
Spatial Hoarding: A Hoarding Strategy for

Location-Dependent Systems

Karim Zerioh2, Omar El Beqqali2 and Robert Laurini1

1 LIRIS Laboratory, INSA-Lyon – Bât B. Pascal – 7 av. Capelle F – 69621
Villeurbanne Cedex France Robert.Laurini@insa-lyon.fr
2 Dhar Mehraz Faculty of Science, Mathematics and Computer Science
Department, B.P. 1897 Fes-Atlas, 30000, Fes, Morocco. omar.el-
beqqali@liris.cnrs.fr, kzerioh@yahoo.com

Abstract

In a context-aware environment, the system must be able to refresh the an-
swers to all pending queries in reaction to perpetual changes in the user’s
context. This added to the fact that mobile systems suffer from problems
like scarce bandwidth, low quality communication and frequent disconnec-
tions, leads to high delays before giving up to date answers to the user. A
solution to reduce latency is to use hoarding techniques. We propose a
hoarding policy particularly adapted for location-dependent information
systems managing a huge amount of multimedia information and where no
assumptions can be made about the future user’s location. We use the
user’s position as a criterion for both hoarding and cache invalidation.
Keywords: Hoarding, cache invalidation, mobile queries, location-
dependent systems, spatial information systems.

1 Introduction

The growing popularity of mobile computing has lead to more and more
elaborated mobile information systems. Nowadays, mobile applications are
aware of the user's context (time, location, weather, temperature, surround-
ing noise, ...). One of the most popular context-aware applications is the
tourist guide (Cheverst et al. 2000, Abowd 1997, Malaka 1999, Poslad et
al. 2001, Zarikas et al. 2001). In this paper we deal only with location.

218 Karim Zerioh, Omar El Beqqali and Robert Laurini

Let’s consider the scenario of a tourist with a mobile tourist guide ask-
ing where the nearest restaurant is located. This query must be answered
immediately. Otherwise, if the answer takes some delay, it may be obso-
lete if the tourist in movement is already nearer to a different restaurant. So
the system must refresh the responses that have been invalidated by con-
text changes, to all pending queries.
This operation can be repeated several times, depending on the number of
users and the frequency of their queries and the context changes. On the
other hand, mobile systems still suffer from scarce bandwidth, low quality
communication and frequent network disconnections. All these factors
lead to high delays before satisfying user's queries. But this delay will not
occur if the answer is already in the client's cache. Caching techniques
have proven their usefulness in wired systems. The answer of a query is
stored in the cache for future use and when a user asks the same query it is
answered by the cache. However, in location-dependent systems, where
the answer of the same query changes if only the user's position is differ-
ent, and where users rarely return to the same place (for example, a user
with a tourist guide, after visiting a museum, has a very low chance to re-
turn to it after a while), the benefits of caching are not so obvious. But, if
useful information is transferred to the client before the user requests it, the
problem of latency will be resolved.

Hoarding techniques must predict in advance which information the
user will request, and try to transfer as less as possible unusable data for
not wasting the scarce bandwidth resources and the usually limited mem-
ory and storage capacity in the user’s device. Tourist guides, nowadays,
are very elaborated. They use maps for guided tours, present audio content
to allow the user to walk while listening to explications, provide virtual 3D
reconstructions of historical sites and 3D representations of the place
where the target asked by the user is being for making its recognition eas-
ier, offer a life show of a tour in a hotel… So the amount of the multimedia
data dealt with is really huge. This makes the necessity of appropriate
cache invalidation schemes for freeing space in the user’s device.

In this paper, we present a hoarding technique particularly adapted for
location-dependent systems managing an important amount of data (called
spatial hoarding). We use the user’s location both as a prediction criterion
and as a cache invalidation one.

The rest of the paper is organised as follows. In section 2 we begin with
the related work. In section 3 we give a description of our method, we de-
fine the client’s capability and propose to operate in disconnected mode to
save power. In section 4, we present two necessary algorithms for imple-
menting the SH strategy, and discuss how data must be organised for the

Spatial Hoarding: A Hoarding Strategy for Location-Dependent Systems 219

determination of the information that must be hoarded. Section 5 gives an
overview of our future work. Finally, section 6 concludes the paper.

2 Related Work

Caching is the operation of storing information in the user’s device after it
has been sent from the server. This allows future accesses to this informa-
tion to be satisfied by the client. Invalidation schemes are used for main-
taining consistency between the client cache and the server. Invalid data in
the cache may be dropped for freeing memory for more accurate data. In
location-dependent systems a cached data value becomes invalid when this
data is updated in the server (temporal-dependent invalidation), or when
the user moves to a new location (location-dependent). The team of the
University of Science and Technology at Hong Kong (Xu et al. 1999,
Zheng et al. 2002) investigated the integration of temporal-dependent and
location-dependent updates. They assume the geographical coverage area
partitioned into service areas, and define the valid scope of an item as the
set of service areas where the item value is valid. To every data item sent
from the server is attached its valid scope. So a data item becomes invalid
when the user enters in a service area not belonging to its valid scope.
However, as noted by (Kubach and Rothermel 2001), caching never
speeds up the first access to an information item, and caching location-
dependent data is not beneficial if the user does not return frequently to
previously visited locations. Their simulation results have proven that
hoarding gives better results than caching in location-dependent systems,
although it is assumed that memory available for caching is unlimited and
no information is removed from the cache.

Hoarding is the process of predicting the information that the user will
request, for transferring it in advance to the client cache. So, the future
user’s query will be satisfied by the client, although the response contains
a data item that has never been requested before. Several hoarding tech-
niques have been proposed in the literature. The first proposed methods
were requiring user intervention, making the system less convivial and are
useless in systems where the user does not know in advance what kind of
information he will need. Automated hoarding is the process of predicting
the hoard set without user intervention. Kuening and Popek (Kuenning and
Popek 1997) propose an automated hoarding method where a measure
called semantic distance between files is used to feed a clustering algo-
rithm that selects the files that should be hoarded. Saygin et al (Saygin et
al. 2000) propose another method based on data mining techniques. This

220 Karim Zerioh, Omar El Beqqali and Robert Laurini

latter uses association rules for determining the information that should be
hoarded. Khushraj et al (Khushraj et al. 2002) propose a hoarding and rein-
tegration strategy substituting whole file transfers between the client and
the server, by transferring only the changes between their different ver-
sions. These changes are patched to the old version once in the destination
machine. This incremental hoarding and reintegration mechanism is built
within the Coda file system (Coda Group), based on the Revision Control
System (RCS) (Tichy1985). Cao (Cao 2002) propose a method that allows
making a compromise between hoarding and available power resources.

None of these methods deal with the spatial property of location-
dependent systems. De Nitto et al (De Nitto et al. 1998) propose a model
to evaluate the effectiveness of hoarding strategies for context aware sys-
tems, based on cost measures. They apply these measures to some ideal-
ised motion models. For the two-dimensional model, the area is divided in
adjacent polygons. The distance between two polygons is the number of
polygons that must be traversed to pass from the first polygon to the other
one. The ring k is defined as the set of all polygons whose distance from a
given polygon is equal to k. All the information associated to rings 0, 1, …,

k around the starting position is hoarded. The next hoard does not occur
until the user enters a polygon outside the circle k. One drawback of this
strategy is that a lot of unnecessary information is hoarded because the
user’s direction is not taken into account (all the information associated
with the area behind the user is useless). Another drawback is that the
hoard does not begin until the user is out of the hoarded circle. So hoard
misses will occur until the information related with the new user’s circle is
hoarded. Kubach and Rothermel (Kubach and Rothermel 2001) propose a
hoarding mechanism for location-dependent systems based on infostations
(Badrinath et al. 1996). When the user is near an infostation the informa-
tion related to its area is hoarded. An access probability table is maintained
where each data item is associated with the average probability that it will
be requested. Only a fixed number of the first data items with the highest
probabilities are hoarded for the purpose of not wasting bandwidth and the
user’s device resources. No explication is given about what a data item is.
We find that a fixed number m is not a good criteria for this purpose in a
realistic system because what ever data items can be (files, tables, fields in
a table, web pages, real word entities…) there will be always differences in
the memory required for them, so a fixed number of data items can always
exceed the space reserved for them. When no assumptions can be made on
the future user’s movement, all the information related to the infostation
area is hoarded. So this mechanism is not adapted for systems managing a
huge amount of data.

Spatial Hoarding: A Hoarding Strategy for Location-Dependent Systems 221

3 Proposed Method: Spatial Hoarding

3.1 Method Description

In pervasive location-dependent systems, the majority of the user’s queries
are related to the area where he is. The problem of latency is crucial for lo-
cal queries (Zheng et al. 2002) whereas for non-local queries user move-
ment for a short time does not invalidate the response. So our mechanism
must hoard the information related to the current position of the user. As
mobile devices usually suffer from limited storage and memory capacities,
we cannot hoard the information associated to a big area. We consider the
space divided in adjacent squares. We use the Peano encoding with N-
ordering (Laurini and Thompson 1992, Moktel et al. 2003) for its known
advantage of stability (we can add an other area to the area covered by the
system without affecting the encoding), its usefulness for indexing spatial
databases and because it allows the use of the Peano algebra for solving
spatial queries. In the following we will call a square a square of length 2
and a sub-square a square of length 1 (see Fig. 1). The curve in the figure
shows the path of the user. The purpose of the method is to hoard the in-
formation that the user will the most probably access. The user after leav-
ing the square, in which he is located, will be in one of the eight adjacent
squares. But hoarding all the squares will waste resources with unneces-
sary information because the user direction is not taken into account. For
the purpose of exploiting user’s orientation, we choose to make the hoard-
ing decision when the user enters in a new sub-square. This way, if the
user leaves his current square, he will be in one of the three squares adja-
cent to his sub-square. Thus, dividing squares in sub-squares and making
the hoarding decision in the sub-squares boundaries, allows us to take the
user’s direction into account and to restrict the number of squares to hoard
from eight to only three. Usually, one or two of the adjacent squares are al-
ready in the client and only the remaining one or two squares will be
hoarded. As discussed above a caching invalidation scheme is also neces-
sary for freeing memory for more accurate data. The user’s location is also
used as an invalidation criterion, and we invalidate all the squares that are
not adjacent to the user’s square. We summarise this as follows:

When the user enters in a new sub-square, its three adjacent squares
must be hoarded.
The information located in the squares non adjacent to the user’s square
must be dropped.

222 Karim Zerioh, Omar El Beqqali and Robert Laurini

As the spatial property is used both as a hoarding and a cache invalida-
tion criterion, we call this method “Spatial Hoarding” (SH).

20 28 52 60

17 19 25 27 49 51

16 18 24 26 48 50
56

5 7 13 15 37 39

4 6 12 14 36 38
44

0 8 32 40

User's
Location

B

A

Fig. 1 User’s route in an area divided into adjacent peano N-ordered squares

Table 1 summarises how the Spatial Hoarding (SH) method is applied to
the user’s path portion of figure 1. When the user is in the sub-square 36,
the squares 8, 12, 32, 36 are available in the client’s cache. When he enters
to the sub-square 14, the hoarding and the cache invalidation criteria are
checked to decide which squares to hoard and which one to delete. The
three adjacent squares of the sub-square 14 are 8, 32 and 36, which are al-
ready in the client’s cache. So no hoard is needed. For the cache invalida-
tion criteria, there are no non-adjacent squares to the square 12, so no dele-
tion is needed. Then, the user moves to the sub-square 12, which is
adjacent to the squares 0, 4 and 8. Squares 0 and 4 are not available in the
client’s cache, so they will be hoarded. For the cache invalidation criteria,
here again there are no non-adjacent squares to the square 12. The cache
invalidation criterion is not satisfied until the user reaches the sub-square
7. 7 is a sub-square of square 4. The adjacent squares of square 4 are 0, 8,
12, 16, and 24. As Squares 32 and 36 are in the client’s cache and are not
adjacent to the square 4, they are invalidated by the cache invalidation cri-
teria and are dropped.

We give an algorithm of the SH method in section 4.

Spatial Hoarding: A Hoarding Strategy for Location-Dependent Systems 223

Table 1. The Spatial Hoarding method applied to the user’s path of Fig. 1

Sub-squares Available squares Squares to hoard Squares to drop

36 8, 12, 32, 36

14 8, 12, 32, 36

12 8, 12, 32, 36 0, 4

13 0, 4, 8, 12, 32, 36 16, 24

7 0, 4, 8, 12, 16, 24, 32, 36 32, 36

18 0, 4, 8, 12, 16, 24 0, 8

19 4, 12, 16, 24 20, 28

25 4, 12, 16, 20, 24, 28

27 4, 12, 16, 20, 24, 28 48, 52

49 4, 12, 16, 20, 24, 28, 48, 52 4, 16, 20

51 12, 24, 28, 48, 52 56, 60

3.2 Client’s Capability

Let’s consider again the scenario of a tourist looking for the nearest restau-
rant. In Figure 1, the tourist is in the sub-square number 14, there is a res-
taurant A in the sub-square 26 and a restaurant B in the sub-square 8. If the
client answers the query of the nearest restaurant, the response will be res-
taurant B, although restaurant A is nearer, because the sub-square 26 is not
available in the client.
We define the capability of the client as the area where the client is able to
give a correct answer to a query of this kind. The client’s capability is the
area delimited by the circle whose centre is the current user’s location and
whose radius is the distance between the user and the nearest vertex of the
polygon delimiting the squares available on the client. For our example,
this vertex is the upper side of the square 12. So, before giving an answer
to the user, the client must look for the nearest restaurant within its capa-
bility circle. If no restaurant is found, the query must be transferred to the
server.

224 Karim Zerioh, Omar El Beqqali and Robert Laurini

3.3 Operating in Disconnected Mode

Another limit to mobile devices is their low power capacity. The SH
method applied to the example of Figure 1 shows that hoarding is needed
only in 5 sub-squares of the 11 ones traversed. We can exploit this by al-
lowing the user to operate in doze or disconnected mode for saving power
consumption. The application interface must allow the user to know when
he can switch to disconnected mode and when he must reconnect.

4 Implementation

4.1 Algorithm

We model the available squares in the client’s cache by a linked list whose
nodes are squares having an attribute where we store its corresponding
Peano key.

Algorithm 1 is the algorithm implementing the cache invalidation and
the hoarding operations. Algorithm 2 is the algorithm retrieving the 3 adja-
cent squares to a given sub-square.

Algorithm 1: Application of the cache invalidation

and the hoarding criteria’s

 Input: List of the available squares (list),

 Array of the adjacent squares to the

 current square (T1[9]),

 Array of the adjacent squares to the

 current sub-square (T2[3])

Procedure:

 Integer i;

 /*Cache invalidation criteria*/

 temp := list.first;

 temp2 := new(square);

 while ((notin(temp, T1) = = true) and (temp

 != NULL) do

 first := temp.next;

 temp := first;

 end while

 while (temp != NULL) do

 if (temp.next != NULL) then

Spatial Hoarding: A Hoarding Strategy for Location-Dependent Systems 225

 if (notin(temp.next, T1) = = true) then

 begin

 temp2 := temp.next;

 temp.next := temp2.next;

 if (tmp2 = = last) then

 last = tmp;

 end if

 free(temp);

 end

 else then

 temp := temp.next;

 end if

 else then

 temp := temp.next;

 end if

 end while

 /* Hoarding Criteria*/

 for i := 1 to T2.length do

 if (isnotin(T2[i], list) = = true) then

 add(list, T2[i]);

 end for

The algorithm begins with the application of the cache invalidation cri-
teria. The first element of the list is treated alone because it has no previ-
ous node pointing to it. Each node of the list is compared, using the func-
tion “notin” with the array T1; if a node (square) does not exist in the array
T1 (if this square is not adjacent to the current square), it is dropped from
the list. Then, the hoarding criterion is applied. Each element of T2 (array
of the adjacent squares to the current sub-square) is compared to the list
using the function “isnotin”. Every element of T2, which does not exist in
the list, is added to the latter using the function “add”.

Algorithm 2: Determination of the adjacent squares

to the current sub-square.

Input: Peano key of the current sub-square (P)

Output: The array of the 3 adjacent Squares T[3]

Procedure:

 integer T[3];

 integer A[3][2];

 integer x, y, i;

 x := get_x(P);

 y :=get_y(P);

226 Karim Zerioh, Omar El Beqqali and Robert Laurini

 switch (P mod 4)

 begin

 case 0 : A[1][1] := x – 1; A[1][2] := y;

 A[2][1] := x – 1; A[2][2] := y - 1;

 A[3][1] := x ; A[3][2] := y - 1;

 Break;

 case 1 : A[1][1] := x; A[1][2] := y + 1;

 A[2][1] := x – 1; A[2][2] := y + 1;

 A[3][1] := x - 1; A[3][2] := y;

 Break;

 case 2 : A[1][1] := x; A[1][2] := y - 1;

 A[2][1] := x + 1; A[2][2] := y - 1;

 A[3][1] := x + 1; A[3][2] := y;

 Break;

 case 3 : A[1][1] := x; A[1][2] := y + 1;

 A[2][1] := x + 1; A[2][2] := y + 1;

 A[3][1] := x +1; A[3][2] := y;

 Break;

 end

 for i := 1 to 3 do

 T[i] := get_p(A[i][1],A[i][2]);

 T[i] := T[i] – (T[i] mod 4)

 end for

 output T

First, the coordinates x and y are deducted from the Peano key P using
the functions “get_x” and “get_y”. Then, the position of the current sub-
square in its parent square is determined, because the determination of the
adjacent sub-squares depends on it. After determining the coordinates of
the adjacent sub-squares, the corresponding Peano keys are deducted using
the function “get_p”. Then, the number of the left bottom sub-square is
deducted, because the number of this sub-square added to a length 2 is the
name of the square.

We do not give the algorithm of the determination of the adjacent
squares to the current square, because it is quite similar to algorithm 2.

4.2 What to Hoard

Location-dependent systems such as tourist guides, as noted before, can
use different kinds of data (text, graphics, maps, images, audio clips, film
clips…). So the amount of the multimedia data managed is very important.

Spatial Hoarding: A Hoarding Strategy for Location-Dependent Systems 227

We have proposed to divide the area covered by the system into adjacent
squares, because hoarding the information related to all the area cannot be
implemented in a real system, because of the limited memory and storage
capacity in the user’s device. Depending on the user’s device resources
and the available bandwidth, a fixed amount of space A will be reserved to
the client’s cache. As the maximal number of squares that can be available
in the client’s cache is 9, the amount of hoarded data cannot exceed A/9 in
each square. As we deal here with systems that manage a huge amount of
data, the amount of information related to some squares can exceed the
A/9 value. Also, some data items associated to a square may have low
probabilities of access. So transferring this data may only waste resources.
Kubach and Rothermel (Kubach and Rothermel 2001) have described how
to maintain access probability tables, where each data item is associated
with the average probability that it will be requested, and propose to hoard
only a fixed number of the first elements. We think that, a fixed number of
data items is not a criteria that can be implemented in practice, because
data items do not require the same space in memory, so hoarding a fixed
number of data items can exceed the space reserved for the cache. In the
following we will determine what we mean by a data item within the SH
method, we will explain how we will be able to add and drop data items
dynamically depending on the amount of space available on the client’s
cache and how to retrieve all the information related to a given square.

Laurini and Thompson (Laurini and Thompson 1992) have generalised
the concept of hypertext to hyperdocument where the content portions can
always be displayed on a screen or presented via a loudspeaker, and define
the hypermap as multimedia documents with a geographic coordinate
based access via mouse clicking or its equivalent. Database entities are
represented by graphical means, and clicking a reference word or picture
allows the user to go to another node. They present the following relational
model:
WEB(Document_node-ID, (Word_locator

(To_document_node-ID, Type_of_link)*)*,

(From_document_node-ID, Type_of_link)*)

Where * indicates the nesting (the data nested are in a separate table; how-
ever, they may be stored as a long list in the parent table).

Type_of_link refers to the nature of the path from one node to another.
Word_locator is the word, graph unit, or pixel, or other element, in the
first element.
They explain also how to deal with spatial queries for retrieving hyper-

map nodes. By Peano relations the solution is:
Document(Document_node-ID, (Peano_key,

Side_length)*)

228 Karim Zerioh, Omar El Beqqali and Robert Laurini

Within the SH method we will consider document nodes as the data items
to which the average access probability will be associated:
Document(Document_node-ID, P(Document_node-ID),

(Peano_key, Side_length)*)

The first operation is to retrieve all the documents related to a candidate
square for hoarding, sorted by decreasing order of their average probability
of access. Then, the application will use the operating system and DBMS
primitives for associating each document to its amount of space in mem-
ory. The documents will be added to the hoard set until the maximum
value fixed for their square is reached. This value can be exceeded if there
is sufficient space in the client. As noted before, the client can drop the
data items with the lower probabilities later if necessary.

Every click on a node or a document consultation will be kept in a log
file in the client, and will be sent later to the server for updating the aver-
age access probability for each document node.

5 Future Work

We are in the final stages of the development of a simulation prototype for
the Spatial Hoarding method. Our preliminary simulation results show that
the SH policy improves the cache hit ratio and reduces significantly the
query latency.

When there is an important number of user’s in a given area, the infor-
mation related to the same square may be hoarded several times for differ-
ent clients. In our future work we will focus on the issue of saving the
bandwidth in the case of multiple users.

6 Conclusion

We have presented an innovative policy for resolving the problem of la-
tency in location-dependent systems. Our mechanism makes no assump-
tions about the future user’s movement and thus deals with the complexity
of real world applications. We proposed solutions to all the problems re-
lated to the method’s implementation in an elaborated spatial information
system managing multimedia information

Our hoarding mechanism improves the cache hit ratio, thus reduces the
uplink requests, and reduces the query latency. Compared to the previous
hoarding mechanisms whose main aim was to allow disconnected informa-
tion access, but making the user in the risk of accessing obsolete informa-

Spatial Hoarding: A Hoarding Strategy for Location-Dependent Systems 229

tion, our method allows the user to have access to the most recent data. Us-
ing the user’s position as a cache invalidation criterion reduces the need
for extra communication between the client and the server for checking
cache consistency.

References

Badrinath, B.R., Imielinsky, T., Frankiel, R. and Goodman, D., 1996. Nimble:
Many-time, many-where communication support for information systems in
highly mobile and wireless environments,
http://www.cs.rutgers.edu/~badri/dataman/nimble/.

Cao, G., 2002, Proactive power-aware cache management for mobile computing
systems. IEEE Transactions on computers 51, 6, 608-621.

Cheverst, K., Davis, N., Mitchell, K., Friday and Efstriatou C., 2000, Developing
a context-aware electronic tourist guide: some issues and experiences. In Pro-
ceedings of CHI’2000, Netherlands, pp. 17-24.

The Coda Group, Coda file system, http://www.coda.cs.cmu.edu/.
De Nitto, V.P., Grassi, V., Morlupi, A., 1998, Modeling and evaluation of pre-

fetching policies for context-aware information services. In Proceedings of the
4th Annual International Conference on Mobile Computing and Networking,
(Dallas, Texas, USA), pp. 55-64.

Khushraj, A., Helal, A., Zhang, J., 2002, Incremental hoarding and reintegration in
mobile environments. In Proceedings of the International Symposium on Ap-
plications and the Internet (Nara, Japan).

Kubach, U., and Rothermel, K., 2001, Exploiting location information for infosta-
tion-based hoarding. In Proceedings of the 7th International Conference on
Mobile Computing and Networking (New York, ACM Press), pp. 15-27.

Kuenning, G. H., and Popek, G. J., 1997, Automated hoarding for mobile com-
puters. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles, (St. Malo, France), pp. 264-275.

Laurini, R., and Thompson, A.D., 1992, Fundamentals of Spatial Information Sys-
tems (A.P.I.C. Series, Academic Press, New York, NY).

Lee, D.L., Lee, W.C., Xu, J., and Zheng, B., 2002, Data management in location-
dependent information services. IEEE Pervasive Computing, 1, 3, 65-72.

Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.,
1997, Cyberguide: a mobile context-aware tour guide. Wireless Networks 3,
5, pp. 421-433.

Malaka, R., 1999, Deep Map: the multilingual tourist guide. In Proceedings of the
C-STAR workshop.

Mokbel M-F, Aref W-G., Kamel I.: Analysis of Multi-Dimensional Space-Filling
Curves. GeoInformatica 7(3): 179-209 (2003)

Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P., and Zipf, A., 2001,
CRUMPET: Creation of user-friendly mobile services personalised for tour-

230 Karim Zerioh, Omar El Beqqali and Robert Laurini

ism. In Second International Conference on 3G Mobile Communication
Technologies (London UK), pp. 28-32.

Saygin, Y., Ulusoy, Ö., and Elmagarmid, A.K., 2000, Association rules for sup-
porting hoarding in mobile computing environments. In Proceedings of the
10th International Workshop on Research Issues in Data Engineering (IEEE
Computer Society Press).

Tichy, W.F., 1985, RCS - A system for version control. Software-Practice and
Experience, 15, 7, pp. 637-654.

Xu, J., Tang, X., Lee, D.L., and Hu, Q., 1999, Cache coherency in location-
dependent information services for mobile environments. In Proceedings of
the 1st International Conference on Mobile Data Acess (Springer, Heidelberg,
Germany), pp. 182-193.

Zarikas, V., Papatzanis, G., and Stephanidis, C., 2001, An architecture for a self-
adapting information system for tourists. In Proceedings of the 2001 work-
shop on Multiple User Interfaces over the Internet,
http://cs.concordia.ca/~seffah/ihm2001/papers/zarikas.pdf.

Zheng, B., Xu, J., and Lee, D.L., 2002, Cache invalidation and replacement strate-
gies for location-dependent data in mobile environments. IEEE Transactions
on Computers 51, 10, pp. 1141-1153.

