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ABSTRACT
Assume that each object in a database has m grades, or
scores, one for each of m attributes. For example, an object
can have a color grade, that tells how red it is, and a shape
grade, that tells how round it is. For each attribute, there
is a sorted list, which lists each object and its grade under
that attribute, sorted by grade (highest grade �rst). There
is some monotone aggregation function, or combining rule,
such as min or average, that combines the individual grades
to obtain an overall grade.
To determine objects that have the best overall grades, the

naive algorithm must access every object in the database,
to �nd its grade under each attribute. Fagin has given an
algorithm (\Fagin's Algorithm", or FA) that is much more
e�cient. For some distributions on grades, and for some
monotone aggregation functions, FA is optimal in a high-
probability sense.
We analyze an elegant and remarkably simple algorithm

(\the threshold algorithm", or TA) that is optimal in a much
stronger sense than FA. We show that TA is essentially op-
timal, not just for some monotone aggregation functions,
but for all of them, and not just in a high-probability sense,
but over every database. Unlike FA, which requires large
bu�ers (whose size may grow unboundedly as the database
size grows), TA requires only a small, constant-size bu�er.
We distinguish two types of access: sorted access (where

the middleware system obtains the grade of an object in
some sorted list by proceeding through the list sequentially
from the top), and random access (where the middleware
system requests the grade of object in a list, and obtains
it in one step). We consider the scenarios where random
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access is either impossible, or expensive relative to sorted
access, and provide algorithms that are essentially optimal
for these cases as well.
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1. INTRODUCTION
Early database systems were required to store only small

character strings, such as the entries in a tuple in a tradi-
tional relational database. Thus, the data was quite homo-
geneous. Today, we wish for our database systems to be
able to deal not only with character strings (both small and
large), but also with a heterogeneous variety of multimedia
data (such as images, video, and audio). Furthermore, the
data that we wish to access and combine may reside in a
variety of data repositories, and we may want our database
system to serve as middleware that can access such data.
One fundamental di�erence between small character strings

and multimedia data is that multimedia data may have at-
tributes that are inherently fuzzy. For example, we do not
say that a given image is simply either \red" or \not red".
Instead, there is a degree of redness, which ranges between
0 (not at all red) and 1 (totally red).
One approach [4] to deal with such fuzzy data is to make

use of an aggregation function t. If x1; : : : ; xm (each in the
interval [0; 1]) are the grades of object R under the m at-
tributes, then t(x1; : : : ; xm) is the overall grade of object R.
As we shall discuss, such aggregation functions are useful in
other contexts as well. There is a large literature on choices
for the aggregation function (see Zimmermann's textbook
[15] and the discussion in [4]).



One popular choice for the aggregation function is min.
In fact, under the standard rules of fuzzy logic [14], if object
R has grade x1 under attribute A1 and x2 under attribute
A2, then the grade under the fuzzy conjunction A1 ^ A2 is
min(x1; x2). Another popular aggregation function is the
average (or the sum, in contexts where we do not care if the
resulting overall grade no longer lies in the interval [0; 1]).
We say that an aggregation function t is monotone if

t(x1; : : : ; xm) � t(x01; : : : ; x
0

m) whenever xi � x
0

i for every i.
Certainly monotonicity is a reasonable property to demand
of an aggregation function: if for every attribute, the grade
of object R0 is at least as high as that of object R, then we
would expect the overall grade of R0 to be at least as high
as that of R.
The notion of a query is di�erent in a multimedia database

system than in a traditional database system. Given a
query in a traditional database system (such as a relational
database system), there is an unordered set of answers.1 By
contrast, in a multimedia database system, the answer to a
query can be thought of as a sorted list, with the answers
sorted by grade. As in [4], we shall identify a query with a
choice of the aggregation function t. The user is typically
interested in �nding the top k answers, where k is a given
parameter (such as k = 1, k = 10, or k = 100). This means
that we want to obtain k objects (which we may refer to as
the \top k objects") with the highest grades on this query,
along with their grades (ties are broken arbitrarily). For
convenience, throughout this paper we will think of k as a
constant value, and we will consider algorithms for obtaining
the top k answers.
Other applications: There are other applications be-

sides multimedia databases where we make use of an aggre-
gation function to combine grades, and where we want to
�nd the top k answers. One important example is informa-
tion retrieval [11], where the objects R of interest are docu-
ments, them attributes are search terms s1; : : : ; sm, and the
grade xi measures the relevance of document R for search
term si, for 1 � i � m. It is common to take the aggregation
function t to be the sum. That is, the total relevance score
of document R when the query consists of the search terms
s1; : : : ; sm is taken to be t(x1; : : : ; xm) = x1 + � � �+ xm.
Another application arises in a paper by Aksoy and Franklin

[1] on scheduling large-scale on-demand data broadcast. In
this case each object is a page, and there are two �elds. The
�rst �eld represents the amount of time waited by the ear-
liest user requesting a page, and the second �eld represents
the number of users requesting a page. They make use of
the product function t with t(x1; x2) = x1x2, and they wish
to broadcast next the page with the top score.
The model: We assume that each database consists of a

�nite set of objects. We shall typically take N to represent
the number of objects. Associated with each object R are
m �elds x1; : : : ; xm, where xi 2 [0; 1] for each i. We may
refer to xi as the ith �eld of R. The database is thought of
as consisting of m sorted lists L1; : : : ; Lm, each of length N

(there is one entry in each list for each of the N objects).
We may refer to Li as list i. Each entry of Li is of the form
(R;xi), where xi is the ith �eld of R. Each list Li is sorted in

1Of course, in a relational database, the result to a query
may be sorted in some way for convenience in presentation,
such as sorting department members by salary, but logi-
cally speaking, the result is still simply a set, with a crisply-
de�ned collection of members.

descending order by the xi value. We take this simple view
of a database, since this view is all that is relevant, as far as
our algorithms are concerned. We are completely ignoring
computational issues. For example, in practice it might well
be expensive to compute the �eld values, but we ignore this
issue here, and take the �eld values as being given.
We consider two modes of access to data. The �rst mode

of access is sorted (or sequential) access. Here the middle-
ware system obtains the grade of an object in one of the
sorted lists by proceeding through the list sequentially from
the top. Thus, if object R has the `th highest grade in the
ith list, then ` sorted accesses to the ith list are required
to see this grade under sorted access. The second mode of
access is random access. Here, the middleware system re-
quests the grade of object R in the ith list, and obtains it
in one random access. If there are s sorted accesses and r

random accesses, then the middleware cost is taken to be
scS + rcR, for some positive constants cS and cR.
Algorithms: There is an obvious naive algorithm for

obtaining the top k answers. It looks at every entry in each
of the m sorted lists, computes (using t) the overall grade
of every object, and returns the top k answers. The naive
algorithm has linear middleware cost (linear in the database
size), and thus is not e�cient for a large database.
Fagin [4] introduced an algorithm (\Fagin's Algorithm",

or FA), which often does much better than the naive algo-
rithm. In the case where the orderings in the sorted lists
are probabilistically independent, FA �nds the top k an-
swers, over a database with N objects, with middleware
cost O(N (m�1)=m

k
1=m), with arbitrarily high probability.2

Fagin also proved that under this independence assumption,
along with an assumption on the aggregation function, ev-
ery correct algorithm must, with high probability, incur a
similar middleware cost.
We shall present the \threshold algorithm", or TA. This

algorithm has been de�ned and studied by (at least) three
groups, including Nepal and Ramakrishna [9] (who were the
�rst to publish), G�untzer, Balke, and Kiessling [5], and our-
selves.3 For more information and comparison, see Section 6
on related work.
We shall show that TA is optimal in a much stronger sense

than FA. We now de�ne this notion of optimality, which we
consider to be interesting in its own right.
Instance optimality: Let A be a class of algorithms,

and letD be a class of legal inputs to the algorithms. We as-
sume that we are considering a particular nonnegative cost
measure cost(A;D) of running algorithm A over input D.
This cost could be the running time of algorithm A on in-
put D, or in this paper, the middleware cost incurred by
running algorithm A over database D. We shall mention
examples later where cost(A;D) has an interpretation other
than being the amount of a resource consumed by running
the algorithm A on input D.
We say that an algorithm B 2 A is instanc B2 A



we have

cost(B;D) = O(cost(A;D)): (1)

Equation (1) means that there are constants c and c
0 such

that cost(B;D) � c �cost(A;D)+c
0 for every choice of A and

D. We refer to c as the optimality ratio. It is similar to the
competitive ratio in competitive analysis (we shall discuss
competitive analysis shortly). We use the word \optimal"
to reect that fact that B is essentially the best algorithm
in A.
Intuitively, instance optimality corresponds to optimality

in every instance, as opposed to just the worst case or the
average case. There are many algorithms that are optimal
in a worst-case sense, but are not instance optimal. An
example is binary search: in the worst case, binary search
is guaranteed to require no more than logN probes, for N
data items. However, for each instance, a positive answer
can be obtained in one probe, and a negative answer in two
probes.
We consider a nondeterministic algorithm correct if on no

branch does it make a mistake. We take the middleware
cost of a nondeterministic algorithm to be the minimal cost
over all branches where it halts with the top k answers. We
take the middleware cost of a probabilistic algorithm to be
the expected cost (over all probabilistic choices by the al-
gorithm). When we say that a deterministic algorithm B is
instance optimal over A and D, then we are really compar-
ing B against the best nondeterministic algorithm, even if
A contains only deterministic algorithms. This is because
for each D 2 D, there is always a deterministic algorithm
that makes the same choices on D as the nondeterministic
algorithm. We can view the cost of the best nondeterminis-
tic algorithm that produces the top k answers over a given
database as the cost of the shortest proof for that database
that these are really the top k answers. So instance opti-
mality is quite strong: the cost of an instance optimal algo-
rithm is essentially the cost of the shortest proof. Similarly,
we can view A as if it contains also probabilistic algorithms
that never make a mistake. For convenience, in our proofs
we shall always assume that A contains only determinis-
tic algorithms, since the results carry over automatically to
nondeterministic algorithms and to probabilistic algorithms
that never make a mistake.
FA is optimal in a high-probability sense (actually, in a

way that involves both high probabilities and worst cases;
see [4]), under certain assumptions. TA is optimal in a much
stronger sense: it is instance optimal, for several natural
choices of A and D. In particular, instance optimality holds
when A is taken to be the class of algorithms that would nor-
mally be implemented in practice (since the only algorithms
that are excluded are those that make very lucky guesses),
and when D is taken to be the class of all databases. In-
stance optimality of TA holds in this case for all monotone
aggregation functions. By contrast, high-probability opti-
mality of FA holds only under the assumption of \strict-
ness" (we shall de�ne strictness later; intuitively, it means
that the aggregation function is representing some notion of
conjunction).
The de�nition we have given for instance optimality is for-

mally the same de�nition as is used in competitive analysis

[2, 12], except that in competitive analysis we do not as-
sume that B 2 A. In competitive analysis, typically (a) A
is taken to be the class of o�ine algorithms that solve a par-

ticular problem, (b) cost(A;D) is taken to be a number that
represents performance (where bigger numbers correspond
to worse performance), and (c) B is a particular online al-
gorithm. In this case, the online algorithm B is said to be
competitive. The intuition is that a competitive online al-
gorithm may perform poorly in some instances, but only on
instances where every o�ine algorithm would also perform
poorly.
Another example where the framework of instance op-

timality appears, but again without the assumption that
B 2 A, is in the context of approximation algorithms [7]. In
this case, (a) A is taken to contain algorithms that solve a
particular problem exactly (in cases of interest, these algo-
rithms are not polynomial-time algorithms), (b) cost(A;D)
is taken to be the resulting answer when algorithm A is ap-
plied to input D, and (c) B is a particular polynomial-time
algorithm.
Restricting random access: As we shall discuss in

Section 2, there are some systems where random access is
impossible. To deal with such situations, we show in Sec-
tion 5.1 how to modify TA to obtain an algorithm NRA (\no
random accesses") that does no random accesses. We prove
that NRA is instance optimal over all algorithms that do
not make random accesses and over all databases.
What about situations where random access is not for-

bidden, but simply expensive? Wimmers et al. [13] discuss
a number of systems issues that can cause random access
to be expensive. Although TA is instance optimal, the op-
timality ratio depends on the ratio cR=cS of the cost of a
single random access to the cost of a single sorted access.
We de�ne another algorithm that is a combination of TA
and NRA, and call it CA (\combined algorithm"). The def-
inition of the algorithm depends on cR=cS. The motivation
is to obtain an algorithm that is not only instance optimal,
but whose optimality ratio is independent of cR=cS. Our
original hope was that CA would be instance optimal (with
optimality ratio independent of cR=cS) in those scenarios
where TA is instance optimal. Not only does this hope fail,
but interestingly enough, we prove that there does not exist
any deterministic algorithm, or even probabilistic algorithm
that does not make a mistake, that is instance optimal (with
optimality ratio independent of cR=cS) in these scenarios!
However, we �nd a new natural scenario where CA is in-
stance optimal, with optimality ratio independent of cR=cS.

2. MODES OF ACCESS TO DATA
Issues of e�cient query evaluation in a middleware sys-

tem are very di�erent from those in a traditional database
system. This is because the middleware system receives an-
swers to queries from various subsystems, which can be ac-
cessed only in limited ways. What do we assume about the
interface between a middleware system and a subsystem?
Let us consider QBIC4 [10] (\Query By Image Content")
as a subsystem. QBIC can search for images by various
visual characteristics such as color and texture (and an ex-
perimental version can search also by shape). In response
to a query, such as Color=`red' , the subsystem will output
the graded set consisting of all objects, one by one, along
with their grades under the query, in sorted order based on
grade, until the middleware system tells the subsystem to
halt. Then the middleware system could later tell the sub-

4QBIC is a trademark of IBM Corporation.



system to resume outputting the graded set where it left o�.
Alternatively, the middleware system could ask the subsys-
tem for, say, the top 10 objects in sorted order, along with
their grades, then request the next 10, etc. In both cases,
this corresponds to what we have referred to as \sorted ac-
cess".
There is another way that we might expect the middleware

system to interact with the subsystem. The middleware
system might ask the subsystem for the grade (with respect
to a query) of any given object. This corresponds to what we
have referred to as \random access". In fact, QBIC allows
both sorted and random access.
There are some situations where the middleware system is

not allowed random access to some subsystem. An example
might occur when the middleware system is a text retrieval
system, and the subsystems are search engines. Thus, there
does not seem to be a way to ask a major search engine
on the web for its internal score on some document of our
choice under a query.
Our measure of cost corresponds intuitively to the cost in-

curred by the middleware system in processing information
passed to it from a subsystem such as QBIC. As before, if
there are s sorted accesses and r random accesses, then the
middleware cost is taken to be scS + rcR, for some positive
constants cS and cR. The fact that cS and cR may be dif-
ferent reects the fact that the cost to a middleware system
of a sorted access and of a random access may be di�erent.

3. FAGIN’S ALGORITHM
In this section, we discuss FA (Fagin's Algorithm) [4].

This algorithm is implemented in Garlic [3], an experimen-
tal IBM middleware system; see [13] for interesting details
about the implementation and performance in practice. FA
works as follows.

1. Do sorted access in parallel to each of the m sorted
lists Li. (By \in parallel", we mean that we access the
top member of each of the lists under sorted access,
then we access the second member of each of the lists,
and so on.)5 Wait until there are at least k \matches",
that is, wait until there is a set H of at least k objects
such that each of these objects has been seen in each
of the m lists.

2. For each object R that has been seen, do random ac-
cess to each of the lists Li to �nd the ith �eld xi of
R.

3. Compute the grade6 t(R) = t(x1; : : : ; xm) for each
object R that has been seen. Let Y be a set containing
the k objects that have been seen with the highest
grades (ties are broken arbitrarily). The output is then
the graded set f(R; t(R)) jR 2 Y g.7

5It is not actually important that the lists be accessed \in
lockstep". In practice, it may be convenient to allow the
sorted lists to be accessed at di�erent rates, in batches, etc.
Throughout this paper, whenever we speak of \sorted access
in parallel", all of our instance optimality results continue
to hold even when sorted access is not in lockstep, as long
as the rates of sorted access of the lists are within constant
multiples of each other.
6We shall often abuse notation and write t(R) for the grade
t(x1; : : : ; xm) of R.
7Graded sets are often presented in sorted order, sorted by
grade.

It is fairly easy to show [4] that this algorithm is correct
for monotone aggregation functions t (that is, that the algo-
rithm successfully �nds the top k answers). If there are N
objects in the database, and if the orderings in the sorted
lists are probabilistically independent, then the middleware
cost of FA is O(N (m�1)=m

k
1=m), with arbitrarily high prob-

ability [4].
An aggregation function t is strict [4] if t(x1; : : : ; xm) = 1

holds precisely when xi = 1 for every i. Thus, an aggrega-
tion function is strict if it takes on the maximal value of 1
precisely when each argument takes on this maximal value.
We would certainly expect an aggregation function repre-
senting the conjunction to be strict. In fact, it is reasonable
to think of strictness as being a key characterizing feature
of the conjunction.
Fagin shows that his algorithm is optimal (in a high-

probability sense) if the aggregation function is strict (so
that, intuitively, we are dealing with a notion of conjunc-
tion), and if the orderings in the sorted lists are proba-
bilistically independent. In fact, under the assumption that
the sorted lists are probabilistically independent, the mid-
dleware cost of FA is �(N (m�1)=m

k
1=m), with arbitrarily

high probability, no matter what the aggregation function
is. This is true even for a constant aggregation function; in
this case, of course, there is a trivial algorithm that gives us
the top k answers (any k objects will do) with O(1) mid-
dleware cost. So FA is not optimal in any sense for some
monotone aggregation functions t. By contrast, as we shall
see, the algorithm TA is instance optimal for every mono-
tone aggregation function, under very weak assumptions.
Even in the cases where FA is optimal, this optimality

holds only in a high-probability sense. This leaves open the
possibility that there are some algorithms that have much
better middleware cost than FA over certain databases. The
algorithm TA, which we now discuss, is such an algorithm.

4. THE THRESHOLD ALGORITHM
We now present the threshold algorithm (TA).

1. Do sorted access in parallel to each of the m sorted
lists Li. As an object R is seen under sorted access
in some list, do random access to the other lists to
�nd the grade xi of object R in every list Li. Then
compute the grade t(R) = t(x1; : : : ; xm) of object R.
If this grade is one of the k highest we have seen, then
remember object R and its grade t(R) (ties are broken
arbitrarily, so that only k objects and their grades need
to be remembered at any time).

2. For each list Li, let xi be the grade of the last object
seen under sorted access. De�ne the threshold value �
to be t(x1; : : : ; xm). As soon as at least k objects have
been seen whose grade is at least equal to � , then halt.

3. Let Y be a set containing the k objects that have been
seen with the highest grades. The output is then the
graded set f(R; t(R)) jR 2 Y g.

We now show that TA is correct for each monotone ag-
gregation function t.

Theorem 4.1. If the aggregation function t is monotone,
then TA correctly �nds the top k answers.



Proof: Let Y be as in Part 3 of TA. We need only show
that every member of Y has at least as high a grade as
every object z not in Y . By de�nition of Y , this is the
case for each object z that has been seen in running TA. So
assume that z was not seen. Assume that the �elds of z are
x1; : : : ; xm. Therefore, xi � x

i
, for every i. Hence, t(z) =

t(x1; : : : ; xm) � t(x1; : : : ; xm) = � , where the inequality
follows by monotonicity of t. But by de�nition of Y , for
every y in Y we have t(y) � � . Therefore, for every y in Y

we have t(y) � � � t(z), as desired. 2

We now show that the stopping rule for TA always occurs
at least as early as the stopping rule for FA (that is, with
no more sorted accesses than FA). In FA, if R is an object
that has appeared under sorted access in every list, then
by monotonicity, the grade of R is at least equal to the
threshold value. Therefore, when there are at least k objects,
each of which has appeared under sorted access in every list
(the stopping rule for FA), there are at least k objects whose
grade is at least equal to the threshold value (the stopping
rule for TA).
This implies that for every database, the sorted access cost

for TA is at most that of FA. This does not imply that the
middleware cost for TA is always at most that of FA, since
TA may do more random accesses than FA. However, since
the middleware cost of TA is at most the sorted access cost
times a constant (independent of the database size), it does
follow that the middleware cost of TA is at most a constant
times that of FA. In fact, we shall show that TA is instance
optimal, under natural assumptions.
The next simple theorem gives a useful property of TA,

that further distinguishes TA from FA.

Theorem 4.2. TA requires only bounded bu�ers, whose

size is independent of the size of the database.

By contrast, FA requires bu�ers that grow arbitrarily large
as the database grows, since FA must remember every ob-
ject it has seen in sorted order in every list, in order to check
for matching objects in the various lists.
There is a price to pay for the bounded bu�ers. Thus, for

every time an object is found under sorted access, TA may
do m� 1 random accesses (where m is the number of lists),
to �nd the grade of the object in the other lists. This is in
spite of the fact that this object may have already been seen
under sorted or random access in one of the other lists.

4.1 Instance Optimality of the Threshold Al-
gorithm

In this section, we investigate the instance optimality of
TA. We would have liked to be able to simply state that for
every monotone aggregation function, TA is instance opti-
mal over all algorithms that correctly �nd the top k answers,
over the class of all databases. However, it turns out that
the situation is more delicate than this. We �rst make a dis-
tinction between algorithms that \make wild guesses" (that
is, perform random access on elements not previously en-
countered by sorted access) and those that do not. (Neither
FA nor TA make wild guesses, and neither does any \natu-
ral" algorithm.) Our �rst theorem (Theorem 4.3) says that
for every monotone aggregation function, TA is instance op-
timal over all algorithms that correctly �nd the top k an-
swers and that do not make wild guesses, over the class of all
databases. We then show that this distinction (wild guesses

vs. no wild guesses) is essential: if algorithms that make
wild guesses are allowed in the class A of algorithms that
an instance optimal algorithm must compete against, then
no algorithm is instance optimal (Example 4.4 and Theo-
rem 4.5). The heart of this example (and the corresponding
theorem) is the fact that there may be multiple objects with
the same grade in some list. Indeed, once we restrict our at-
tention to databases where no two objects have the same
value in the same list, and make a slight, natural additional
restriction on the aggregation function beyond monotonic-
ity, then TA is instance optimal over all algorithms that
correctly �nd the top k answers (Theorem 4.6).
In Section 4.3 we consider instance optimality in the situ-

ation where we relax the problem of �nding the top k objects
into �nding approximately the top k.
We now give our �rst positive result on instance optimal-

ity of TA. We say that an algorithm makes wild guesses if
it does random access to �nd the grade of some object R
in some list before the algorithm has seen R under sorted
access. That is, an algorithm makes wild guesses if the �rst
grade that it obtains for some object R is under random
access. We would not normally implement algorithms that
make wild guesses. In fact, there are some contexts where
it would not even be possible to make wild guesses (such as
a database context where the algorithm could not know the
name of an object it has not already seen). However, making
a lucky wild guess can help, as we show later (Example 4.4).
We now show instance optimality of TA among algorithms

that do not make wild guesses. In this theorem, when we
take D to be the class of all databases, we really mean that
D is the class of all databases that involve sorted lists cor-
responding to the arguments of the aggregation function t.
We are taking k (where we are trying to �nd the top k an-
swers) and the aggregation function t to be �xed. Since we
are taking t to be �xed, we are thereby taking the number
m of arguments of t (that is, the number of sorted lists) to
be �xed. In Section 4.2, we discuss the assumptions that k
and m are constant.

Theorem 4.3. Assume that the aggregation function t is
monotone. Let D be the class of all databases. Let A be the

class of all algorithms that correctly �nd the top k answers

for t for every database and that do not make wild guesses.

Then TA is instance optimal over A and D.

Proof: Assume that A 2 A, and that algorithm A is run
over database D. Assume that algorithm A halts at depth
d (that is, if di is the number of objects seen under sorted
access to list i, for 1 � i � m, then d = maxi di). Assume
thatA sees a distinct objects (some possibly multiple times).
In particular, a � d. We shall show that TA halts on D by
depth a + k. Hence, TA makes at most m(a+ k) accesses,
which is ma plus an additive constant of mk. It follows
easily that the optimality ratio of TA is at most cm, where
c = max fcR=cS; cS=cRg.
Note that for each choice of d0, the algorithm TA sees at

least d0 objects by depth d
0 (this is because by depth d

0 it
has made md

0 sorted accesses, and each object is accessed
at most m times under sorted access). Let Y be the output
set of A (consisting of the top k objects). If there are at
most k objects that A does not see, then TA halts by depth
a+ k (after having seen every object), and we are done. So
assume that there are at least k+1 objects that A does not
see. Since Y is of size k, there is some object V that A does



not see and that is not in Y .
Let �A be the threshold value when algorithm A halts.

This means that if x
i
is the grade of the last object seen

under sorted access to list i for algorithm A, for 1 � i � m,
then �A = t(x1; : : : ; xm). (For convenience, let us assume
that algorithm A makes at least one sorted access to each
list; this introduces at most m more sorted accesses.) Let us
call an object R big if t(R) � �A, and otherwise call object
R small.
We now show that every member R of Y is big. De�ne

a database D0 to be just like D, except that object V has
grade x

i
in the ith list, for 1 � i � m. Put V in list i below

all other objects with grade x
i
in list i (for 1 � i � m).

Algorithm A performs exactly the same, and in particular
gives the same output, for databases D and D

0. Therefore,
algorithm A has R, but not V , in its output for database D0.
Since the grade of V in D0 is �A, it follows by correctness of
A that R is big, as desired.
There are now two cases, depending on whether or not

algorithm A sees every member of its output set Y .8

Case 1: Algorithm A sees every member of Y . Then
by depth d, TA will see every member of Y . Since, as we
showed, each member of Y is big, it follows that TA halts
by depth d � a < a + k, as desired.
Case 2: Algorithm A does not see some member R of Y .

We now show that every object R0 that is not seen by A

must be big. De�ne a database D
0 that is just like D on

every object seen by A. Let the grade of V in list i be x
i
,

and put V in list i below all other objects with grade x
i
in

list i (for 1 � i �m). Therefore, the grade of V in database
D
0 is �A. Since A cannot distinguish between D and D

0, it
has the same output on D and D

0. Since A does not see
R and does not see R0, it has no information to distinguish
between R and R0. Therefore, it must have been able to give
R
0 in its output without making a mistake. But if R0 is in

the output and not V , then by correctness of A, it follows
that R0 is big. So R0 is big, as desired.
Since A sees a objects, and since TA sees at least a + k

objects by depth a + k, it follows that by depth a + k, TA
sees at least k objects not seen by A. We have shown that
every object that is not seen by A is big. Therefore, by
depth a+ k, TA sees at least k big objects. So TA halts by
depth a+ k, as desired. 2

We now show that making a lucky wild guess can help.

Example 4.4. Assume that there are 2n+1 objects, which
we will call simply 1; 2; : : : ; 2n+1, and there are two lists L1

and L2. Assume that in list L1, the objects are in the order
1; 2; : : : ; 2n + 1, where the top n+ 1 objects 1; 2; : : : ; n+ 1
all have grade 1, and the remaining n objects n + 2; n +
3; : : : ; 2n + 1 all have grade 0. Assume that in list L2, the
objects are in the reverse order 2n+ 1; 2n; : : : ; 1, where the
bottom n objects 1; : : : ; n all have grade 0, and the remain-
ing n + 1 objects n + 1; n + 2; : : : ; 2n + 1 all have grade 1.
Assume that the aggregation function is min, and that we
are interested in �nding the top answer (i.e., k = 1). It is
clear that the top answer is object n+ 1 with overall grade
1 (every object except object n+ 1 has overall grade 0).
An algorithm that makes a wild guess and asks for the

grade of object n+1 in both lists would determine the correct

8For the sake of generality, we are allowing the possibility
that algorithm A can output an object that it has not seen.
We discuss this issue more in Section 4.2.

answer and be able to halt safely after two random accesses
and no sorted accesses.9 However, let A be any algorithm
(such as TA) that does not make wild guesses. Since the
winning object n+1 is in the middle of both sorted lists, it
follows that at least n+1 sorted accesses would be required
before algorithm A would even see the winning object. 2

Example 4.4 shows that TA is not instance optimal over
the class A of all algorithms that �nd the top answer for
min (with two arguments) and the class D of all databases.
The next theorem says that no algorithm is instance opti-
mal. The proof (and other missing proofs) appear in the full
paper.

Theorem 4.5. Let D be the class of all databases. Let

A be the class of all algorithms that correctly �nd the top

answer for min (with two arguments) for every database.

There is no deterministic algorithm (or even probabilistic

algorithm that never makes a mistake) that is instance opti-

mal over A and D.

Although, as we noted earlier, algorithms that make wild
guesses would not normally be implemented in practice, it
is still interesting to consider them. This is because of our
interpretation of instance optimality of an algorithm A as
saying that its cost is essentially the same as the cost of
the shortest proof for that database that these are really
the top k answers. If we consider algorithms that allow
wild guesses, then we are allowing a larger class of proofs.
Thus, in Example 4.4, the fact that object n+1 has (overall)
grade 1 is a proof that it is the top answer.
We say that an aggregation function t is strictly mono-

tone if t(x1; : : : ; xm) < t(x01; : : : ; x
0

m) whenever xi < x
0

i for
every i. Although average and min are strictly monotone,
there are aggregation functions suggested in the literature
for representing conjunction and disjunction that are mono-
tone but not strictly monotone (see [4] and [15] for exam-
ples). We say that a database D satis�es the uniqueness

property if for each i, no two objects in D have the same
grade in list Li, that is, if the grades in list Li are distinct.
We now show that these conditions guarantee optimality of
TA even among algorithms that make wild guesses.

Theorem 4.6. Assume that the aggregation function t is
strictly monotone. Let D be the class of all databases that

satisfy the uniqueness property. Let A be the class of all

algorithms that correctly �nd the top k answers for t for

every database in D. Then TA is instance optimal over A

and D.

Proof: Assume that A 2 A, and that algorithm A is run
over database D 2 D. Assume that A sees a distinct ob-
jects (some possibly multiple times). We shall show that
TA halts on D by depth a + k. As before, this shows
that the optimality ratio of TA is at most cm, where c =
max fcR=cS; cS=cRg.
If there are at most k objects that A does not see, then

TA halts by depth a + k (after having seen every object),

9The algorithm could halt safely, since it \knows" that it has
found an object with the maximal possible grade of 1 (this
grade is maximal, since we are assuming that all grades lie
between 0 and 1). Even if we did not assume that all grades
lie between 0 and 1, one additional sorted access would pro-
vide the information that each overall grade in the database
is at most 1.



and we are done. So assume that there are at least k + 1
objects that A does not see. Since Y is of size k, there is
some object V that A does not see and that is not in Y . We
shall show that TA halts on D by depth a + 1.
Let � be the threshold value of TA at depth a+1. Thus,

if x
i
is the grade of the (a+1)th highest object in list i, then

� = t(x1; : : : ; xm). Let us call an object R big if t(R) � � ,
and otherwise call object R small. (Note that these de�ni-
tions of \big" and \small" are di�erent from those in the
proof of Theorem 4.3.)
We now show that every member R of Y is big. Let x0i

be some grade in the top a + 1 grades in list i that is not
the grade in list i of any object seen by A. There is such
a grade, since all grades in list i are distinct, and A sees at
most a objects. Let D0 agree with D on all objects seen by
A, and let object V have grade x0i in the ith list of D0, for
1 � i � m. Hence, the grade of V in D0 is t(x01; : : : ; x

0

m) � � .
Since V was unseen, and since V is assigned grades in each
list in D0 below the level that A reached by sorted access, it
follows that algorithm A performs exactly the same, and in
particular gives the same output, for databases D and D

0.
Therefore, algorithm A has R, but not V , in its output for
database D0. By correctness of A, it follows that R is big,
as desired.
We claim that every member R of Y is one of the top

a+1 members of some list i (and so is seen by TA by depth
a + 1). Assume by way of contradiction that R is not one
of the top a + 1 members of list i, for 1 � i � m. By
our assumptions that the aggregation function t is strictly
monotone. and that D satis�es the uniqueness property, it
follows easily that R is small. We already showed that every
member of Y is big. This contradiction proves the claim. It
follows that TA halts by depth a+ 1, as desired. 2

The proofs of Theorems 4.3 and 4.6 have several nice prop-
erties:

� The proofs would still go through if we were in a sce-
nario where, whenever a random access of object R in
list i takes place, we learn not only the grade of R in
list i, but also the relative rank.

� The proofs would still go through if we were to restrict
the class of databases to those where each list i has a
certain �xed domain.

� As we shall see, we can prove the instance optimality
among approximation algorithms of an approximation
version of TA, under the assumptions of Theorem 4.3,
with only a small change to the proof (such a theorem
does not hold under the assumptions of Theorem 4.6).

4.2 Treating k and m as Constants
In Theorems 4.3 and 4.6 about the instance optimality of

TA, we are treating k (where we are trying to �nd the top
k answers) and m (the number of sorted lists) as constants.
We now discuss these assumptions.
We begin �rst with the assumption that k is constant. As

in the proofs of Theorems 4.3 and 4.6, let a be the number
of accesses by an algorithm A 2 A. If a � k, then there
is no need to treat k as a constant. Thus, if we were to
restrict the class A of algorithms to contain only algorithms
that make at least k accesses to �nd the top k answers, then
there would be no need to assume that k is constant. How
can it arise that an algorithm A can �nd the top k answers

without making at least k accesses, and in particular without
accessing at least k objects? It must then happen that either
there are at most k objects in the database, or else every
object R thatA has not seen has the same overall grade t(R).
The latter will occur, for example, if t is a constant function.
Even under these circumstances, it is still not reasonable in
some contexts (such as certain database contexts) to allow
an algorithm A to output an object as a member of the
top k objects without ever having seen it: how would the
algorithm even know the name of the object? This is similar
to an issue we raised earlier about wild guesses.
We see from the proofs of Theorems 4.3 and 4.6 that the

optimality ratio depends only on m, and is in fact linear
in m. The next theorem shows that the linear dependence
of the optimality ratio of TA on m in these theorems is es-
sential. In fact, the next theorem shows that a dependence
that is at least linear holds not just for TA, but for every
correct deterministic algorithm (or even probabilistic algo-
rithm that never makes a mistake). This dependence holds
even when the aggregation function is min, and when k = 1
(so that we are interested only in the top answer). An anal-
ogous theorem about the dependence of the optimality ratio
on m holds also under the scenario of Theorem 4.6.

Theorem 4.7. Let D be the class of all databases. Let

A be the class of all algorithms that correctly �nd the top

answer for min for every database and that do not make

wild guesses. There is no deterministic algorithm (or even

probabilistic algorithm that never makes a mistake) with an

optimality ratio over A and D that is less than m=2.

4.3 Turning TA into an Approximation Algo-
rithm

TA can easily be modi�ed to be an approximation algo-

rithm. It can then be used in situations where we care only
about the approximately top k answers. Thus, let � > 1 be
given. Let us say that an algorithm �nds a �-approximation

to the top k answers for t over database D if it gives as
output k objects (and their grades) such that for each y

among these k objects and each z not among these k ob-
jects, �t(y) � t(z). We can modify TA to work under these
requirements by modifying the stopping rule in Part 2 to say
\As soon as at least k objects have been seen whose grade,
when multiplied by �, is at least equal to � , then halt." Let
us call this approximation algorithm TA�. A straightfor-
ward modi�cation of the proof of Theorem 4.1 shows that
TA� is correct. We now show that if no wild guesses are
allowed, then TA� is instance optimal.

Theorem 4.8. Assume that � > 1 and that the aggre-

gation function t is monotone. Let D be the class of all

databases. Let A be the class of all algorithms that �nd a �-

approximation to the top k answers for t for every database

and that do not make wild guesses. Then TA� is instance

optimal over A and D.

Proof: The proof of Theorem 4.3 carries over verbatim pro-
vided we modify the de�nition of an object R being \big"
to be that �t(R) � �A. 2

Theorem 4.8 shows that the analog of Theorem 4.3 holds
for TA�. The next example, which is a modi�cation of Ex-
ample 4.4, shows that the analog of Theorem 4.6 does not
hold for TA�. One interpretation of these results is that



Theorem 4.3 is su�ciently robust that it can survive the per-
turbation of allowing approximations, whereas Theorem 4.6
is not.

Example 4.9. Assume that � > 1, that there are 2n+ 1
objects, which we will call simply 1; 2; : : : ; 2n+ 1, and that
there are two lists L1 and L2. Assume that in list L1, the
grades are assigned so that all grades are di�erent, the or-
dering of the objects by grade is 1; 2; : : : ; 2n + 1, object
n + 1 has the grade 1=�, and object n + 2 has the grade
1=(2�2). Assume that in list L2, the grades are assigned
so that all grades are di�erent, the ordering of the objects
by grade is 2n + 1; 2n; : : : ; 1 (the reverse of the ordering in
L1), object n + 1 has the grade 1=�, and object n + 2 has
the grade 1=(2�2). Assume that the aggregation function is
min, and that k = 1 (so that we are interested in �nding a
�-approximation to the top answer). The (overall) grade of
each object other than object n+ 1 is at most � = 1=(2�2).
Since �� = 1=(2�), which is less than the grade 1=� of ob-
ject n + 1, it follows that the unique object that can be
returned by an algorithm such as TA� that correctly �nds a
�-approximation to the top answer is the object n+ 1.
An algorithm that makes a wild guess and asks for the

grade of object n+1 in both lists would determine the correct
answer and be able to halt safely after two random accesses
and no sorted accesses. The algorithm could halt safely,
since it \knows" that it has found an object R such that
�t(R) = 1, and so �t(R) is at least as big as every possible
grade. However, under sorted access for list L1, TA� would
see the objects in the order 1; 2; : : : ; 2n+1, and under sorted
access for list L2, TA� would see the objects in the reverse
order. Since the winning object n + 1 is in the middle of
both sorted lists, it follows that at least n+1 sorted accesses
would be required before TA� would even see the winning
object. 2

Just as Example 4.4 was generalized into Theorem 4.5, we
can generalize Example 4.9 into the following theorem.

Theorem 4.10. Assume that � > 1. Let D be the class

of all databases that satisfy the uniqueness condition. Let A

be the class of all algorithms that �nd a �-approximation to

the top answer for min for every database in D. There is no

deterministic algorithm (or even probabilistic algorithm that

never makes a mistake) that is instance optimal over A and

D.

5. MINIMIZING RANDOM ACCESS
Thus far in this paper, we have not been especially con-

cerned about the number of random accesses. In our algo-
rithms we have discussed so far (namely, FA and TA), for
every sorted access, up to m�1 random accesses take place.
Recall that if s is the number of sorted accesses, and r is
the number of random accesses, then the middleware cost
is scS + rcR, for some positive constants cS and cR. Our
notion of optimality ignores constant factors like m and cR

(they are simply multiplicative factors in the optimality ra-
tio). Hence, there has been no motivation so far to concern
ourself with the number of random accesses.
There are, however, some scenarios where we must pay at-

tention to the number of random accesses. The �rst scenario
is where random accesses are impossible (which corresponds
to cR = 1). As we discussed in Section 2, an example of
this �rst scenario arises when the middleware system is a

text retrieval system, and the sorted lists correspond to the
results of search engines. Another scenario is where random
accesses are not impossible, but simply expensive, relative
to sorted access. An example of this second scenario arises
when the costs correspond to disk access (sequential versus
random). Then we would like the optimality ratio to be in-
dependent of cR=cS. That is, if instead of treating cS and
cR as constants, we allow them to vary, we would still like
the optimality ratio to be bounded.
In this section we describe algorithms that do not use

random access frivolously. We give two algorithms. One
uses no random accesses at all, and hence is called NRA (\No
Random Access"). The second algorithm takes into account
the cost of a random access. It is a combination of NRA
and TA, and so we call it CA (\Combined Algorithm").
Both algorithms access the information in a natural way,

and intuitively, halt when they know that no improvement
can take place. In general, at each point in an execution
of these algorithms where a number of sorted and random
accesses have taken place, for each object R there is a subset
S(R) = fi1; i2; : : : ; i`g � f1; : : : ; mg of the �elds of R where
the algorithm has determined the values xi1 ; xi2 ; : : : ; xi` of
these �elds. Given this information, we de�ne functions of
this information that are lower and upper bounds on the
value t(R) can obtain. The algorithm proceeds until there
are no more candidates whose current upper bound is better
than the current kth largest lower bound.
Lower Bound: Given an object R and subset S(R) =

fi1; i2; : : : ; i`g � f1; : : : ;mg of known �elds of R, with val-
ues xi1 ; xi2 ; : : : ; xi` for these known �elds, we de�ne WS(R)
(or W(R) if the subset S = S(R) is clear) as the minimum
(or worst) value the aggregation function t can attain for ob-
ject R. When t is monotone, this minimum value is obtained
by substituting for each missing �eld i 2 f1; : : : ;mgnS the
value 0, and applying t to the result. For example, if S =
f1; : : : ; `g, then WS(R) = t(x1; x2; : : : ; x`; 0; : : : ; 0). The
following property is immediate from the de�nition:

Proposition 5.1. If S is the set of known �elds of object

R, then t(R) �WS(R).

In other words, W (R) represents a lower bound on t(R). Is
it the best possible? Yes, unless we have additional informa-
tion, such as that the value 0 does not appear in the lists. In
general, as an algorithm progresses and we learn more �elds
of an object R, its W value becomes larger (or at least not
smaller). For some aggregation functions t the value W (R)
yields no knowledge until S includes all �elds: for instance if
t is min, then W (R) is 0 until all values are discovered. For
other functions it is more meaningful. For instance, when t

is the median of three �elds, then as soon as two of them
are known W (R) is at least the smaller of the two.
Upper Bound: The best value an object can attain de-

pends on other information we have. We will use only the
bottom values in each �eld, de�ned as in TA: x

i
is the last

(smallest) value obtained via sorted access in list Li. Given
an object R and subset S(R) = fi1; i2; : : : ; i`g � f1; : : : ;mg
of known �elds of R, with values xi1 ; xi2 ; : : : ; xi` for these
known �elds, we de�ne BS(R) (or B(R) if the subset S is
clear) as the maximum (or best) value the aggregation func-
tion t can attain for object R. When t is monotone, this
maximum value is obtained by substituting for each miss-
ing �eld i 2 f1; : : : ;mgnS the value x

i
, and applying t to

the result. For example, if S = f1; : : : ; `g, then BS(R) =



t(x1; x2; : : : ; x`; x`+1; : : : ; xm). The following property is
immediate from the de�nition:

Proposition 5.2. If S is the set of known �elds of object

R, then t(R) � BS(R).

In other words, B(R) represents an upper bound on the
value t(R) (or the best value t(R) can be), given the in-
formation we have so far. Is it the best upper bound? If
the lists may each contain equal values (which in general
we assume they can), then given the information we have it
is possible that t(R) = BS(R). If the uniqueness property
holds (equalities are not allowed in a list), then for contin-
uous aggregation functions t it is the case that B(R) is the
best upper bound on the value t can have on R. In general,
as an algorithm progresses and we learn more �elds of an
object R and the bottom values x

i
decrease, B(R) can only

decrease (or remain the same).
An important special case is an object R that has not been

encountered at all. In this case B(R) = t(x1; x2; : : : ; xm).
Note that this is the same as the threshold value in TA.

5.1 No Random Access Algorithm—NRA
As we have discussed, there are situations where random

accesses are forbidden. We now consider algorithms that
make no random accesses. Since random accesses are forbid-
den, in this section we change our criterion for the desired
output. In earlier sections, we demanded that the output
be the \top k answers", which consists of the top k objects,
along with their (overall) grades. In this section, we make
the weaker requirement that the output consist of the top
k objects, without their grades. The reason is that, since
random access is impossible, it may be much cheaper (that
is, require many fewer accesses) to �nd the top k answers
without their grades. This is because, as we now show by
example, we can sometimes obtain enough partial informa-
tion about grades to know that an object is in the top k

objects without knowing its exact grade.

Example 5.3. Consider the following scenario, where the
aggregation function is the average, and where k = 1 (so that
we are interested only in the top object). There are only two
sorted lists L1 and L2, and the grade of every object in both
L1 and L2 is 1/3, except that object R has grade 1 in L1

and grade 0 in L2. After two sorted accesses to L1 and one
sorted access to L2, there is enough information to know
that object R is the top object (its average grade is at least
1/2, and every other object has average grade at most 1/3).
If we wished to �nd the grade of object R, we would need
to do sorted access to all of L2. 2

Note that we are requiring only that the output consist of
the top k objects, with no information being given about
the sorted order (sorted by grade). If we wish to know the
sorted order, this can easily be determined by �nding the
top object, the top 2 objects, etc. Let Ci be the cost of
�nding the top i objects. It is interesting to note that there
is no necessary relationship between Ci and Cj for i < j.
For example, in Example 5.3, we have C1 < C2. If we were
to modify Example 5.3 so that there are two objects R and
R
0 with grade 1 in L1, where the grade of R in L2 is 0,

and the grade of R0 in L2 is 1/4 (and so that, as before,
all remaining grades of all objects in both lists is 1/3), then
C2 < C1.

The cost of �nding the top k objects in sorted order is
at most kmaxi Ci. Since we are treating k as a constant,
it follows easily that we can convert our instance optimal
algorithm (which we shall give shortly) for �nding the top
k objects into an instance optimal algorithm for �nding the
top k objects in sorted order. In practice, it is usually good
enough to know the top k objects in sorted order, without
knowing the grades. In fact, the major search engines on
the web no longer give grades (possibly to prevent reverse
engineering).
The algorithm NRA is as follows.

1. Do sorted access in parallel to each of the m sorted
lists Li. At each depth d (when d objects have been
accessed under sorted access in each list) maintain the
following:

� The bottom values x
(d)

1 ; x
(d)

2 ; : : : ; x
(d)
m

encountered
in the lists.

� For every object R with discovered �elds S =
S
(d)(R) � f1; : : : ;mg the valuesW (d)(R) =WS(R)

and B
(d)(R) = BS(R).

� The k objects with the largest W (d) values seen
so far (and their grades); if two objects have the

same W (d) value, then ties are broken using the
B

(d) values, such that the object with the highest
B

(d) value wins (and arbitrarily if there is a tie

for the highest B(d) value). Denote this top k list

by T
(d)

k
. Let M

(d)

k
be the kth largest W (d) value

in T
(d)

k
.

2. Call an object R viable if B(d)(R) > M
(d)

k
. Halt when

(a) at least k distinct objects have been seen (so that

in particular T
(d)

k
contains k objects) and (b) there

are no viable objects left outside T
(d)

k
, that is, when

B
(d)(R) � M

(d)

k
for all R 62 T

(d)

k
. Return the objects

in T
(d)

k
.

We now show that NRA is correct for each monotone aggre-
gation function t.

Theorem 5.4. If the aggregation function t is monotone,
then NRA correctly �nds the top k objects.

Proof: Assume that NRA halts after d sorted accesses to
each list, and that T

(d)

k
= fR1;R2; : : : ; Rkg. Thus, the ob-

jects output by NRA are R1;R2; : : : ;Rk. Let R be an object
not among R1;R2; : : : ;Rk. We must show that t(R) � t(Ri)
for each i.
Since the algorithm halts at depth d, we know that R is

nonviable at depth d, that is, B(d)(R) �M
(d)

k
. Now t(R) �

B
(d)(R) (Proposition 5.2). Also for each of the k objects

Ri we have M
(d)

k
� W

(d)(Ri) � t(Ri) (from Proposition 5.1

and the de�nition of M
(d)

k
). Combining the inequalities we

have shown, we have

t(R) � B
(d)(R) �M

(d)

k
� W

(d)(Ri) � t(Ri)

for each i, as desired. 2

Note that the tie-breaking mechanism was not signi�cant
for correctness. We claim instance optimality of NRA over
all algorithms that do not use random access:



Theorem 5.5. Assume that the aggregation function t is
monotone. Let D be the class of all databases. Let A be the

class of all algorithms that correctly �nd the top k objects for

t for every database and that do not make random accesses.

Then NRA is instance optimal over A and D.

Note that the issue of \wild guesses" is not relevant here,
since no algorithm that makes no random access can get any
information about an object except via sorted access.
Implementation of NRA: Unfortunately, the execution

of NRA may require a lot of bookkeeping at each step, since
when NRA does sorted access at depth t (for 1 � t � d), the

value of B(t)(R) must be updated for every object R seen so
far. This may be up to dm updates for each depth t, which
yields a total of 
(d2) updates by depth d. Furthermore,
unlike TA, it no longer su�ces to have bounded bu�ers.
However, for a speci�c function like min it is possible that
by using appropriate data structures the computation can be
greatly simpli�ed. This is an issue for further investigation.

5.2 Taking into Account the Random Access
Cost

We now present the combined algorithm CA that does
use random accesses, but takes their cost (relative to sorted
access) into account. As before, let cS be the cost of a
sorted access and cR be the cost of a random access. The
middleware cost of an algorithm that makes s sorted accesses
and r random ones is scS+rcR. We know that TA is instance
optimal; however, the optimality ratio is a function of the
relative cost of a random access to a sorted access, that
is cR=cS. Our goal in this section is to �nd an algorithm
that is instance optimal and where the optimality ratio is
independent of cR=cS. One can view CA as a merge between
TA and NRA. Let h = bcR=cSc. We assume in this section
that cR � cS, so that h � 1. The idea of CA is to run
NRA, but every h steps to run a random access phase and
update the information (the upper and lower bounds B and
W ) accordingly. As in Section 5.1, in this section we require
only that the output consist of the top k objects, without
their grades. If we wish to obtain the grades, this requires
only a constant number of additional random accesses, and
so has no e�ect on instance optimality.
The algorithm CA is as follows.

1. Do sorted access in parallel to each of the m sorted
lists Li. At each depth d (when d objects have been
accessed under sorted access in each list) maintain the
following:

� The bottom values x
(d)

1 ; x
(d)

2 ; : : : ; x
(d)
m

encountered
in the lists.

� For every object R with discovered �elds S =
S
(d)(R) � f1; : : : ;mg the valuesW (d)(R) =WS(R)

and B
(d)(R) = BS(R).

� The k objects with the largest W (d) values seen
so far (and their grades); if two objects have the

same W (d) value, then ties are broken using the
B

(d) values, such that the object with the highest
B

(d) value wins (and arbitrarily if there is a tie

for the highest B(d) value). Denote this top k list

by T
(d)

k
. Let M

(d)

k
be the kth largest W (d) value

in T
(d)

k
.

2. Call an object R viable if B(d)(R) > M
(d)

k
. Every

h steps (that is, every time the depth of sorted access
increases by h), do the following: pick the viable object

R whose B(d) value is the maximum and for which not

all �elds are known. Perform random accesses for all
the (at most m� 1) missing �elds.

3. Halt when (a) at least k distinct objects have been seen

(so that in particular T
(d)

k
contains k objects) and (b)

there are no viable objects left outside T
(d)

k
, that is,

when B
(d)(R) � M

(d)

k
for all R 62 T

(d)

k
. Return the

objects in T
(d)

k
.

Note that if h is very large (say larger than the number
of objects in the database), then algorithm CA is the same
as NRA, since no random access is performed. Similarly, if
h is very small, say h = 1, then algorithm CA is essentially
the same as TA, since for each step of doing sorted access
in parallel we perform random accesses for all of the miss-
ing �elds of some object. If instead of performing random
accesses for all of the missing �elds of some object, we per-
formed random accesses for all of the missing �elds of each
object seen in sorted access, then the resulting algorithm
would be identical to TA. However, for moderate values of
h it is not the case that CA is equivalent to the intermit-
tent algorithm that executes h steps of NRA and then one
step of TA. In the full paper, we give an example where the
intermittent algorithm performs much worse than CA. The
di�erence between the algorithms is that CA picks \wisely"
on which objects to perform the random access, namely, ac-
cording to their B(d) values.
Correctness of CA is essentially the same as for NRA,

since the same upper and lower bounds are maintained:

Theorem 5.6. If the aggregation function t is monotone,
then CA correctly �nds the top k objects.

In the next section, we consider scenarios under which CA
is instance optimal, with the optimality ratio independent
of cR=cS.

5.3 Instance Optimality of CA: Positive and
Negative Results

In Section 4, we gave two scenarios under which TA is
instance optimal over A and D. In the �rst scenario (from
Theorem 4.3), (1) the aggregation function t is monotone;
(2) D is the class of all databases; and (c) A is the class
of all algorithms that correctly �nd the top k objects for t
for every database and that do not make wild guesses. In
the second scenario (from Theorem 4.6), (1) the aggregation
function t is strictly monotone; (2) D is the class of all
databases that satisfy the uniqueness property; and (3) A
is the class of all algorithms that correctly �nd the top k

objects for t for every database in D. We might hope that
under either of these two scenarios, CA is instance optimal,
with optimality ratio independent of cR=cS. Unfortunately,
this hope is false, in both scenarios. In fact, we shall give
theorems that say that not only does CA fail to ful�ll this
hope, but so does every algorithm! In other words, neither
of these scenarios is enough to guarantee the existence of
an algorithm that is instance optimal, with optimality ratio
independent of cR=cS.
However, we shall see that by slightly strengthening the

assumption on t in the second scenario, CA becomes in-
stance optimal, with optimality ratio independent of cR=cS.



Let us say that the aggregation function t is strictly mono-

tone in each argument if whenever one argument is strictly
increased and the remaining arguments are held �xed, then
the value of the aggregation function is strictly increased.
That is, t is strictly monotone in each argument if xi < x

0

i

implies that

t(x1; : : : ; xi�1; xi; xi+1; : : : ; xm)

< t(x1; : : : ; xi�1; x
0

i; xi+1; : : : ; xm):

The average (or sum) is strictly monotone in each argument,
whereas min is not.
We shall see (Section 5.4) that in the second scenario

above, if we replace \The aggregation function t is strictly
monotone" by \The aggregation function t is strictly mono-
tone in each argument", then CA is instance optimal, with
optimality ratio independent of cR=cS. We shall also see
that the same result holds if instead, we simply take t to
be min, even though min is not strictly monotone in each
argument.

5.4 Positive Results about CA
The next theorem says that in the second scenario above,

if we replace \The aggregation function t is strictly mono-
tone" by \The aggregation function t is strictly monotone
in each argument", then CA is instance optimal, with opti-
mality ratio independent of cR=cS.

Theorem 5.7. Assume that the aggregation function t is
strictly monotone in each argument. Let D be the class of all

databases with the uniqueness property. Let A be the class

of all algorithms that correctly �nd the top k objects for t for

every database in D. Then CA is instance optimal over A

and D, with optimality ratio independent of cR=cS.

The next theorem says that for the function min (which
is not strictly monotone in each argument), algorithm CA
is still instance optimal.

Theorem 5.8. LetD be the class of all databases with the

uniqueness property. Let A be the class of all algorithms that

correctly �nd the top k objects when the aggregation function

is min for every database inD. Then CA is instance optimal

over A and D, with optimality ratio independent of cR=cS.

5.5 Negative Results about CA
In this section, we see that even under the scenarios of

Theorems 4.3 and 4.6, there is no algorithm that is instance
optimal, with optimality ratio independent of cR=cS.
We begin with a theorem that says that the conditions of

Theorem 4.3 (i.e., not allowing wild guesses) are not su�-
cient to guarantee the existence of an instance optimal al-
gorithm with optimality ratio independent of cR=cS, even
when the aggregation function is min, and when k = 1 (so
that we are interested only in the top object).

Theorem 5.9. Let D be the class of all databases. Let

A be the class of all algorithms that correctly �nd the top

object for min for every database and that do not make wild

guesses. There is no deterministic algorithm (or even prob-

abilistic algorithm that never makes a mistake) that is in-

stance optimal over A and D, where the optimality ratio is

independent of cR=cS.

We now give a theorem that says that the conditions of
Theorem 4.6 (i.e., strict monotonicity and the uniqueness

property) are not su�cient to guarantee the existence of an
instance optimal algorithm with optimality ratio indepen-
dent of cR=cS, even when k = 1 (so that we are interested
only in the top object). In this counterexample, we take
the aggregation function t to be given by t(x1; x2; x3) =
min(x1+x2; x3). Note that t is strictly monotone, although
it is not strictly monotone in each argument. This shows
that in Theorem 5.7, we needed to assume that t is strictly
monotone in each argument, rather than simply assuming
that t is strictly monotone.

Theorem 5.10. Let the aggregation function t be given

by t(x1; x2; x3) = min(x1+ x2; x3). Let D be the class of all

databases that satisfy the uniqueness property. Let A be the

class of all algorithms that correctly �nd the top object for t

for every database inD. There is no deterministic algorithm

(or even probabilistic algorithm that never makes a mistake)

that is instance optimal over A andD, where the optimality

ratio is independent of cR=cS.

6. RELATED WORK
Nepal and Ramakrishna [9] de�ne an algorithm that is

equivalent to TA. Their notion of optimality is weaker than
ours. F



list should be accessed next under sorted access can be forced
to be instance optimal simply by insuring that each list is
accessed under sorted access at least every u steps, for some
constant u.
In another paper, G�untzer, Balke, and Kiessling [6] con-

sider the situation where random accesses are impossible.
Once again, they de�ne a basic algorithm, called \Stream-
Combine (basic version)" and a modi�ed algorithm (\Stream-
Combine") that incorporates a heuristic rule that tells which
sorted list Li to do a sorted access on next. Neither version
of Stream-Combine is instance optimal. The reason that
the basic version of Stream-Combine is not instance opti-
mal is that it considers only upper bounds on overall grades
of objects, unlike our algorithm NRA, which considers both
upper and lower bounds. They require that the top k objects
be given with their grades (whereas as we discussed, we do
not require the grades to be given in the case where random
accesses are impossible). Their algorithm cannot say that
an object is in the top k unless that object has been seen
in every sorted list. Note that there are monotone aggrega-
tion functions (such as max, or more interestingly, median)
where it is possible to determine the overall grade of an ob-
ject without knowing its grade in each sorted list.

7. CONCLUSIONS
We studied the elegant and remarkably simple algorithm

TA, as well as algorithms for the scenario where random ac-
cess is forbidden or expensive relative to sorted access (NRA
and CA). To study these algorithms, we introduced the in-
stance optimality framework in the context of aggregation
algorithms, and provided both positive and negative results.
This framework is appropriate for analyzing and comparing
the performance of algorithms, and provides a very strong
notion of optimality. We also considered approximation al-
gorithms, and provided positive and negative results about
instance optimality there as well.
Two interesting lines of investigation are: (i) �nding other

scenarios where instance optimality can yield meaningful re-
sults, and (ii) �nding other applications of our algorithms,
such as in information retrieval.
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