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Abstract

This document describes the Po-tree, a new indexing structure for spatio-
temporal databases with real-time constraints. Natural risks management 
and other system can use arrays of spatially referenced sensors, each of 
them sending their measurements to a central database. Our solution tries 
to facilitate the indexing of these data, while favoring the newer ones. It 
does so by combining two sub-structures for the spatial and temporal com-
ponents. While Mobility is not yet supported, evolutions of the structures 
shall be able to deal with it.
Keywords: Spatio-temporal, Database indexing, Soft Real-time, Natural 
disaster prevention

1 Introduction 

Geographic Information Systems provide solutions to a wide panel of 
problems, from agronomy to urban planning or natural risk management. 
The databases linked to such systems usually are very large and cumber-
some. They have to keep tracks of numerous heterogeneous data. Solutions 
exist to face this kind of needs. Yet, a particular aspect remains partially 
untouched: spatio-temporal indexing with real time constraints. While our 
application case is linked to natural disasters prevention, we shall show 
that the structure we propose can be extended to cover different needs. We 
currently propose a new database spatio temporal access method for spa-
tially referenced sensors, the Po-tree. 

This paper is divided into three chapters. First we define more precisely 
the problem we intend to address, then we follow by an introduction to our 
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application case. Next comes a brief state of the art. Finally, we introduce 
our solution, the Po-tree, and some test results to study its usefulness.  

2 Application case 

Our study fields is linked with the work of volcanologists, trying to moni-
tor a Mexican volcano, the Popocatepetl (CENAPRED,2003). An array of 
fixed measurement stations, hosting various sensors has been set up around 
the volcano. 15 stations record data within 1.5km from the crater. Others 
are located further down the slopes. Each sensor, spatially referenced as a 
fixed point, sends measurement datum toward a central database. This da-
tabase is later on replicated to a data warehouse. See Figure 1 for a visual 
description. The Po-tree aims at indexing the database, while keeping in 
mind some recommendation for environmental data warehousing (Adam 
& al, 2002). 

Fig. 1. application case

Real time constraints stems from the number of data to process. Updates 
occur in a periodic - chronological order. Measurement frequency for a 
sensor can be up to 100Hz, as for seismographs. On this aspect, update 
transactions are more important than lookup queries. 

The volcanologists tend to consider the most recent data as the more 
valuable, as they help understanding the actual activity of the volcano. Us-
ers usually query the database so as to fetch data coming from a specific 
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sensor (spatial location) for given amount of time (temporal interval). Vol-
canologists generally use reference sensors so as to determine the global 
state of the volcano. Later on they query complementary sensors to con-
firm their analysis. Therefore, most lookups are spatial-point / time-
interval. They are followed by range / interval queries,  as defined by Er-
wig (Erwig, & al, 1999). 

The specific needs of this kind of application are now quite well under-
stood. The spatio-temporal access method used should focus on two as-
pects: the update transactions cost and the priority given to the newest 
data. Different studies have already opened the path for real-time, spatial, 
temporal and spatio-temporal databases. 

3 Other studies 

Real-Time approaches are based on the respect of time constraints, as de-
fined in (Lam & Kuo, 2001). For databases, it means that transaction are to 
commit before a deadline. In the case of an array of sensors, the deadline is 
the arrival time of a new measurement. 

Spatial approaches, as defined in (Ooi & Tan, 1997) can be divided into 
three categories. 

The first one tend to linearize the data, represented as points, in order to 
use well known indexing structures, such as the B+-Tree. 
Another approach intends to use a non-overlapping native space. The 
space is divided into non-overlapping sub-spaces. The objects are refer-
enced within these subspaces. An object spanning across two sub-spaces 
may be duplicated or clipped.  
The last approach is to use an overlapping native space. The space is di-
vided into overlapping sub-spaces. 

Among the main indexes, two can be noted. The R-tree (Guttman, 1984) 
family uses minimum bounding structure as sub-spaces to create a hierar-
chy accessible through a B-tree. In the Kd-tree (Bentley, 1975), a binary 
tree, points are sorted according to reference points and reference dimen-
sions.

In temporal approaches, the notion of time can lead to the use of bal-
anced trees, such as the AP-tree (Gunadhi & Segev, 1993). Another ap-
proach is simply to consider the time dimension as another spatial dimen-
sion.

This distinction has lead to different spatio-temporal approaches, as de-
fined in (Wang, & al, 2000). Objects can be considered as: 
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Objects that continuously move 
Objects that discretely change, such as in our case 
Continuous change of movements 

Different families of access method can be defined. 
Time can be considered as another spatial dimension, as in the 3D-R-
Tree case (Theodoridis, Vazirgiannis & Sellis, 1996) 
Multiversion tables can be kept to track the data, as for MVLQ 
(Tzouramanis T., Vassilakopoulos M. & Manolopoulos Y, 2000) 
Overlapping snapshots can be used as an alternative to multiversioning. 
HR-trees are a good example (Nascimento,M. & Silva J., 1998). 
A dimension can be prioritized over another, as the spatial priority given 
in TR-trees (Xu, Han & Lu, 1990). 

None of these approaches are completely compatible with our case 
study. R-trees require lengthy Construction times. Approaches usually do 
not focus on the most recent data. However some ideas have lead to the 
development of a new tree: the Po-tree. 

Fig. 2. Po-tree structure

4 Po-Tree 

Our solution, the Po-tree, is based on the differentiation of temporal and 
spatial data, with a focus given to the latter. The spatial aspect is indexed 
through a Kd-tree, while the temporal aspect uses modified B+-trees (fig-
ure 2). The measurement stations being immobile, the current structure 



The Po-tree: a Real-time Spatiotemporal Data Indexing Structure      263 

does not allow mobile sources of information, mobile sensors. Every spa-
tial location, similar to a spatial object (sensor) is directly linked to a spe-
cific temporal tree. Queries shall first determine the spatial nodes con-
cerned by a transaction and later on determine the temporal nodes.  

4.1 Po-tree Structure 

The Po-tree can be divided in to parts. A first sub-structure covers the spa-
tial aspect. Each location, each sensor is linked through this spatial sub-
tree to a temporal sub-tree. 

4.2 Spatial Component 

Kd-trees are simple spatial structures but not perfect ones. Their main 
problem is the fact that their final shape relies on the data insertion order. 
If data are entered in different orders, the final trees may have different 
shapes.

However, Index Concurrency Control methods, originally designed for 
B-trees with real-time constraints can easily be adapted to cover Kd-trees. 
Latches, 'fast locks', can be converted to be used on binary trees. Different 
tests have also proven that Kd-trees fared reasonably well compared to R-
trees for small number of data (Paspalis, 2002). 

Within a Kd-tree, entries take the from <left-pointer; reference-point; 
right-pointer>. In order to create a Kd- tree, a reference dimension D and a 
reference point Pi are taken. Then, all points with a greater value for the 
dimension D than Pi shall fall to the right part of the branch, and those 
with a lesser value to the left. At the next level of the tree, other reference 
points Pi+1 and Pi+2 are taken, and the reference dimension becomes D+1.

In the Po-tree, each spatial point is composed of a spatial definition of 
the point and a link to a temporal sub-tree. It does not directly record the 
temporal components. Therefore, a whole definition of a spatial sub-tree 
entry would be <left-pointer; point-position; link-to-temporal-tree; right-
pointer>. As spatial deletes should not occur, there shall not be empty spa-
tial nodes. 



264       Guillaume Noël, Sylvie Servigne, and Robert Laurini 

4.3 Temporal Component 

The temporal components to index are held within modified B+-trees. The 
tree records the measurement times and links to the actual measured val-
ues. Each spatial object is linked to a different temporal sub-tree. 

As for the temporal aspect, it has been noticed that the most recent data 
are considered of higher interest than older data. It has also been noticed 
that data insertions are generally held at rightmost leaf of the temporal sub-
structure, where are found the newest nodes.

Therefore, the temporal sub-tree has been modified to add a direct link 
between the root and the last node. While maintaining this link requires 
minimum computation from the system, a simple test during query proc-
essing prevents being forced to traverse the whole tree so as to append or 
to find the requested data. This direct link, updated during the data inser-
tion procedure, is useful to save processing time.  

As each temporal sub-tree is linked to an object, it is possible to develop 
a secondary structure in order to directly access the data of specific ob-
jects, without the need to search through their spatial position. This would 
however incur the addition of an Information Source identifier to the tem-
poral sub-structure. However, this could be useful for the notion of hierar-
chy of information sources. 

As most, if not all, of the updates take place to the rightmost part of the 
temporal sub-tree, the fill factor of leaf nodes can be placed higher than 
usual. Delete transactions should be somehow rare under normal condi-
tions, and a posteriori updates should be as rare. The exception being when 
the transmitting systems experience lag time due to network problems be-
tween the sensors and the database, or when the database has to restart up-
date transactions, which can occur because of real-time constraints and 
node access concurrency control. Therefore split and merge procedures can 
be changed so that the nodes can be filled almost at their maximum capac-
ity. 

Within the temporal sub-tree, the data are indexed according to their 
start-time. The periodicity of the sensors, and the assumption that they 
shall not go down unnoticed makes us considering the start-time only. For 
lower frequencies the end-time should be included as well in order to de-
fine the data lifetime. So far, entries take the shape of <pointer-0; key-1; 
pointer-1; key-2...; pointer-n>. Furthermore, a direct link between the root 
and the last node accelerate the query processing of the newest data. A 
simple test between the value to process and the first key of the last node 
determines if the query is related to the most recent data or to older one. If 
the value is greater than the key, the last node is directly returned, searched 
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or updated. This greatly helps in lowering the processing time by prevent-
ing lengthy tree traversals. 

4.4 Spatio-temporal linking 

Requests on the Po-tree can be divided in three different parts: spatial lo-
calization, Information Source linking and temporal localization. 

Lookups start by searching the spatial tree. For point lookups, it directly 
fetches the Information Source and its temporal sub-tree. From here on, the 
lookup query searches the temporal sub-tree.  

For range lookups, the query starts by determining the different Infor-
mation Sources within the spatial range. Then, for each of them, it then 
starts a temporal lookup. The queries are answered by giving the specific 
results of Information Sources one by one. 

For insertions, the transaction starts by defining the spatial position of 
the inserted data. If the position is already defined, the transaction can di-
rectly proceed with its temporal part. If the position is not defined, the 
transaction starts by inserting the spatial point in the sub-tree. After this 
first step, it creates a new temporal sub-tree and links it to a new Informa-
tion Source. 

Information Source linking references the change between the spatial 
and the temporal sub-trees as each of them holds a part of the indexed data. 

Temporal queries start by comparing the timestamp or the end of the in-
terval with the first temporal key of the last node. This node is directly ac-
cessible through the root of the tree. If the query deals with recent data, the 
query can act directly on the last node. On other cases, the query then pro-
ceeds with a B+-tree lookup. 

Temporal intervals are dealt with by first finding the end of the interval 
in the tree and by using the node-links to cover the entire interval length. 

Queries use the B+-tree rules. For updates however, if a new leaf-node 
is created to the right of the tree the link between the root and the last node 
is accordingly updated. 

This configuration implies the Po-tree is more specifically designed for 
queries on the most recent data. Spatial range / Temporal interval requests 
that does not ends at the present time does not fully take the advantages of 
the specificities of the tree. 



266       Guillaume Noël, Sylvie Servigne, and Robert Laurini 

5 Tests 

Different tests have been conducted between the Po-tree, R and R*-tree 
structures (Hadjieleftheriou, 2003).  Randomly generated data have been 
generated and sequentially issued to a fixed number of random points act-
ing as Information Sources.  Tests have been conducted changing the total 
number of data to index (1000-200000), the number of information sources 
(10-5000) used and the portion of the base to scan for interval queries (the 
5 – 30 last percents). The tests have been conducted on a 1.6 G Hz, 128 
Mo RAM computer, running Linux. The programming phase was done 
under Java SDK 1.2
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Fig. 3. Po-tree Construction Time

The first notable fact about the Po-tree comes from its construction time 
(see Figure 3). Tests with a fixed set of 30 sensor, compatible with our test 
case, along with 200 000 updates (batch) show a linear building time.  

From this point, it is interesting to examine the effect of the number of 
different positions for queries, as we use two complementing structures so 
as to obtain our Po-tree (see Figure 4). The tests have dealt with a fixed to-
tal set of data and a varying number of spatial positions, from 50 to 5000. 
The actual variation of the construction time (similar results have been 
found for lookups) is steady, increasing by steps. Note that the Kd-tree 
performances are linked to the order of insertion of data, as the shape of 
this tree is not deterministic. 
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Complementary tests between the Po-tree and the R*-tree have shown 
some interesting properties of the new structure. First of all, the construc-
tion time of the Po-tree is by far lesser for the Po-tree. To index (batch) 25 
000 points from 30 information sources, the R*-tree takes some 45 sec-
onds, while the Po-tree takes less than one.

This can be partly explained by the fact that the R*-tree has to deal with 
Minimum Bounding Structures, while the Po-tree simply has to determine 
which B+-tree to append. While the R*-tree must consider the whole set of 
data for answering queries, the Po-tree segments the dataset in spatially 
different sub-parts. 
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As for lookups, the R*-tree performs slightly better for small number of 
objects, but this trend soon changes when there are more than 5000 objects 
(see Figure 5). This can be explained by the fact that the R*-tree must 
work with the whole set of data while the Po-tree, with a first spatial filter-
ing later on only has to consider a part of the set. The more data are proc-
essed, the bigger the differences are. This has been verified for spatial 
Point / temporal Point, Point / Interval and Range / Interval queries. 

The results obtained have shown that the Po-tree was compatible with 
the constraints set by our application case: favoring the newest data, proc-
essing of big quantities of data in a given time, fixed set of spatial sources, 
possibility to use in a real-time system. Even though the mobility is not yet 
easily managed, the Po-tree meets the initial specifications. 

6 Conclusion 

The Po-tree aims at indexing spatio-temporal data issued from a network 
of spatially referenced sensors, with a focus given to the newest data. Our 
goal was to accelerate answering time to real-time queries. Our application 
case is linked to volcanic monitoring, yet it can be extended to include 
other natural disaster prevention scenarios, or scenarios where a set of 
fixed spatially referenced sensors sends huge quantities of data to a central 
database. The structure of the Po-tree uses two parts. The main difference 
with the existing solutions stems from this division. The Po-tree uses the 
spatial dimension to divide the dataset into temporal sub-trees. The spatial 
sub-tree references the positions of fixed sensors, Information Sources. 
Each position, each sensor, is then linked to a temporal sub-tree pointing to 
the actual data. The spatial sub-tree is based on the Kd-tree, compatible 
with Index Concurrency Control protocols, yet sensible to the insertion or-
der while the temporal tree is a modified B+-tree, akin to an AP-tree. Dif-
ferent tests have shown that this solution can be used with ease when up-
dates from a given set of sensor are frequent. The lookup strategy has been 
designed to favor the newest data thanks to a direct link between the root 
of the temporal sub-tree and last node. The notion of Information Source 
allow fast interval queries as the data from a given source are linked 
through the temporal sub-tree.  

Further developments of the structure will include mobility and the use 
of Quadtrees to replace the actual spatial sub-tree. Another point that shall 
be studied will be the linkage of the database to the data warehouse. The 
Po-tree has been designed with specific needs in mind, but it can be easily 
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adapted to cover a majority of natural disaster cases where fixed sensors 
are the main source of information. 

Acknowledgments should be made to the Universidad de las Americas, 
Puebla, for their work on the Popocatepetl monitoring. They coordinate 
and greatly help the different researches based on this volcano. 
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