamically generate
bug descriptions - consequently, there are none which generate descriptions as
a function of K (to help make them more meaningful to the student), as ideally
they should. For example, descriptions should not include concepts (e.q.
multiplicand, perhaps) not known to the student, and should omit details
assumed to be fully understood by the student. ({Similar considerations arise
with many following functions of student models).

3.2 Direct remediation
Sometimes the ICA] system offers a direct corrective statement, dealing with
the knowladge that the student should have rather than the buggy knowledge he
does in fact have. This happens in 4 situations:
(i) when the buggy knowledge is considered a mere factual error not
indicative of a deeper misconception;
{i1) when the system is-unable to determine the buggy knowledge but can
at least determine which knowledge has been misused (for example, BIP
can detect that required keywords are missing from a program and so
informs the student of the constructs he should have used);
(ii1) when the system cannot interpret a student's input but can itself
determine what it should have been (for example, if LISP-ITS cannot find
a buggy rule to match the student input, it uses the 'ideal rules' to
determine the next step and so te]ls the student what he should have
done);
(iv) when the more indirect tactics have been exhausted.

In general, the student model indicates that a particular knowledge item is
missing or corrupted (but not necessarily how). The item is presented directly
to the student, by methods similar to those in 3.1.

3.3 Indirect remediation
A variation of direct remediation is to provide only a summary or a part of the

desired knowledge {i.e. a hint). For example:

No, it is not useful to make that vertical angle inferences here ...
why don't you try to make an inference invalving the fact that M is
the midpoint of AB. (GEQOMETRY)

3.4 Counterexample

A counterexample is a problem such that
cproblemk P (Gsolution
gprob]em% p' gsolution'X
where solution' {given by a correct procedure p') differs from the solut1on

given by a buggy procedure P.

Working Conference "Al Tocis in Education' Self page

LOATErence version OT paper Tor (ri¥/iLg Frascatl May, 198

-

The probiem can be generated by varying the problem parameters until the above
conditions are satisfied but, in general, this is too inefficient.”
Alternatively, the buggy component of P may be identified and then, by
regression analysis, the conditions which have to be satisfied by the problem
in order that the buggy component be reached may be determined. The remainder
of the problem definition may then be determined, at random, if necessary. The
conditions could, of course, be attached directly to a description of the bug
in a bug library (as in DEBUGGY), but as before, this is laborious and
inflexible.

Counterexamples are of two types, depending on whether or not it is expected
that the student will recognise that his 'solution' is incorrect. In the
latter case, the counterexample is used as the opening gambit in an "entrapment
strategy":
- gstudent believes anywhere near the equator is very hotk
Is it very hot on the Peruvian cost?
I don't know, but I guess so. .
Well no, there is a very cold current coming up
the coast....
{WHY) , .
In the former case, we require {in addition to the above constraints) that X
and solution be inconsistent,with the assumption that this. inference will be
made by)the student. (This is Ohlsson's "obviously incorrect or impossible
result").

gstudent believes you can grow rice anywhere hotk

What about the Arizona desert?

gassumes student knows you can't grow rice in Arizonak

A second ‘example:

J1 103 4 3 1
~-=-=- = «-- = - 8 8 g8 8 8
gstudent vulgarises by adding whole number to the numeratork
1 4.
I3 -=-- = 7
g 9

Gassumes student knows that O is an incorrect result for subtracting
two different fractionsk ‘

In general, the problem of generating counterexamples for procedures is
formally equivalent to the automatic generation of test data for programs.

.3.5 Solution Traci
Building the student model from the limited student input is an inductive
process. If this process were sufficiently reliable, its result could be
conveyed back to the student, to enable him to observe his own problem-solving h
processes. 'in slow motion', and to refiect upon them. No ICAI system actually
does this, but it might work as follows:

T: Solve 3x+5 =8

S:x= .2
T: Your solution steps were:
3Xx+5=28
3+ x+5=48
X+'8 =68
X = =2

Of course, this function could be combined with 'direct remediation', by
pinpointing the faulty step, or giving a correct trace.

3.6 Retrospection. :
The student model may be used to address the source of difficulty, rather than
the difficulty itself. For example, certain errors are known to arise from

Working Conference ‘Al Tools in Education' Self page

Conference Version of paper for IFIP/TC3 Frascati May, 1987

'interference' between domains - e.g. between first and .second tanguage
learning, between the two standard subtraction procedures, and between
arithmetic and algebra. A pre-stored explanation of the error's derivation
could be attached to the bug entry in the library, permitting a dialogue like:
T: Solve 3x + 5 =6
S:3+x+5=86
T: Excuse me,
1 1
3 - is the same as 3 + -
2 2
but 3x is not the same as 3 + x.
In fact, 3x means 3 * x

However, any bug derivation which is sufficiently predictable to be worth
including in the library could be addressed directly by instruction. What is
really needed is the ability to dynamically analyse the history of interactions
(recorded in H) using a model of the student's learning and mislearning
processes (a component of P) to determine how -2 misconception could have
arisen. This is the role proposed for the 'episodic memory' in the Lisp tutor
of Weber et al (1987). Here, a faulty initialization in a function to compute
a"n is explained by assuming that the student has drawn an analogy with, or has
generalised from, the previous example, in which 1+2%..+n was computed, after
initialising a result variable to Q. Unfortunately, no current tearning models
are able to perform this analysis.

A more straightforward function of H is.to permit the system to refer back to
previous successful uses of knowledge which the student appears to have
forgotten, (No ICAI system seems to do this.) For example, in subtraction if
a student makes a 'borrow across zero' error, refer back to a recent example in
which a similiar (i.e. the preconditions for reaching the 'borrow across zero'
code are satisfied) problem was successfully solved. To aveid extensive
reanalyses, entries in H may be tagged with appropriate interpretations to
permit such remindings. ' ’

3.7 'Try again’

The simplest corrective function that student models have is to help generate a
problem of the same type for the student to ‘try again'. This may be done by a
similar analysis to that for counterexamples, or {e.g. LISP-ITS) having a bank
of remedial problems which are considered to see whether they address the
student difficulty.

3.8 Tactical withdrawal ‘

Finally, the student model may be used to effect a withdrawal from the buggy
area, by generating or selecting a problem which does not addrass the
difficulty, or, better, does address some or all of the pre-requisite skills
and knowledge, but no more. This may be appropriate when it is feared that the
present difficulty may have de-stabilised previously acquired knowledge.
(Surely some ICAI systems do this, but [have found no examples.)

4. ELABORATIVE FUNCTIONS

The elaborative functions are called on when K = ¥' - k, i.e. when the
student’'s knowledge is considered 'correct' but incomplete. All the following
subsections are concerned with the choice of the next topic: they diffar in how
the student model is used. '

4.1 Curriculum-driven choice

It K and K" are mapped onto a pre-specified curriculum structure, defining the
pre-requisite relationships between items of knowledge, then a new topic may be
selected to meet some specified criterion. For example, a topic may be

Working Conference 'Al Tools in Education' Self page

Conference Version of paper for IFIP/TC3 Frascati May, 1987

-

selected which addresses only one node in K' -which is not in K, and perhaps
which maximises the number of nodes in K which are addressed. Tnis is the
basic strategy of BIP which selects that problem from a pooi of 100 problems
which ‘optimises' the mixture of mastered and weak issues. Of course, problems
could be dynamically generated {rather than selected), as discussed above.

Goldstein's genetic graph (Goldstein, 1982) is also based upon a “learning
frontier" but with several refinements (none of which were followed through in
any detail):

{a) the graph was supposed to also contain explicit "deviation’ links to buggy
knowledge - a sort of compiled theory of bug generation - to help
remediation; _

(b) the links were to be labelled with information (e.g. analogy,
specialization, etc.) which presumably was to help determine the mode of
presentation of the topic selected;

{c) the student‘s 'learning preferences' were also to be overlaid on the links

{see 5.2 below). '

(d) intrinsic properties of the knowledge were to be related to the topology
of the graph, e.g. isolated skills (i.e. ones with few links to other
skills) might be considered more difficult to learn (see 4.3 below).

{e) the graph may be generated dynamically rather than provided as a static
structure.

Even without these refinements, the use of a curriculum.structure {s a standard
technique for determining topics. The technique is not, of course, completely
detarministic - it depends on student performance (i.e. the contents sf the
student model) and perhaps on a random element, e.g. in selecting the
particular node to address. But curriculum design is a laborious process and
it does impose some, maybe too much, structure on the interactions. The
following functions are less pre-determined.

4.2 Expert-student comparison _

fhe choice of new topic may be determined by a direct comparison of K and K',
without any reference to a curriculum other than any implicit in the structure
of K'. For example, Kimball's INTEGRATION, which represents expert and student
skill using two matrices giving the probabilities that a particular operator
will be applied in a particular situation, determines the probable expert and
student solution for potential problems, and then selects that probiem which

. maximises the difference between the two solutions. Alternative selection
strategies are conceivable (e.g. select the problem which gives the minimum
non-zero difference) but the point is that they are not curriculum-driven.

Similarly, WEST's technique of discussing only issues which are used in a
(covert) expert solution but not used in an actual student salution is
independent of a curriculum. However, the technique is feasible only if the
issues are essentially independent, with no prerequisite structure. In order
to prevent the system referring to topics too far beyond the student's present
understanding, LISP-ITS maintains not one "ideal model® but a series of them,
handcrafted to stay in tune with a hidden curriculum. (There is an
unimplemented suggestion that the ideal models may be created dynamically by
the process of knowledge compilation.)

Other 'opportunistic' techniques leading to more complex tutorial decisions are
discussed in section 5.1.

4.3 internal analysis

The choice of new topic may be determined by an analysis of K alone, with ng
referance to any target knowledge X' or curriculum (just as one can offer
debugging advice from analysing the program itself without knowing its

specification). For example, we might detect structural deficiencies, e.g.

Working Conference 'Al Toels in Education’ Self page

Conference Version of paper for IFIP/TC3 Frascati May, 19g

isolated nodes in a genetic graph, which we may seek to remedy. Similarly, we
may look for potential redundancies or omissions in the structure.

More ambitiously, we could try to ensure that K satisfies any general
principles which it is believed models should satisfy to promote understanding
and learnability. For example, the system could determine whether the ‘no
function in structure' principle {de Kleer and Brown, 1984} is violated, i.e.
by causal relationships not being locally defined, and, if it is, endeavour to
remedy it, on the assumption that the principle is sound. In general, the
pr1nc1p1es (if any can be defined) measure the intrinsic quality of the model
and indicate areas of weakness.

4.4 Learner control

Finally, we may dispense with K, as well as K' and the curriculum, leaving the
choice of next topic to the student. The student model has no function here
unless, as is usual, the options open to the student are constrained by the
system to those which it considers appropriate in the c¢ontext. So, for
axample, GUIDON and LISP-ITS present a menu of choices for the next step,
determined from the student model and curriculum, as described above.

5. STRATEGIC FUNCTIONS

The previous functions reflect the fact that the student model and the effect
of tutorial actions are uncertain, and so ICAI systems proceed by making
moment-to-moment decisions. Nevertheless, these ‘tactical' decisions must be
seen as part of some more global, strateg1c plan, usualiy implicit. The
counterexample in the entrapment pian is a simple illustration. Some ICAI
systems attempt to make thesa plans more exp11c1t to permit the student model
to initiate changes in these plans.

5.1 Change of plan

Whether or not a particular tutorial action is considered the next step of some
unfolding plan or as the first step of a radically different plan is often a
matter of opinion. But sometimes the student model does cause the unfolding
plan to be suspended. For example, in LISP-ITS if the student makes two errors
which do not match entries in the bug libraries, then the system reverts to a
‘design mode' where it works through the algorithm with the student before
returning to the original 'coding mode'.

In MENO-TUTOR these changes are initiated by explicit “strategic meta-rules®,
encoded much 1ike production rules. For example, one of the six strategic meta-
rules is: _
If the present topic is complete
and the tutor has little confidence in its
assessment of the student's knowiedge
then shift from a detailed examination of a singie
topic to a shallow examination of a number of
topics.

Another approach is to allow these changes of plan to be provoked
opportunistically. For example, GUIDON has a “related rules" procedure which
interrupts the dialogue after a given rule has been discussed to present a
related rule, i.e. a rule which makes the same conclusion and has some premise
in common with. the previous rule. The principle is, presumably, to associate
other knowledge related to that just assimilated, so strengthening the
knowledge structure,

5.2 Modus operandi
The second class of strategic function for student models is to cause changes
in the global 'style' of tutorial intasraction. Most of these changes depend on

Working Conference 'Al Tools in Educatfon' Self page

Conference Yersion of paper for IFIP/TC3 Frascati May, 198"

T

tne T {traits and characteristics) component of student models. The link
between T and the changes is usually implicit and unprincipled.

Usually the T component is entirely static, i.e. depends only on prior _
assumptions about the student, and so the global style is predetermined. Only
if T changes during the interaction will stylistic changes be initiated. The
simplest dynamic change to T is made possible by asking the student to
‘describe himself'. For example, WUSOR asks students to rate themselves on a
four point scale and uses this information to turn off rules at the wrong level
to avoid presenting inappropriate material. Similarly, one of GUIDON's rules
says:

If the goal of the consultation is being discussed

and the student's estimation of his sophistication
(on a scale from 0 to 4) is less than 3
then show a sketch of the sub-goal tree for the goal currently being
discussed. :

This is not very interesting unless T is modified, as appropriate, by the
system and the system knows what use to make of T. Usualiy, the modifications
and the uses are superficial. For example, WEST's principle of only discussing
unused issues on every other move {not at the earliest opportunity) is based on
intuitions about the student's level of frustration, boredom, motivation, etc.
and how this might be influenced by excessive interruptions. FLOW-TUTOR's use
of timing information to determine when to intervene may perhaps be interpreted
in terms of intuitions about how to deal with inattention or boredom.

These attempts to deal with 'personality’ characteristics, of a stable or
transient kind, are unsatisfactory because ICAI systems have insufficient
information to estimate them reliably and because they can make little
pedagogic use of them anyway.. More progress may be possible concerning
'cognitive' characteristics. MENO-TUTOR has some "tactical meta-rules” which
may be thaught of as attempts to make the tutorial style depend on the
cognitive state of the learner, e.g.
If the wrong answer threshold has been reached
and the student seems confused then
shift the discourse from an explicit correction
and explanation of an incorrect answer to a
simple response that recognizes, but does not dwell
gn, the incorrect answer .

WUSOR-I1 describes a student's learning abilities in terms of his “need for
repetition, his degree of forgetfulness, and his receptivity to advice". It is
not clear how these values are updated (if they are) and what pedagogic use is
made of them (if amy). It is also not clear if this is what is meant by the
“learning preferences" to be overlaid onto the links of a genetic graph, nor
how these relate to the conceptual relationships {(abstraction, analogy, etc.)
already i1inking nodes. .

In short, no ICAl system makes significant, explicit pedagogic use of T. No
ICAI system has an expressed aim to change what is modelled by T that is
clearly related to its tutorial actions. ICAL systems do not deal directly
with meta-level knowledge, i.e. knowledge about reasoning and learning
strategies. The extent to which such knowledge is amenable-to communication
and modification by learners is an open question.

6. DIAGNOSTIC FUNCTIONS

The previous functions have tended to assume that the student model is
sufficiently accurate, and that what is modelled is sufficiently c¢learcut, that

Jorking Conference 'AI Tools in Education’ Self

pag:

-

Conference Yersion of paper for I[FIP/TC3 Frascati May, 19

an appropriate action can be determined. This may not be the casa in two
situations: (a) if (to be specific) the student model indicates that the:
student knows Pl or P2 but the student model does not indicate which, and (b)
if the student model indicates that the student knows that Pl or P2 obtains but
the student is unsure which. The student model may be used to disambiguate
such confusions before carrying out other functions.

6.1 Diagnose student model

DEBUGGY assumes that the student actually has a method for subtraction and that
it is its task to isolate this method from the set of methods consistent with
the student's performance so far. To do se it generates discriminating
problems. With each bug is associated a "heuristic problem generator® which
ensures. that the generated problem fulfils certain conditions (e.g. it involves
a carry}. Candidate bugs generate a set of potential problems, from which one
is chosen (if one. exists) which gives different answers for different bugs.
PIXIE avoids the need for a heuristic problem generator with each bug by
symbolically executing mal-rules 'backwards' to generate a problem template.
However, this only generates a problem to exercise a candidate bug: it does not
generate a problem to discriminate between two candidate bugs. In fact, the
required techniques are the same as for generating counterexamples (section
3.4) - the only difference here is that no one of the candidate procedures is
assumed correct.

The ambiguity of the student model arises because the student input (his answer
to a problem, say) is insufficient to allow the system to infer a unique
interpretation of that input. Instead of generating more discriminating
problems- (as above), we could (a) ensure that all inputs are uniquely
interpretable (LISP-ITS achieves this by arranging that the granularity of the
rules is such that every character typed matches only one rule, at most), or
(b) encourage the student to elaborate on previous inputs, to provide the
necessary missing information. The MACSYMA ADVISOR attempts to carry out an
'interactive diagnosis' by asking the student about his beliefs which it tries
to connect to assumptions associated with potential interpretations of the
student's plan. Obviously, this is difficult in general because of the
probiems of natural language processing and the student's likely inability to
discuss the items of interest (which is why the ADVISOR asks about beliefs and
not the plans themselves).

6.2 Diagnose student ‘
In this case the student model indicates that the student holds several
hypotheses (with different degrees of belief) about the knowledge to be
learned. There is no necessary implication that the student should not hold
several hypotheses - he may not have had sufficient information to eliminate
them. CTP assumes that the student does not have a single hypotfiesis about a
concept to be learned but holds a set of them. It selects an example to
present to the student which may help to discriminate between the hypotheses.
The generation of a discriminating example involves the same techniques as in
section .1 but the interaction with the student must be phrased differently..

7. PREDICTIVE FUNCTIOQNS

The student model may be used not only to analyse, interpret or explain past
performance but also to predict performance and possibly Tearning, i.e. it may
be run as a simulation cof the student.

7.1 Performance prediction)

Predicting the student's performance (at, say, solving a problem) is of little
benefit if the prediction matches performance exactly. It is only useful if
they differ and the prediction can be usad to guide the analysis of performance

Working Conference 'Al Teols in Sducation' Self page -

Conference Version of paper for IFIP/TC3 Frascati May, 13

"

by 1imiting the search space of interpretations of the unpredicted data. For
example, NEOMYCIN predicts the student's likely next steps and only if the step
is unpredicted does it embark on a data-driven analysis. Similarly, LISP-ITS
uses the ideal and buggy rules to predict possible next steps, and in fact does
no data-driven analyses at all (unpredicted steps are left uninterpreted and
after a threshold number of them the student is informed of the required next
step). Prediction serves, then, to limit time-consuming data-driven analyses
and to focus the analysis on what needs to be interpreted,

7.2 Learning prediction

It P includes a 'now to learn' procedure, i.e. it includes a model of the
student’'s learning processes, then it may be used to predict the effect of
didactic actions. Any decision to apply a didactic action (such as those
above) is based on presumptions about the effect of the action. These
presumptions are usually implicit and no more profound than, for example,
FITS's: assumption that if you tell the student something he has learned {t. If
the presumptions are made explicit, i.e. expressed as a procedure which, given ;
a student model and didactic action as parameters, returns a new student model
as output, then two benefits become possible. Eirst, the system would have a
basis from which to compute the actual new student model {only a basis since
the learning prediction would not be entirely accurate), rather than have to

. compute it from scratch. Secondly, it would give an analytic reason for
selecting a didactic actior because we could (as in CTP) run the learning
procedure with a set of potential actions and select that which is predicted to
have the most beneficial effect, as determined by an evaluation measure defined
over student models.

8. EVALUATIVE FUNCTIONS

The student model can be used to give an assessment or evaluation of the
student and of the system, to some extent.

8.1 Student

In the simplest and most common case H can be used to give a summary of student
performance (e.g. percentage correct). More interestingly, K can be usad to
describe what the student is thought to know, either with respect to a
curriculum or in comparison to some target knowledge. The assessment may be
presented to the student, a course administrator or the system itself (so that
it can initialise the student model when the student re-uses the system).

8.2 System evaluation

Given a 'simulated student’ (as in section 7.2), it is possible for the system
. to determine a predicted optimal teaching strateqy. The same simulation could
be used to predict the outcome of an alternative (say, random) teaching
strategy. If the student model, including the ‘how to learn' procedure, is
sufficiently accurate then the difference between the predicted outcomes from
the optimal strategy and from a computationally simpler alternative strategy
gives a measure of the system's potential effectiveness, i.e. the prospect that
it will provide significant improvements in learning. For example, assuming a
particular Markov model for vocabulary learning, it can be shown that a
decision-theoretic strategy provides a learning gain of 28% over a random
strategy (Self, 1977b). These simulations in no way validate the student model
and the learning procedure, but they give a basis for cost-efficiency decisions
before actual implementation and experimentation with students.

9. CONCLUSIGNS

Twenty different uses of student models have been identified from the ICAI
literature, in an attempt to impose some order on what pragmatic designers have

Working Conferencs 'A7 Tcols in Education' Self nage -

Conference Version of paper for IFIP/TC3 Frascati May, 19¢

developed. It is clear that there is a wide range of potential uses of student
models, that in many cases the computational techniques are not well deveioped,
and especially that the rationale Justifying the various uses is often lacking.
However, this catalogue of student model uses is only a beginning. We need to
identify more carefully the contexts where the various uses are appropriate and
to refine our techniques for carrying these functions out more effectively.
This implies more empirical work on educational outcomes and more consideration
of the relative merits of alternative computational representations.

APPENDIX

‘References for the ICAI systems mentioned in the text are listed here:

BIP - Barr, Beard and Atkinson (1976)
CTP ~ Self (1977a)
DEBUGGY - Burton (1982)
FITS - Woodroffe (1987)
GEOMETRY - Anderson, Boyle and Yost (1985) .
GUIDON - Clancey {1983) . ‘
INTEGRATION - Kimball (1982)
LISP-ITS - Anderson and Reiser (1985)
LMS - Sleeman (1982) -
MACSYMA ADVISOR - Genesereth (1982)
MENQ-TUTOR - Soloway et al (1981)
MULT - Attisha (1983)
NEOMYCIN - Clancey and Letsinger {1984)
PIXIE - Sleeman (1987)

" - PROUST - Johnson and Soloway {1985)
WEST - Burton and Brown (1982)
WHY - Stevens and Collins (1977)
WUSOR - Goldstein {1982)

REFERENCES

Anderson, J.R., Boyle, C.F. and Yost, G. (1985), The geometry tutor, Proc.
Ninth International Joint Conf. on Artificial Intelligence, Los Angeles.

Anderson, J.R. and Reiser, B.J. (1985), The Lisp tutor, Byte, 10, 4, 159-175.

Attisha, M.G. (1983}, A microcomputer based tutoring system for self-improving
and teaching techniques in arithmetic skills, unpublished M.Sc. thesis,
Exeter University.

Barr, A., Beard, M. and Atkinson, R.C. {1976), The computer as a tutorial
laboratory: the Stanford BIP project, International Journal of Man-Machine

. Studies, 8, 567-596.

Brown, J.S. and VanLehn, K. (1980), Repair theory: a generative theory of bugs
in procedural skills, Cognitive Science, 4, 379-426.

Burton, R.R. (1982}, Diagnosing bugs in a simple procedural skill, in D.H.

- -Sleeman and J.S. Brown (eds.), Intelligent Tutoring Systems, New York:
Academic Press.

Burton, R.R. and Brown, J.S. {1982), An investigation of computer coaching for
informal Tearning activities, in D.H. Sleeman and Brown, J.S. {eds),
Intelligent Tutoring Systems, New York: Academic Press.

Clancey, W.J. (1983), GUIDON, Journal of Computer-Based Instruction, 10, 8-15.

Clancey, W.J. (1986), Qualitative student models, Annual Review of Computer
Scienca, 1, 381-450.

Clancey, W.J. and Letsinger, R. (1984), NEOMYCIN: reconfiguring a rule-based
expert system for application to teaching, in W.J. Clancey and E.H.
shortliffe (eds.), "Readings in Medical Artificial Intelligence: the First
Decade, Reading, Mass.: Addison Wesley,

deleer, J. and Brown, J.S. {1984), A qualitative physics based on confluences,
Artificial Intelligence, 24, 7-83. :

Working Confarence 'AT Tools in Zducation' Self onage

1oa.)

TR

-5

/

7

Conference Version of paper for IFIP/TC3 Frascati May,jlgg'

-
T -

Genereseth, M.R. (1982), The role of plans in intelligent teaching systems, in
D.H. Sleeman and J.S. Brown (eds.}, Intelligent Tutoring Systems, New
York: Academic Press. '

Goldstein, I[.P. (1982), The genetic graph: a reprasentation for the evolution
of procedural knowledge, in D.H. Sleeman and J.S. Brown (eds.),

Intelligent Tutoring Systems, London: AcademiC Press.

Johnson, W.L. and Soloway, E. (1985), PROUST: an automat1c debugger for Pasca1
programs, Byte, 10, 4, 179 190.

Kimball, R. (1982), A self—1mprov1ng tutor for symbolic¢ integration, in D.H.
S]eeman and J.S. Brown (eds.), Intelligent Tutoring Systems, New York:
Academic Press.

Self, J.A. (1977a), Concept teaching, Artificial Intelligence, 9, 197-221.

Self, J.A. (1977b), A state-space model for automatic instruction, Computers
and Education, 1, 199-205.

Sleeman, D.H. {1982}, Assessing aspects of competence in basic algebra, in D.H.
Sleeman and J.S. Brown (eds.), Intelligent Tutoring Systems, New York:
Academic Press.

Sleeman, D.H. {1987), PIXIE: a shell for developing intelligent tutoring
systems, in R.W. L[awler and M. Yazdani (eds.), Artificial Intel]1gence and
Fducation, Norwood: Ablex.

Scloway, E., woolf, B., Rubin, E. and Barth, P. (lQBleiHego-IIﬁ?an intelligent
tutoring system for novice programmers, Proc. 7tirInternational Joint
Conference on Artificial Intelligence, Vancouver.

Stevens, A.L. and Collins, A. {(1977), The goal structure of a Socratic tutor,
BBY Report 3518, Bolt Beranek and Newman, Cambridge, MA.

Weber, G., Waloszek, G. and Wender, K. (1987}, The role of episodic memory in
an intelligent tutoring system, in J.A. Self {ed.), Intelligent Computer-
Aided Instruction: Artificiail Intelhgence and Human Learming. London:
Chapman and Hall.

Woodroffe, M. (1987), Plan recognition and inteliigent tutoring systems, in
J.A. Self (ed.), Intelligent Computer-Aided Instruction: Artificiai
Intelligence and Human Learning. London: Chapman and Hall.

Working Conference 'AI Tools in Education' Self page !

