
The Po-tree: a Real-time Spatiotemporal Data

Indexing Structure

Guillaume Noël, Sylvie Servigne, and Robert Laurini

Liris, INSA-Lyon, Bat B. Pascal,20 av. A. Einstein, 69622 Villeurbanne
Cedex FRANCE {noel.guillaume, sylvie.servigne, laurini}@insa-lyon.fr

Abstract

This document describes the Po-tree, a new indexing structure for spatio-
temporal databases with real-time constraints. Natural risks management
and other system can use arrays of spatially referenced sensors, each of
them sending their measurements to a central database. Our solution tries
to facilitate the indexing of these data, while favoring the newer ones. It
does so by combining two sub-structures for the spatial and temporal com-
ponents. While Mobility is not yet supported, evolutions of the structures
shall be able to deal with it.
Keywords: Spatio-temporal, Database indexing, Soft Real-time, Natural
disaster prevention

1 Introduction

Geographic Information Systems provide solutions to a wide panel of
problems, from agronomy to urban planning or natural risk management.
The databases linked to such systems usually are very large and cumber-
some. They have to keep tracks of numerous heterogeneous data. Solutions
exist to face this kind of needs. Yet, a particular aspect remains partially
untouched: spatio-temporal indexing with real time constraints. While our
application case is linked to natural disasters prevention, we shall show
that the structure we propose can be extended to cover different needs. We
currently propose a new database spatio temporal access method for spa-
tially referenced sensors, the Po-tree.

This paper is divided into three chapters. First we define more precisely
the problem we intend to address, then we follow by an introduction to our

260 Guillaume Noël, Sylvie Servigne, and Robert Laurini

application case. Next comes a brief state of the art. Finally, we introduce
our solution, the Po-tree, and some test results to study its usefulness.

2 Application case

Our study fields is linked with the work of volcanologists, trying to moni-
tor a Mexican volcano, the Popocatepetl (CENAPRED,2003). An array of
fixed measurement stations, hosting various sensors has been set up around
the volcano. 15 stations record data within 1.5km from the crater. Others
are located further down the slopes. Each sensor, spatially referenced as a
fixed point, sends measurement datum toward a central database. This da-
tabase is later on replicated to a data warehouse. See Figure 1 for a visual
description. The Po-tree aims at indexing the database, while keeping in
mind some recommendation for environmental data warehousing (Adam
& al, 2002).

Fig. 1. application case

Real time constraints stems from the number of data to process. Updates
occur in a periodic - chronological order. Measurement frequency for a
sensor can be up to 100Hz, as for seismographs. On this aspect, update
transactions are more important than lookup queries.

The volcanologists tend to consider the most recent data as the more
valuable, as they help understanding the actual activity of the volcano. Us-
ers usually query the database so as to fetch data coming from a specific

The Po-tree: a Real-time Spatiotemporal Data Indexing Structure 261

sensor (spatial location) for given amount of time (temporal interval). Vol-
canologists generally use reference sensors so as to determine the global
state of the volcano. Later on they query complementary sensors to con-
firm their analysis. Therefore, most lookups are spatial-point / time-
interval. They are followed by range / interval queries, as defined by Er-
wig (Erwig, & al, 1999).

The specific needs of this kind of application are now quite well under-
stood. The spatio-temporal access method used should focus on two as-
pects: the update transactions cost and the priority given to the newest
data. Different studies have already opened the path for real-time, spatial,
temporal and spatio-temporal databases.

3 Other studies

Real-Time approaches are based on the respect of time constraints, as de-
fined in (Lam & Kuo, 2001). For databases, it means that transaction are to
commit before a deadline. In the case of an array of sensors, the deadline is
the arrival time of a new measurement.

Spatial approaches, as defined in (Ooi & Tan, 1997) can be divided into
three categories.

The first one tend to linearize the data, represented as points, in order to
use well known indexing structures, such as the B+-Tree.
Another approach intends to use a non-overlapping native space. The
space is divided into non-overlapping sub-spaces. The objects are refer-
enced within these subspaces. An object spanning across two sub-spaces
may be duplicated or clipped.
The last approach is to use an overlapping native space. The space is di-
vided into overlapping sub-spaces.

Among the main indexes, two can be noted. The R-tree (Guttman, 1984)
family uses minimum bounding structure as sub-spaces to create a hierar-
chy accessible through a B-tree. In the Kd-tree (Bentley, 1975), a binary
tree, points are sorted according to reference points and reference dimen-
sions.

In temporal approaches, the notion of time can lead to the use of bal-
anced trees, such as the AP-tree (Gunadhi & Segev, 1993). Another ap-
proach is simply to consider the time dimension as another spatial dimen-
sion.

This distinction has lead to different spatio-temporal approaches, as de-
fined in (Wang, & al, 2000). Objects can be considered as:

262 Guillaume Noël, Sylvie Servigne, and Robert Laurini

Objects that continuously move
Objects that discretely change, such as in our case
Continuous change of movements

Different families of access method can be defined.
Time can be considered as another spatial dimension, as in the 3D-R-
Tree case (Theodoridis, Vazirgiannis & Sellis, 1996)
Multiversion tables can be kept to track the data, as for MVLQ
(Tzouramanis T., Vassilakopoulos M. & Manolopoulos Y, 2000)
Overlapping snapshots can be used as an alternative to multiversioning.
HR-trees are a good example (Nascimento,M. & Silva J., 1998).
A dimension can be prioritized over another, as the spatial priority given
in TR-trees (Xu, Han & Lu, 1990).

None of these approaches are completely compatible with our case
study. R-trees require lengthy Construction times. Approaches usually do
not focus on the most recent data. However some ideas have lead to the
development of a new tree: the Po-tree.

Fig. 2. Po-tree structure

4 Po-Tree

Our solution, the Po-tree, is based on the differentiation of temporal and
spatial data, with a focus given to the latter. The spatial aspect is indexed
through a Kd-tree, while the temporal aspect uses modified B+-trees (fig-
ure 2). The measurement stations being immobile, the current structure

The Po-tree: a Real-time Spatiotemporal Data Indexing Structure 263

does not allow mobile sources of information, mobile sensors. Every spa-
tial location, similar to a spatial object (sensor) is directly linked to a spe-
cific temporal tree. Queries shall first determine the spatial nodes con-
cerned by a transaction and later on determine the temporal nodes.

4.1 Po-tree Structure

The Po-tree can be divided in to parts. A first sub-structure covers the spa-
tial aspect. Each location, each sensor is linked through this spatial sub-
tree to a temporal sub-tree.

4.2 Spatial Component

Kd-trees are simple spatial structures but not perfect ones. Their main
problem is the fact that their final shape relies on the data insertion order.
If data are entered in different orders, the final trees may have different
shapes.

However, Index Concurrency Control methods, originally designed for
B-trees with real-time constraints can easily be adapted to cover Kd-trees.
Latches, 'fast locks', can be converted to be used on binary trees. Different
tests have also proven that Kd-trees fared reasonably well compared to R-
trees for small number of data (Paspalis, 2002).

Within a Kd-tree, entries take the from <left-pointer; reference-point;
right-pointer>. In order to create a Kd- tree, a reference dimension D and a
reference point Pi are taken. Then, all points with a greater value for the
dimension D than Pi shall fall to the right part of the branch, and those
with a lesser value to the left. At the next level of the tree, other reference
points Pi+1 and Pi+2 are taken, and the reference dimension becomes D+1.

In the Po-tree, each spatial point is composed of a spatial definition of
the point and a link to a temporal sub-tree. It does not directly record the
temporal components. Therefore, a whole definition of a spatial sub-tree
entry would be <left-pointer; point-position; link-to-temporal-tree; right-
pointer>. As spatial deletes should not occur, there shall not be empty spa-
tial nodes.

264 Guillaume Noël, Sylvie Servigne, and Robert Laurini

4.3 Temporal Component

The temporal components to index are held within modified B+-trees. The
tree records the measurement times and links to the actual measured val-
ues. Each spatial object is linked to a different temporal sub-tree.

As for the temporal aspect, it has been noticed that the most recent data
are considered of higher interest than older data. It has also been noticed
that data insertions are generally held at rightmost leaf of the temporal sub-
structure, where are found the newest nodes.

Therefore, the temporal sub-tree has been modified to add a direct link
between the root and the last node. While maintaining this link requires
minimum computation from the system, a simple test during query proc-
essing prevents being forced to traverse the whole tree so as to append or
to find the requested data. This direct link, updated during the data inser-
tion procedure, is useful to save processing time.

As each temporal sub-tree is linked to an object, it is possible to develop
a secondary structure in order to directly access the data of specific ob-
jects, without the need to search through their spatial position. This would
however incur the addition of an Information Source identifier to the tem-
poral sub-structure. However, this could be useful for the notion of hierar-
chy of information sources.

As most, if not all, of the updates take place to the rightmost part of the
temporal sub-tree, the fill factor of leaf nodes can be placed higher than
usual. Delete transactions should be somehow rare under normal condi-
tions, and a posteriori updates should be as rare. The exception being when
the transmitting systems experience lag time due to network problems be-
tween the sensors and the database, or when the database has to restart up-
date transactions, which can occur because of real-time constraints and
node access concurrency control. Therefore split and merge procedures can
be changed so that the nodes can be filled almost at their maximum capac-
ity.

Within the temporal sub-tree, the data are indexed according to their
start-time. The periodicity of the sensors, and the assumption that they
shall not go down unnoticed makes us considering the start-time only. For
lower frequencies the end-time should be included as well in order to de-
fine the data lifetime. So far, entries take the shape of <pointer-0; key-1;
pointer-1; key-2...; pointer-n>. Furthermore, a direct link between the root
and the last node accelerate the query processing of the newest data. A
simple test between the value to process and the first key of the last node
determines if the query is related to the most recent data or to older one. If
the value is greater than the key, the last node is directly returned, searched

The Po-tree: a Real-time Spatiotemporal Data Indexing Structure 265

or updated. This greatly helps in lowering the processing time by prevent-
ing lengthy tree traversals.

4.4 Spatio-temporal linking

Requests on the Po-tree can be divided in three different parts: spatial lo-
calization, Information Source linking and temporal localization.

Lookups start by searching the spatial tree. For point lookups, it directly
fetches the Information Source and its temporal sub-tree. From here on, the
lookup query searches the temporal sub-tree.

For range lookups, the query starts by determining the different Infor-
mation Sources within the spatial range. Then, for each of them, it then
starts a temporal lookup. The queries are answered by giving the specific
results of Information Sources one by one.

For insertions, the transaction starts by defining the spatial position of
the inserted data. If the position is already defined, the transaction can di-
rectly proceed with its temporal part. If the position is not defined, the
transaction starts by inserting the spatial point in the sub-tree. After this
first step, it creates a new temporal sub-tree and links it to a new Informa-
tion Source.

Information Source linking references the change between the spatial
and the temporal sub-trees as each of them holds a part of the indexed data.

Temporal queries start by comparing the timestamp or the end of the in-
terval with the first temporal key of the last node. This node is directly ac-
cessible through the root of the tree. If the query deals with recent data, the
query can act directly on the last node. On other cases, the query then pro-
ceeds with a B+-tree lookup.

Temporal intervals are dealt with by first finding the end of the interval
in the tree and by using the node-links to cover the entire interval length.

Queries use the B+-tree rules. For updates however, if a new leaf-node
is created to the right of the tree the link between the root and the last node
is accordingly updated.

This configuration implies the Po-tree is more specifically designed for
queries on the most recent data. Spatial range / Temporal interval requests
that does not ends at the present time does not fully take the advantages of
the specificities of the tree.

266 Guillaume Noël, Sylvie Servigne, and Robert Laurini

5 Tests

Different tests have been conducted between the Po-tree, R and R*-tree
structures (Hadjieleftheriou, 2003). Randomly generated data have been
generated and sequentially issued to a fixed number of random points act-
ing as Information Sources. Tests have been conducted changing the total
number of data to index (1000-200000), the number of information sources
(10-5000) used and the portion of the base to scan for interval queries (the
5 – 30 last percents). The tests have been conducted on a 1.6 G Hz, 128
Mo RAM computer, running Linux. The programming phase was done
under Java SDK 1.2

0

200

400

600

800

1000

1200

1400

3

1
8

3
3

4
8

6
3

7
8

9
3

1
0

8

1
2

3

1
3

8

1
5

3

1
6

8

1
8

3

1
9

8

Number of Points (x1000)

C
o

n
s

tr
u

c
ti

o
n

 T
im

e
 (

m
s

)

Po-Tree

Fig. 3. Po-tree Construction Time

The first notable fact about the Po-tree comes from its construction time
(see Figure 3). Tests with a fixed set of 30 sensor, compatible with our test
case, along with 200 000 updates (batch) show a linear building time.

From this point, it is interesting to examine the effect of the number of
different positions for queries, as we use two complementing structures so
as to obtain our Po-tree (see Figure 4). The tests have dealt with a fixed to-
tal set of data and a varying number of spatial positions, from 50 to 5000.
The actual variation of the construction time (similar results have been
found for lookups) is steady, increasing by steps. Note that the Kd-tree
performances are linked to the order of insertion of data, as the shape of
this tree is not deterministic.

The Po-tree: a Real-time Spatiotemporal Data Indexing Structure 267

0

50

100

150

200

250

5
0

Number of Position

T
im

e
 (

m
s
)

Building Time

Fig. 4. Influence of the number of sources

Po-Tree

Complementary tests between the Po-tree and the R*-tree have shown
some interesting properties of the new structure. First of all, the construc-
tion time of the Po-tree is by far lesser for the Po-tree. To index (batch) 25
000 points from 30 information sources, the R*-tree takes some 45 sec-
onds, while the Po-tree takes less than one.

This can be partly explained by the fact that the R*-tree has to deal with
Minimum Bounding Structures, while the Po-tree simply has to determine
which B+-tree to append. While the R*-tree must consider the whole set of
data for answering queries, the Po-tree segments the dataset in spatially
different sub-parts.

0

50

100

150

200

250

300

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

Number of Objects (x1000)

T
im

e
 (

m
s
)

Po RI

R* RI

Fig. 5. Range-Interval Search Time

268 Guillaume Noël, Sylvie Servigne, and Robert Laurini

As for lookups, the R*-tree performs slightly better for small number of
objects, but this trend soon changes when there are more than 5000 objects
(see Figure 5). This can be explained by the fact that the R*-tree must
work with the whole set of data while the Po-tree, with a first spatial filter-
ing later on only has to consider a part of the set. The more data are proc-
essed, the bigger the differences are. This has been verified for spatial
Point / temporal Point, Point / Interval and Range / Interval queries.

The results obtained have shown that the Po-tree was compatible with
the constraints set by our application case: favoring the newest data, proc-
essing of big quantities of data in a given time, fixed set of spatial sources,
possibility to use in a real-time system. Even though the mobility is not yet
easily managed, the Po-tree meets the initial specifications.

6 Conclusion

The Po-tree aims at indexing spatio-temporal data issued from a network
of spatially referenced sensors, with a focus given to the newest data. Our
goal was to accelerate answering time to real-time queries. Our application
case is linked to volcanic monitoring, yet it can be extended to include
other natural disaster prevention scenarios, or scenarios where a set of
fixed spatially referenced sensors sends huge quantities of data to a central
database. The structure of the Po-tree uses two parts. The main difference
with the existing solutions stems from this division. The Po-tree uses the
spatial dimension to divide the dataset into temporal sub-trees. The spatial
sub-tree references the positions of fixed sensors, Information Sources.
Each position, each sensor, is then linked to a temporal sub-tree pointing to
the actual data. The spatial sub-tree is based on the Kd-tree, compatible
with Index Concurrency Control protocols, yet sensible to the insertion or-
der while the temporal tree is a modified B+-tree, akin to an AP-tree. Dif-
ferent tests have shown that this solution can be used with ease when up-
dates from a given set of sensor are frequent. The lookup strategy has been
designed to favor the newest data thanks to a direct link between the root
of the temporal sub-tree and last node. The notion of Information Source
allow fast interval queries as the data from a given source are linked
through the temporal sub-tree.

Further developments of the structure will include mobility and the use
of Quadtrees to replace the actual spatial sub-tree. Another point that shall
be studied will be the linkage of the database to the data warehouse. The
Po-tree has been designed with specific needs in mind, but it can be easily

The Po-tree: a Real-time Spatiotemporal Data Indexing Structure 269

adapted to cover a majority of natural disaster cases where fixed sensors
are the main source of information.

Acknowledgments should be made to the Universidad de las Americas,
Puebla, for their work on the Popocatepetl monitoring. They coordinate
and greatly help the different researches based on this volcano.

References

Adam N., Atluri V., Yu S. & al, 2002, Efficient Storage and Management of Envi-
ronmental Information, in Proceedings of the 19th IEEE Symposium on Mass

Storage Systems, (USA, Maryland)
Bentley J.L., 1975, Multidimensional binary search trees in database application,

IEEE Transaction on software engineering, 5(4), 333-340.
Bliujute R., Jensen C.S., Saltenis S. & al., 2000, Light-Weight Indexing of Bitem-

poral Data, in Proceedings of the 12th International Conference on Scientific

and Statistical Database Management (Germany, Berlin), pp. 125-138.
CENAPRED, 2003, Monitoreo y Vigilancia del Volcan Popocatepetl,

http://tornado.cenapred.unam.mx/mvolcan.html
Erwif M., Güting R.H., Schenider M. & al, 1999, Spatio-Temporal Data Types:

An Approach to Modeling and Querying Moving Objects in Databases,
GeoInformatica, 3(3), 269-296

Guttman A., 1984, R-trees: a dynamic index structure for spatial searching. In

Proceedings 1984 ACM SIGMOD International Conference on Management

of Data, (USA, Boston) pp. 47-57
Hadjieleftheriou M., 2003, Spatial Index Library,

http://www.cs.ucr.edu/~marioh/spatialindex/
Haritsa J.R., Seshadri S., 2001, Real- time index concurrency control. In Real

Time Database System – Architecture and Techniques, edited by K.Y. Lam
and T.W. Kuo (Boston : KluwerAcademic Publishers) ISBN: 0-7923-7218-2,
pp. 60-74

Lam K.Y., Kuo T.W., 2001, Real time database systems: an overview of systems
characteristics and issues. IIn Real Time Database System – Architecture and

Techniques, edited by K.Y. Lam and T.W. Kuo (Boston : KluwerAcademic
Publishers) ISBN: 0-7923-7218-2 , pp. 4-16

Lam K.Y., Kuo T.W., Tsang N.W.H., & al, 2000, The reduced ceiling Protocol for
concurrency control in real-time database with mixed transactions, The com-

puter journal, 43(1), 65-80
Mokbel M., Ghanem T.M. & Aref W.G., 2003, Spatio-temporal Access Methods,

IEEE Data Engineering Bulletin, 26(2), pp. 40-49
Nascimento,M. & Silva J., 1998, Towards Historical R-trees. In Proceedings of

1998 ACM Symposium on Applied Computing, (USA, Atlanta) pp. 235—240
Ooi B.C., Tan K.L., 1997, temporal databases. In Indexing Techniques for Ad-

vanced Database Systems, edited by E. BertinoB.C. Ooi, R. Sack-Davies & al
(Boston, Kluwer Academic Publishers), ISBN 0-7923-9985-4, 113-150

270 Guillaume Noël, Sylvie Servigne, and Robert Laurini

Paspalis N., 2003, Implementation of Range searching Data-Structures and Algo-
rithms, http://www.cs.ucsb.edu/~nearchos/cs235/cs235.html

Theodoridis Y., Vazirgiannis M. & Sellis T., 1996, Spatio-temporal indexing for
large multimedia application, In Proceedings of the 3rd IEEE confer-

ence on multimedia computing and systems, (Japan, Hiroshima)
Tzouramanis T., Vassilakopoulos M. & Manolopoulos Y, 2000, Multiversion Lin-

ear Quadtrees for Spatio-temporal Data, Proceedings 4th East-European Con-
ference on Advanced Databases and Information Systems, (Czec Republic,
Prague) pp.279-292

Xu X., Han J. & Lu W.,1990, RT-Tree: an improved R-tree indexing structure for
temporal spatial databases, in Proceedings of the 4th International Symposium

on Spatial Data Handling, (Switzerland, Zurich) pp. 1040-1049
Wang X., Zhou X., Lu S., 2000, Spatiotemporal Data Modeling and Management:

A Survey, In Proceedings of the 36th International Conference on Tech-

nology of Object-Oriented languages and Systems, (China, Xi'an), pp. 202-
221

