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Abstract. Role-Based Access Control (RBAC) models are becoming
a de facto standard, greatly simplifying management and administra-
tion tasks. Organizational constraints were introduced (e.g.: mutually
exclusive roles, cardinality, prerequisite roles) to reflect peculiarities of
organizations. Thus, the number of rules is increasing and policies are
becoming more and more complex: understanding and analyzing large
policies in which several security officers are involved can be a tough job.
There is a serious need for administration tools allowing analysis and in-
ference on access control policies. Such tools should help security officers
to avoid defining conflicting constraints and inconsistent policies.
This paper shows that theoretical tools from relational databases are
suitable for expressing and inferring on RBAC policies and their re-
lated constraints. We focused on using Constrained Tuple-Generating
Dependencies (CTGDs), a class of dependencies which includes tradi-
tional other ones. We show that their great expressive power is suitable
for all practical relevant aspects of RBAC. Moreover, proof procedures
have been developed for CTGDs: they permit to reason on policies. For
example, to check their consistency, to verify a new rule is not already
implied or to check satisfaction of security properties. A prototype of
RBAC policies management tool has been implemented, using CTGDs
dedicated proof procedures as the underlying inference engine.

1 Introduction

DataBases Management Systems (DBMS) are cornerstones of Information Sys-
tems (ISs): they provide mechanisms to store, modify, retrieve and query infor-
mation of an organization. In order to enhance security of data, Access Control
(AC) mechanisms have been developed to manage users’ rights over data stored
in the DBMS. In its broader sense, AC, denotes the fact of determining whether
a subject (process, computer . . . ) is able to perform an operation (read, write
. . . ) on an object (a tuple, a table, . . . ). An operation right on an object is called
permission. AC policies define the subjects’ permissions.

Applications developed using DBMS can contain large amount of data with
highly differentiated access for different users, depending upon their function or
role within the organization [1]. Role-Based Access Control (RBAC) received



considerable attention as an alternative to traditional mandatory and discre-
tionary AC policies in databases.

The RBAC models constitute a family in which permissions are associated
with roles. A role is a job function or job title within the organization. Users
are made members of appropriate roles. Permissions are not directly assigned
to users (roles can be seen as collections of permissions) [2]. RBAC provides a
powerful mechanism for reducing the complexity, cost, and potential for error
in assigning permissions to users within the organization. RBAC was found to
be among the most attractive solutions for providing AC in e-commerce, e-
government or e-health [1, 3].

Fig. 1. RBAC Model

Nevertheless the number of users in RBAC policies is increasing and rules
are more and more complex: diverse constraint 1 types have been introduced to
reflect peculiarities of organizations. RBAC constraints specify conditions that
cannot be violated by the components of the system.

Policies engineering is considered to be of high practical importance [4]: a
large part of flaws in ISs are due to administration mistakes or security miscon-
ceptions. There is a need for tools facilitating design and maintenance of RBAC
policies. According to the authors of [5], such tools need to be able to capture AC
model mechanisms and peculiarities (e.g. RBAC constraints). These tools need
to be able to check consistency of policies and to answer queries for particular
permissions or relation holdings in the policies. Last requirement is a compre-
hensible inference mechanism, even by non-logicians. Our goal is to provide a
formal framework satisfying these requirements.
1 constraint may be a confusing word in this paper: it may either designate relations

between variables (e.g., X ≤ Y, X ≥ 2 × Z + 1, 3 = T, 2 6= 3, etc.), restrictions on
RBAC model’s concepts (e.g. nobody is allowed to assume simultaneously roles r1
and r2) and even data dependencies (integrity constraints). In this paper we do not
use the term integrity constraints, constraints refers to semantic relations between
variables and RBAC constraints or organizational constraints refers to restriction
among elements in RBAC policies.



Thus our contribution is twofold:

– identification of a theoretical tool from the databases field suitable for ho-
mogenous modeling of RBAC principles and its related constraints right into
the relational model,

– use tools built (e.g. proof procedures) on top of the underlying theoretical
model to provide a set of tools facilitating design and management of RBAC
policies in order to detect and correct administration mistakes or miscon-
ceptions.

The class of dependencies we focused on is Constrained Tuple-Generating
Dependencies (CTGDs). CTGDs is among the widest class of dependencies [6].
We will show that a this framework is an appropriate formal tool for representing
and checking RBAC policies.

In the next section we will introduce CTGDs and proof procedure related
in. Section 3 will show how CTGDs can be used to model RBAC concepts,
constraints and assignments, of which implements will be shown in section 4.
Section 5 will summarize some papers related to this work. Finally, last section
will discuss our work and presents perspectives using databases dependencies for
security purposes.

2 Background

2.1 Constrained Tuple-Generating Dependencies

The authors of [6] expose a kind of data dependencies upon the most expressive
existing: CTGDs, generalizing traditional dependencies such as FDs, MVDs or
EGDs. CTGDs extend Tuple-Generating Dependencies (TGDs, which are also
known as Generalized Dependencies [7, 8]) with a constraint domain (e.g. lin-
ear arithmetic over integers, rationals or real). Constraints are quite interesting
when used jointly with existential quantifiers because they permit a more pre-
cise definition of such partially known facts. CTGDs are interesting for DBMS
storing complex data such as spatial, audio, image, video or temporal data. CT-
GDs can be represented formally in First-Order Logic (FOL) by formulae of the
form [7]:

∀X p1(X1)∧ . . .∧pi(Xi)∧c(X) → ∃Y q1(X∪Y1)∧ . . .∧pj(X∪Yj)∧c′(X∪Y )
where pi and qj are predicates symbols, X = X1 ∪ . . . ∪Xi is the set of all

terms (no functions symbols) in the left hand side. Terms of X are universally
quantified. Y = Y1 ∪ . . .∪Yj does not designate all terms in the right hand side,
but only those that are not bound by the universal quantifier on the left hand
side. Terms of Y are existentially quantified. Finally, c and c′ are conjunctions
of linear constraints (<,>,≤,≥, 6=, =) over terms (terms of X for c and terms
of X ∪ Y for c′).

For example, the following dependency from [6] expresses that cpath(source,
destination, cost), which contains the cheapest path between any two points in
a directed graph with edge weights, is a transitive closed relation obeying the
triangle inequality: ∀S1, D1, C1, D2, C2 cpath(S1, D1, C1)∧ cpath(D1, D2, C2) →
∃C3 cpath(S1, D2, C3) ∧ C3 ≤ C1 + C2.



2.2 Dedicated Proof Procedures for CTGDs

The authors of [6] propose two bottom-up chase over CTGDs. Their paper ad-
dresses the implication problem, that is, given a collection of CTGDs F , and a
single CTGD g, determine whether in every database state where F is satisfied,
it is also the case that g is satisfied. The chase proves if F logically implies g,
stated briefly as F ² g.

The operational nature of these proof procedures is based on the concept of
tuple (a grounded atom, with no variables). Basic outline of such procedures
is based on [9] with the adjunction of constraints: hypothesize the existence of
some tuples in the relations such that the antecedent l of g is satisfied, treat F
as defining a closure operator generating tuples F (l). On each computation step
of F (l), the following condition is tested:
- if F (l) contains a copy of r, infer F ² g,
- if F (l) contains an inconsistency produced by constraints, infer F ² g vacuously,
- if F (l) does not contain a copy of r, infer F 2 g.

The CTGDs implication problem is semi-decidable: the procedures may run
forever. As each basic step is producing new facts through implication, we can
practically bound up the number of successively applied CTGDs (e.g. to avoid
circular generating facts leading to infinite loop), but it is unsound and must be
reserved for implementation purpose. However, there exist decidability results
for specific subclasses of CTGDs. For example, the chase is decidable for Full-
TGDs, TGDs without existentially quantified variable [9].

3 A Framework For Expressing And Checking RBAC
Policies

According to the authors of [10] we use the following predicates to model core
concepts of RBAC policies:
- ura(User,Role), to define User Role Assignments,
- pra(Access,Object, Role), to define Permission Role Assignment
- permitted(User,Access, Object), to specify that user User is granted Access
access privilege on object Object.

3.1 Capturing axiomatic definition of RBAC model

Once basic elements of the policies are defined, we need to model the “axiomatic
of RBAC”: the core of the AC model which settles how an access is granted
to a user through role assignment and how is defined hierarchy. We model an
RBAC axiomatic based on [10]. dSenior(SeniorRole, JuniorRole) to define di-
rect inheritance between roles and senior(SeniorRole, JuniorRole) to define
role hierarchy (the transitive closure of seniorDirect).
- role inheritance is transitive: senior(X, Y ), dSenior(Y, Z) → senior(X, Z),
- role inheritance is irreflexive: senior(X,X) → ⊥,
- a user is access granted to an object if he is assigned to a role which is assigned



to this permission: ura(U,R), pra(A, O, R) → permitted(U,A, O),
- eventually through inheritance ura(U,R1), senior(R1, R2), pra(A,O,R2) →
permitted(U,A, O).

3.2 Capturing Organizational Constraints

Constraints are an important aspect of RBAC and are a powerful mechanism
for laying out higher-level organizational policy [2]. The best known RBAC con-
straints are:

Mutually exclusive roles constraints settle that no user can be assigned two
roles which are in conflict with each other. In other words, it means that con-
flicting roles cannot have common users. ssd(Role1, Role2), specificy that Role1
and Role2 are in Static Separation of Duties (SSD): they are mutually exclusive.
Mutually exclusive roles can produce inconsistency. The authors of [11] describe
a set of properties that must hold in any RBAC policy. These properties are
described in the example of section 4.

Cardinality constraints settle that a number of assignments is limited. Car-
dinality constraints of n maximum users assigned to role r can be expressed
in CTGDs by ∧n+1

i=1 ura(U,Ni) {∀i ∈ [1..n] , ∀j ∈ [i + 1..n + 1] Ni 6= Nj} → ⊥.
Mutually exclusion and cardinality constraints are not limited to role and can
be used on any element of the policy model (for example with access: no role can
be granted both read access and write access on an object o). Our approach can
be generalized for maximum number of roles assigned to users or to permissions.

More generally, Nullity Generating Dependencies of the form pi(X)∧ c → ⊥
can be used to model RBAC constraints: an RBAC constraint define that if a
certain state (the left hand side of the CTGD) is reached, then the policy is
inconsistent (right hand side is ⊥).

Prerequisite constraints settle that if a particular relation holds, another holds
too. Variables appearing only within the terms of the tail in CTGDs are exis-
tentially quantified. Intuitively that does mean at least one element such as ...
exists. This semantic is used to take into account prerequisite RBAC constraints.
E.g. role r2 is required by role r1: for any user assigned to role r1, at least one
another user must be assigned to role r2, ura(U1, r1) → ura(U2, r2) U1 6= U2.
Other prerequisite constraints can be expressed using CTGDs, according to ad-
ministrator’s need. CTGDs can model other forms of prerequisite constraints on
any RBAC concept.

3.3 Inference on Policies

Depending on which stage of the RBAC specification one is working on, different
needs of verification may exist:
- during the stage of modeling axiomatic (the core policy model), we are likely
to check the expected behavior of the model and rules redundancies. E.g. how
authorizations are derived from user-role and permission-role assignment,
- during the stage of defining the role hierarchy, we are likely to check a set
of properties. E.g. there is no cycle in the hierarchy, or no role inherits the



administrator role,
- during the stage of defining user-role and permission-role assignment we are
likely query the policy and to check a set of properties. E.g there is no two roles
which have exactly the same permissions,
- during the stage of defining constraints it is interesting to check whether the
policy is consistent, in other words if we settled facts violating constraints.

Security requirements Reduction into CTGDs

Security property that must hold Model the property to verify by a single
in all RBAC policy instances. CTGD and use proof procedure to check

implication from axiomatic of RBAC
no role can be senior to itself and organizational constraints

Check if a policy is consistent Try to derive ⊥ from the
policy by proof procedure

Security property that must hold Model the property to verify by a single
in a policy instance. CTGD and verify if it is satisfied
no role inherits the administrator role by the database instance

Policy management capabilities:
queries and data manipulation Process query over the database
which users are assigned to role student?
Table 1. Reduction of security administration needs into CTGDs-dedicated tools

The second termination case (vacuously) of algorithms from [6] is very useful
while checking AC policies, it denotes that the policies are inconsistent. This
semantic is interesting for security administrators when dealing with constrained
AC policies: if there are facts violating constraints, the policy is inconsistent.

4 Experimental Validation

This section illustrates how a RBAC policy can be modeled into CTGDs. The
sample code is separated into four parts: the first one models the core mecha-
nisms of the RBAC model and settles a set of properties that must holds in any
RBAC policy [11]. The second part is a sample role hierarchy used in a virtual
organization. Unfortunately we are limited to toy sample or randomly generated
policies, because organizations are not likely to share such sensitive information.
Next is a sample definition of User-Role Assignments and Permission-Role As-
signments. The last part defines a set of specific organizational constraints that
must hold in this particular policy.

%axiomatic definition of RBAC policies and generic constraints
%-------------------------------------------------------------
%senior is the transitive closure of dSenior
dSenior(SeniorRole,JuniorRole)->senior(SeniorRole,JuniorRole).
senior(SeniorRole,InterRole), dSenior(InterRole,JuniorRole)-> senior(SeniorRole,JuniorRole).
senior(Role,Role)->false.



%granting access to user through role assignments
ura(User,Role),pra(Access,Object,Role)->permitted(User,Access,Object).
ura(User,SeniorRole),senior(SeniorRole,JuniorRole),
pra(Access,Object,JuniorRole)->permitted(User,Access,Object).

%Property P1: any two roles assigned for a same user are not in separation of duties
ura(User,Role1),ura(User,Role2),ssd(Role1,Role2)->false.

%Property P2: no role is mutually exclusive with itself
ssd(Role,Role)-> false.

%Property P3: mutual exclusion is symetric
ssd(Role1,Role2)->ssd(Role2,Role1).

%Property P4: any two roles in ssd do not inherits one another
senior(Role1,Role2),ssd(Role1,Role2)->false.

%Property P5: there is no role inheriting to roles in ssd
ssd(Role1,Role2),senior(SeniorRole,Role1),senior(SeniorRole,Role2)->false.

%Property P6: If a role inherits another role and
%that role is in SSD with a third one, then the inheriting
%role is in SSD with the third one.
ssd(Role1,Role2),senior(SeniorRole,Role1)->ssd(SeniorRole,Role2).

%definition of role hierarchy
%----------------------------
%roles and hierarchy (with directly senior predicate) modeling
->role(student),role(researcher),role(teacher),role(phDStudent).
->role(postPhD),role(lecturer),role(seniorLecturer),role(professor).
->dSenior(phDStudent,student), dSenior(phDStudent,researcher).
->dSenior(postPhD,phDStudent), dSenior(postPhD,teacher).
->dSenior(lecturer,teacher), dSenior(lecturer,researcher).
->dSenior(professor,seniorLecturer), dSenior(seniorLecturer,lecturer).

%definition of assignments
%-------------------------
%Permission-Role Assignments
->pra(read,test,student),pra(write,test,teacher),pra(read,finalTest,professor).
->pra(read,smallPaper,lecturer),pra(write,bigPaper,professor).

%User-Role Assignments
->ura(alice,student),ura(bob,phDStudent),ura(charly,professor).

%definition of organizational constraints
%----------------------------------------
%prerequisite on permissions: if one can read and object, another one can write
pra(read,Object,Role1) -> pra(write,Object,Role2) {Role1=\=Role2}.

%uniqueness constraint on manager
ura(User1,manager),ura(User2, manager){User1=\=User2}->false.

%mutually exclusives roles: student and professor
->ssd(student,lecturer).

We have described chase procedures as algorithms proving that a set of CT-
GDs F implies a single CTGD g: F ² g. The above ruleset is such an F collection,
and g is the security property to check. The table 1 describes how tools dedicated
to CTGDs can be used by administrators to design, verify and manage their poli-
cies. Six properties (P1 to P6) are settled in the sample policy, the authors of [11]
have manually demonstrated the following theorem: P2 ∧ P3 ∧ P6 ⇒ P4 ∧ P5.

Our first example illustrates how chase procedures for CTGDs can be used
to automatically proove the same theorem:
- let F be the collection of CTGDs modeling properties P2, P3 and P6,



- let be g1 the CTGD modeling properties P4,
- let be g2 the CTGD modeling properties P5.
The chase procedure prove that F ² g1 and F ² g2, we can conclude the prop-
erties P4 and P6 are redundant. Such functionalities are very interesting for
security administrators: they can check that security properties (P4 and P6 in
this example) hold in all RBAC policy instances (that satisfy P2, P3 and P6 in
the example).

Another example is g ≡ ura(joe, student), ura(joe, seniorLecturer) →: “is
the policy consistent if joe is assigned to both student and seniorLecturer?”.
Clearly, with such assignments to user joe, the policy is inconsistent: roles
student and lecturer are in SSD, student and seniorLecturer are in SSD too
according to property P6. thus the policy is inconsistent using property P1. It
is very interesting for administrators to conduct such verifications before any
assignment: they can ensure the consistency of their policy in the presence of
updates.

We have implemented a toolkit, “TGDToolBox”, written in C++ to provide a
set of functions to deal with data dependencies (e.g. syntatic analysis, unification
of atoms, variables renaming). We implemented the chase procedures described
in [6] using this library to run examples from this section. Actually, the prototype
is able to handle hundreds of CTGDs and to answer in interactive time. We are
currently using the toolkit to develop new proof procedures for dependencies [8,
12]. Using the proof procedures as an inference engine, we have built a proof of
concept Microsoft Visio 2003 Template dedicated to RBAC policies design. This
template provides an iconic interface for RBAC policy management. It is able
to determine if a permission is granted to a user through his role assignment, it
can check if the set of policies is consistent and can answer queries about the
relations holding in the RBAC policy.

5 Related works

Our work has been influenced by [10] which express RBAC models with Con-
straint Logic Programming and [13] which describes the “Flexible Authorization
Framework”, that can be analyzed using a variant of Datalog (typically either
safe stratified Datalog or Datalog with constraints).

The three main arguments we focused on are providing a framework which:
- is able to capture all relevant concepts of RBAC models,
- can benefit researches (e.g. evolutions, theoritical results, implementations)
from a well established community,
- can be easily linked with other components of ISs (e.g. databases).

The authors of [10] describe AC programs able to deal with RBAC mod-
els. This very complete work addresses many problems arising with the use of
closed policies (access denied as a default action, authorizations are only ever
positive), open policies (access granted as a default action) or hybrid policies
(authorizations and denial can be explicitly defined). However, logical programs



are not intuitive for non-specialits and the logic used do not integrate existential
quantifiers. Moreover, RBAC policy are already widespread, a framework base
on databases makes integration of administration tools and security data easier.

The autors of [4] argue“‘... extensive research activity has resulted in the
definition of a variety of AC . . . Thus, the need arises for developing tools for
reasoning about the characteristics of these models. These tools should support
users in the tasks of model specification, analysis of model properties, and au-
thorization management”. Their logical framework is based on the C-Datalog
language, whereas our is based on CTGDs, which is a able to deal with a wider
class of rules thanks to existential quantifiers and constraints within both head
and tail of dependencies.

The authors of [14] describe a fragment of FOL which tractable and suffi-
ciently expressive to capture policies for many applications. This work is really
interesting and points out tractability and complexity results on their logic.
Constraints in policies are necessary to capture peculiarities of organizations,
but modeling such restrictions is not develop in [14]. We do agree the authors
statement about the use of logic programming by non-logicians, but we disagree
that a “filling the blank on English sentences interface is sufficient for security
administrators. We think that administrators must have a computer-aided soft-
ware engineering (CASE) interface to design and check policies and such a CASE
should provide a comprehensible trace of reasoning.

6 Conclusions and further work

We are confident that CTGDs can be used to express other AC models such as
Task-BAC, Workflow-BAC, Mandatory-AC or Organization-BAC. Our fragment
of FOL is really closed to the ones used in [10] or [4], which are able to deal with
temporal aspects and at least mandatory and discretionary AC models.

For sake of clarity the example exposed in section 4 does not include sessions.
According to [10] sessions and dynamic constraints can be captured easily with
CLP. We are investigating the interest of chase procedure to check RBAC policies
involving sessions. For example, using chase procedure we might answer queries
like Are the policies consistent for all possible sessions?. Moreover, incorporating
the model for administration of roles exposed in [15] is promising for distributed
policies verification purposes.

Integrating of temporal aspects in RBAC models has been investigated in
[16]. The authors of [10] use the Constraint Logic Programming framework.
We can use the same approach to model Temporal-RBAC models, and accord-
ing to [17] we extend the inequalities to geographical trigerring of assignments.
Integrating temporal or geographical concerns into CTGDs, is mainly related
to the choice of a right constraint domain [6]. For example, to define that a
role is assigned to a user only on [t1, t2] shift, (between the times t1 and t2):
time(H){t1 ≤ H ≤ t2} → ura(user, role).

A promising opening to the use of CTGDs for AC modeling purpose is the
result exposed by the authors of [12]. They propose a new kind of dependencies



subsumming CTGDs : Disjunctive-CTGDs. Their enhanced expressivity can be
used to model new kinds of organizational constraints involving disjunctions,
classes of constraints which have not been studied in the AC literature yet.
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