
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Linear Extended Annotation Graphs
Vincent Barrellon

Univ Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205
Villeurbanne, France F-69621

�rstname.lastname@insa-lyon.fr

Pierre-Edouard Portier
Univ Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205

Villeurbanne, France F-69621
�rstname.lastname@insa-lyon.fr

Sylvie Calabre�o
Univ Lyon, INSA-Lyon, CNRS, LIRIS, UMR5205

Villeurbanne, France F-69621
�rstname.lastname@insa-lyon.fr

Olivier Ferret
Univ Lyon, Lyon 2, CNRS, IHRIM, UMR5317

Lyon, France F-69365
�rstname.lastname@univ-lyon2.fr

ABSTRACT
Multistructured (M-S) data models were introduced to allow the
expression of multilevel, concurrent annotation. However, most
models lack either a consistent or an e�cient validation mechanism.
In a former paper, we introduced extended Annotation Graphs
(eAG), a cyclic-graph data model equipped with a novel schema
mechanism that, by allowing validation “by construction”, bypasses
the typical algorithmic cost of traditional methods for the validation
of graph-structured data. We introduce here LeAG, a markup syntax
for eAG annotations over text data. LeAG takes the shape of a classic,
inline markup model. A LeAG annotation can then be wri�en, in a
human-readable form, in any notepad application, and saved as a
text �le; the syntax is simple and familiar – yet LeAGs propose a
natural syntax for multilayer annotation with (self-) overlap and
links. From a theoretical point of view, LeAG inaugurates a hybrid
markup paradigm. Syntactically speaking, it is a full inline model,
since the tags are all inserted along the annotated resources; still,
we evidence that representing independent elements’ co-occurring
in an inline manner requires to make the annotation rest upon
a notion of chronology, that is typical of stand-o� markup. To
our knowledge, LeAG is the �rst inline markup syntax to properly
conceptualize the notion of elements’ accidental co-occurring, that
is yet fundamental in multilevel annotation.

CCS CONCEPTS
•Applied computing → Annotation; •Information systems
→ Data model extensions; •�eory of computation→ Data struc-
tures design and analysis;

KEYWORDS
Multistructured data; Markup models.

ACM Reference format:
Vincent Barrellon, Pierre-Edouard Portier, Sylvie Calabre�o, and Olivier
Ferret. 2017. Linear Extended Annotation Graphs. In Proceedings of ACM
Document Engineering, Malta, September 2017 (DocEng2017), 10 pages.
DOI: 10.475/123 4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DocEng2017, Malta
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

1 INTRODUCTION
�e emergence of Digital Humanities has lead to the development
of a great number of digital scholarly publishing projects. Most
favour the well-known XML-TEI annotation language for transcrip-
tion and critical enrichment. Indeed, the TEI provides the scholar
with an extremely well-documented schema [10], broad enough
to �t almost any kind of primary document, and bene�ts from the
assets of XML languages: it is extensible, can be queried, validated
and transformed easily. �e XML-TEI thus appears as the go-to
technology for the editing scholar today.
Yet, editorial criticisms [26] apart, the TEI-XML language su�ers
from strong formal limitations, inherent to the XML model. In
practice, trees are known not to �t some quite common textual
description pa�erns [10, 20, 23]. In particular, XML does not handle
overlapping elements, which is an obstacle towards multi-level [34]
annotation; additionally, inclusion being represented by nesting in
XML (i.e. the location of an element within the scope of another
one), there is no way to represent accidental nesting or co-location,
that is, the fact two elements occurring at the same place might be
independent (and not included one into the other). Inter-elements
relations (other than structural relations) cannot be represented
but by a�ribute equalities (exempli�ed by the ID/IDREF mecha-
nism), notoriously hard to restrict by means of a schema [3, 31] and
possibly hindering querying [14]. Propositions have been made
to conform TEI-XML with more expressive data models [6, 8, 10];
while interesting, those propositions are not compliant with the
classic XML tools (XSD, XSLT, etc.) [17].
Some alternative ‘multistructured’ data models have been proposed
to overcome the expressive limitations of XML, by relying on more
general directed acyclic graph formalisms than just trees [31], or
even cyclic graphs [16] – while maintaining the possibility to val-
idate the data. Yet, acyclic models, if they do allow multilayer
annotation, exhibit the same weakness as XML regarding the rep-
resentation (and hence, the validation) of non-structural relations
between elements; cyclic data models, that rely upon RDF, do not
bene�t from an e�cient validation mechanism yet [29, 30].
In a former paper [2], we introduced extended Annotation Graphs
(eAG), a cyclic-graph data model experimenting the simulation re-
lation [19] as a validation mechanism. An interesting aspect of
simulation is, as we evidenced, that it can be guaranteed by con-
struction, enabling to validate cyclic, multistructured data on the
�y, just like when using grammar-based validators for XML.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

DocEng2017, September 2017, Malta V. Barrellon et al.

Figure 1: �e eAG syntax in a nutshell.

We introduce here LeAG, a markup syntax for textual eAG annota-
tions. LeAG takes the shape of a classic, inline markup model. A
LeAG annotation can then be wri�en, in a familiar, human-readable
form, in any notepad application, and saved as a text �le – yet LeAG
o�ers a natural syntax for overlapping, multilayer annotation.
First, we provide the reader with a quick, example-based summary
of the eAG data model. We then introduce the LeAG syntax based on
the same examples, so as to make the translation between an eAG
and a LeAG clear. We eventually elaborate how a LeAG document
can be deterministically parsed into a corresponding eAG.

2 EXTENDED ANNOTATION GRAPHS
Extended Annotation Graphs (eAG) [2] is a schema-aware, stand-
o� markup model. Following [4], it is based upon the notion of
chronology. A chronology is an ordered set of reference values
that index the data to be annotated (e.g. inter-character positions
for texts). An eAG is a rooted, single-leafed, directed and labelled
graph whose nodes bear a reference value. Basically, a labelled edge
connecting two nodes v1 and v2 is a tag put onto the portion of
the data delimited by the reference values of v1 and v2. �e edge
and nodes together constitute an element – see �gure 1.a. �e
following notions re�ne this general principle.
Sequential annotation [�g. 1.a] eAG enables to de�ne not only
elements, but also sequences of elements. An element B directly
follows an element A i� the end of A and the start of B are one

same node. eAG also enables to express sparse sequences : the gap
between two consecutive elements is �lled by a ‘blank annotation’1.
Inclusion [�g. 1.b] It is possible to assess that a sequence S of ele-
ments is included in another element A (i.e. that A is constituted of
the elements S), by encasing S between two edges A:In and A:Out.
An element can be included in more than one element. �is prop-
erty enables to express multitrees and goddags [28]. It is worth
noting that a hierarchy of elements takes the shape of a path: we
call them hierarchical annotation path (HAP). �e spine of an
eAG is an acyclic set of HAP sharing elements.
Attributes [�g. 1.c] �e a�ributes of an eAG element X are ele-
ments whose labels bear the su�x :A�, and that are included in
a special element X:A� itself included in X . �e values of the at-
tributes are not part of the initial, primary corpus: they belong to
separate, secondary resources, indexed by a speci�c chronology.
Links [�g. 1.d] Links are explicit relations between pairs of ele-
ments. In eAG, those relations are represented by special elements
whose root belongs to the source element, and whose leaf belongs
to the target element. �e name of the linking element bears the
su�x :LinkTo. A link can be structured (i.e. contain other elements)
or be a single edge. eAG links may induce cycles; yet, they are
handled by an SeAG schema just like any other element.
�otes [�g. 1.e] eAG introduced quoting elements to meet the
need of scholars for inserting, inside a commentary, part of an
exogeneous, possibly annotated, resource [12]. A quoting element
is an a�ribute whose content is a sequence of elements identi�ed
in the primary resources. �otes necessarily result in cyclic graphs
[2] (see p. 7); yet, they too are handled by SeAG schemas.
Apart from the expressive power of this syntax (illustrated below),
the eAG model bene�ts from a schema language (SeAG) that man-
ages multistructured, overlapping, cyclic annotation. SeAG valida-
tion relies upon the notion of rooted simulation2 [2]. Intuitively,
the existence of a simulation of an eAG IS by a schema S implies
that all the paths of IS starting at its root have a corresponding
path in S , whose label sequence is identical. Yet, as shown above,
the syntactical structures of an eAG are made out of sequences of
elements, i.e., of labelled paths. �us, S is descriptive of IS , because
any sequence of elements in IS must have a matching sequence in
S . Conversely, S works like a schema: it simulates (validates) the
graphs that contain solely sequences of elements it de�nes.
Figure 2 illustrates SeAG validation. �e paths the schema S con-
tains de�ne the set of valid element sequences for the instances (e.g.
[Unit1 - Unit2 - Unit3]). SeAG also makes use of epsilon edges, or
blank annotations, to denote optional (e.g. Unit3 can be bypassed
by the ϵ4 edge, resulting in [Unit1 - Unit3]) or repeatable elements
(e.g. since ϵ2 de�nes a cycle, any repetition of 6Le�ers is valid).
Importantly, SeAG supports two kinds of multilayering annotation.
First, two parallel paths of the schema can be instantiated, indepen-
dently (i.e. without worrying about overlap), on the same resource
(cf. Ia on �g. 2). We call this schema-based multilayering. Sec-
ond, one path of the schema can be instantiated several times on the
same portion of the resources (cf. Ib , same �g.). �is simulation-
based multilayering allows the expression of self-overlapping
elements, quite useful in linguistics, as illustrated below.

1Represented by do�ed, ‘epsilon edges’ herea�er.
2Node-typed [2], rooted simulation actually; yet, node types can be omi�ed here.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Linear Extended Annotation Graphs DocEng2017, September 2017, Malta

Figure 2: �e schema S contains several parallel paths de�n-
ing the valid element sequences. One element is optional
(Unit2), one can be repeated (6Le�ers). �e eAG Ia instanti-
ates two di�erent paths on the same text. Ib instantiates the
same path of the schema twice.

3 A RUNNING EXAMPLE
A common linguistic annotation is the identi�cation of anaphoric
chains (AC). ACs are sequences of singular expressions so that if
one of them refers to something, then they all do [9]. Consider the
following text, adapted from �e Village of Ben Suc by J. Schell:

An ARVN o�cer asked a young prisoner questions, and when he failed
to answer, beat him. An American observer who saw the beating that
happened then reported that the o�cer “really worked him over”. A�er
the beating, the prisoner was forced to remain standing for hours.

One may identify, among others, the following ACs: [a young pris-
oner / he / him / him / the prisoner], [An American observer who
saw the beating], [the beating that happened then / the beating].
Annotating the text in terms of ACs made out of expressions is not
trivial in XML. Since ACs do not form neither a sequence nor a
hierarchy, they cannot be represented as normal, spanning XML
elements. �e classic solution is to identify only the singular expres-
sions in the text and then relate them together accordingly by their
IDs in <linkgrp> elements [11]. �at solution, apart from being
hard to validate, does not represent the fact an AC is composed of
expressions consistently with the XML syntax. Moreover, it does
not extend to this example, which exhibits self-overlap [28]3.
In SeAG/eAG, annotating anaphoric chains is straightforward. Sup-
pose we aim at identifying the ACs and their constitutive expres-
sions, but also to qualify their relative weight, e.g. by reifying the
relation ‘this AC contains more expressions than that one’. �e
SeAG schema for that annotation is given on �gure 3. �at schema
de�nes an Extract element containing one, or several parallel, ACs,
each containing one or more Exp elements; also, an AC may be the
source of a Longer:LinkTo link targeting an AC. A corresponding
eAG (restricted to the ACs relative to the American observer and the
beating) is given on the same �gure. Noteworthily, since eAG is a
stand-o� markup model, overlap is expressed naturally4.

3Cf. An American observer who saw the beating and the beating that happened then.
4Cf. the Exp elements ranging from r1 to r3 and r2 to r4 respectively.

4 LINEAR EXTENDED ANNOTATION
GRAPHS

Linear extended Annotation Graphs (LeAG) is an inline markup
syntax for eAG. �e purpose of LeAG is to enable the expression
of eAG annotations by means of any notepad application, in a
human-readable form. LeAG must therefore: 1) support unambigu-
ous translation into the eAG syntax, and 2) enable to represent, by
means of tags, multilayer, cyclic annotation.
�e �rst part of this paragraph is a theoretical discussion about
the hybrid nature of the LeAG markup, between the inline and
stand-o� paradigms, which will lead to the formulation of an equiv-
alence relation for LeAG documents. We then introduce, step by
step, the LeAG syntax: we gradually show how to represent the
di�erent bricks eAGs are made of in a markup manner: hierarchies,
multitrees (and goddags), a�ributes, links and quotes. We then
interrogate the correspondence between eAG and LeAG, in order
to establish the parsability of LeAG into eAG.

4.1 Inline multilayer annotation
Multistructured models are meant to support the simultaneous ex-
pression of several annotation paradigms. For instance, one may
want to annotate a text by identifying, independently, its gram-
matical (substantive, adjective, etc.) and its semantic (proposition,
topic, etc.) structures. To achieve that goal, eAG makes a clear
distinction between the representation of inclusion5, which is a
modelling relation that makes sense within one annotation para-
digm, and nesting or co-occurrence6, which is a fortuitous situa-
tion in which two independent elements occur at the same place.
And indeed, the eAG syntax for inclusion is explicit (see �gure 1.b),
while nesting happens when two elements X and Y are so that
ref(start(X)) ≤ ref(start(Y)) and ref(end(Y)) ≤ ref(end(X)) – hence
nesting is uniquely de�ned in terms of reference values.
Yet the notion of chronology is quite impacted by the shi� from
stand-o� to inline markup. In eAG, in order to �t multimedia an-
notation, several chronologies can be de�ned, and each node is
associated a value from one of those chronologies. In a text-only
markup se�ing, a natural chronology is implied by the text itself:
the set of inter-character positions. As a consequence, LeAG rests
upon that single, natural chronology, that does not even need to be
made explicit: tags are simply inserted, within the text stream to be
annotated, at the position a corresponding node of an eAG would
have made reference to. E.g., annotating the substantive in “Let us
garlands bring.” is done by inserting a pair of tags as follows: “Let
us [Substantive}garlands{Substantive] bring.”
Still, in spite of being considerably simpli�ed compared to eAG, the
notion of chronology is still central to LeAG, because it is absolutely
necessary in order to represent co-occurrence or nesting. Consider
the very elementary text stream ABC. A chronology for this text is:
{start() = before(A), a�er(A) = before(B), a�er(B) = before(C), a�er(C)
= end()}. Identifying an element Ω between the positions before(A)
and before(C) is done as follows: [Ω}AB{Ω]C. �e text stream, since
it has been added new characters (the ones that constitute the tags),
has been altered by this operation.

5E.g. a proposition contains a topic.
6A word may happen to be both a substantive and the topic of a proposition: topic and
substantive co-occur; substantive is nested in proposition;topic is included in proposition.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

DocEng2017, September 2017, Malta V. Barrellon et al.

Figure 3: SeAG/eAG illustrating anaphoric chain annotation.
An Extract contains overlapping AC, composed of overlap-
ping expressions. �e Longer:LinkTo link rei�es a relation
from the more to the less numerous AC.

Yet, interestingly, even in the annotated text stream, the original
chronology is still operative to index a very particular text sub-
stream, that is, the text stripped from the tags – i.e. the original
stream. �is may sound tautological; nonetheless, this remark is
fundamental, since this bare text stream is the one an editor will con-
sider when she wants to annotate the corpus independently from
any previous annotation – that is, when proceeding to multilayer
annotation. Indeed, if the editor wants to identify another element
ω, ranging from before(A) to before(C), she may insert an opening
tag at the position before(A), and a closing tag at before(C), without
considering the other tags, resulting in7 A1 =[Ω}[ω}AB{Ω]{ω]C.
One may also consider that, in the original text stream, start() =
before(A) – so the annotation A2 =[ω}[Ω}AB{Ω]{ω]C (where [ω}
is inserted at the position start() this time) shall be considered
equivalent to A1. Similarly, since the two elements Ω and ω are
independent, the order in which they are identi�ed shall be indif-
ferent: the two opening (closing, respectively) tags in A1 and A2
can be inverted, resulting in two more equivalent markups: A′1 =
[ω}[Ω}AB{ω]{Ω]C and A′2 = [Ω}[ω}AB{ω]{Ω]C.
Hence the following relation:
Equivalent LeAG. Let us call trains of tags the largest sets of
tags, in a LeAG, that are not separated by a character from the
original text. Two LeAG are equivalent i� they di�er only by the
order of the tags that belong to their respective trains of tags.
�is notion of equivalence actually re�ects the fact LeAG, though it
is an inline markup syntax, rests upon a notion of chronology that
is typical of stand-o� markup models. Indeed, one way to interpret
the above equivalence relation is by saying that in a LeAG, tags
only make reference to the position they occupy in the original text
stream. Surely, two tags making reference to the same position may
be wri�en in any order. Since, in practice, two such tags will not
be separated by any character from the bare data and constitute a
‘train of tags’, it follows that in a train of tags, the order in which
the tags are wri�en is indi�erent.
7See paragraph 4.2.2 for the actual syntax for multilayer annotation.

As a consequence, contrary to XML, the nesting of an element B
inside the scope of an element A cannot be a means to represent
the inclusion of B inside A. �us a syntax is needed to represent
inclusion (cf. 4.2.1). Second, since inserting tags does not alter the
chronology that indexes the original text, tags can be considered
not to take “any room” along that chronology. �is suggests that
inserting exogenous resources within the primary resources, e.g.
structured comments, can be done inside special tags that open and
close at the same position in the original stream (cf. 4.2.3).

4.2 �e LeAG syntax
In the following paragraph, based on the above considerations, we
gradually introduce the LeAG syntax. �e content of the LeAG tags
will be de�ned by means of formulae in which orange characters
are constants and italics denotes variables. (Black) parenthesis
are mathematical delimiters, not variables or constants. A �eld is
either a variable or a formula enclosed in parenthesis. An optional
�eld is followed by the character ?. A �eld that can be repeated
is followed by +, one that is both optional and can be repeated
is followed by *. Concatenation is implicit. Space characters are
represented by underscores.

4.2.1 Mono-hierarchy of a�ribute-less elements. As stated above,
some explicit syntax is needed to represent inclusion in a markup
model that supports multilayer annotation. �is paragraph presents
how to express single-layered annotation. �e next paragraph ex-
tends LeAG towards multilayered annotation.
Elementary spanning elements. An elementary spanning ele-
ments (ESE) is the syntactical structure dedicated to the labelling of
a section of the primary resources, with the possibility to assess that
the current element is included in other elements of the annotation.
ESE are represented by a pair of opening and closing tags whose
substance �eld has the same value, according to the following:

OTag := [substance }
CTag := { substance]
substance := name fathers? (, ID)?
fathers := in context

Above, name is the name of the current element and works as a
label on the primary resources enclosed by the pair of tags; context
provides a designation of the elements that contain the current
element8. �e ID �eld will be discussed in the paragraph 4.2.4.
�e content of an element is constituted of the tags themselves
and the whole text (primary resources + tags) they span over.
Rule 4.2.1 �e opening and the closing tags de�ning one ESE
cannot belong to the same train of tags.
Back to the example. In order to identify one anaphoric chain
in the extract of �e Village of Ben Suc, it su�ces to de�ne three
element names Extract, AC and Exp for the identi�cation of the
extract, the AC and its constituting expressions respectively, and
to build the following pairs of opening/closing tags:

- [Extract} and {Extract] ;
- [AC in Extract} and {AC in Extract], assessing that

an AC is included in an extract;
- [Exp in AC} and {Exp in AC], assessing that an expres-

sion is included in an AC.
8We will see that an element may have more than one father, thanks to the notion of
gra�s. See paragraph 4.2.2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Linear Extended Annotation Graphs DocEng2017, September 2017, Malta

�e following LeAG L1 annotates the anaphoric chain regarding
the young prisoner accordingly.
L1 :[Extract}An ARVN o�cer asked [AC in Extract}[Exp in AC}a

young prisoner{Exp in AC] several questions, and when [Exp in

AC}he{Exp in AC] failed to answer, beat [Exp in AC}him{Exp in

AC]. An American observer who saw the beating that happened then
reported that the o�cer “really worked [Exp in AC}him{Exp in AC]

over”. A�er the beating, [Exp in AC}the prisoner{Exp in AC]{AC in

Extract]was forced to remain standing for hours.{Extract]

4.2.2 Gra�s: Multilayer annotation. We now extend the above
syntax to multilayer annotation. Multilayer annotation may occur
in two distinct situations: �rst, the schema de�nes several anno-
tation paradigms; second, one path of the schema is instantiated
several times onto the same resources (�gure 2).
�e challenge is to make sure that in any case, the tags of a multi-
layer LeAG shall be unambiguously associated with the layer(s) they
are part of. When the set of the elements’ names of two co-existing
layers do not intersect, assessing to which layer a tag belongs is
trivial. At the opposite, simulation-based multilayering, which is
prone to self-overlap, will be problematic: in that case, two over-
lapping elements cannot be discriminated neither on the basis of
their name nor by looking at the name of their fathers. Anaphoric
chains annotation is a canonical example of such a se�ing.
For instance, in the excerpt of �e Village of Ben Suc, consider the
ACs relative to the American observer and the beating respectively.
A naı̈ve approach making use of the syntax for single-layered an-
notation would yield the following annotation – which is faulty:
[Extract}An ARVN o�cer […] beat him. [AC in Extract}1[Exp

in AC}2An American observer who saw [AC in Extract}3[Exp

in AC}4the beating{Exp in AC]5 {AC in Extract]6 that happened
then{Exp in AC]7 reported that the o�cer “really worked him over”.
A�er [Exp in AC}8the beating{Exp in AC]9 {AC in Extract]10, the
prisoner was forced to remain standing for hours.{Extract]

Indeed, it is undecidable whether the Exp element starting at the tag
4 ends at tag 5 or 7. Moreover, there would be no way to ascertain
to which AC an Exp ranging from tag 4 to tag 5 would belong to.
An intuitive disambiguating solution – at least to the human eye –
consists in colouring the tags belonging to distinct layers:
[Extract}An ARVN o�cer […] beat him. [AC in Extract}1[Exp

in AC}2An American observer who saw [AC in Extract}3[Exp

in AC}4the beating{Exp in AC]5 {AC in Extract]6 that happened
then{Exp in AC]7 reported that the o�cer “really worked him over”.
A�er [Exp in AC}8the beating{Exp in AC]9 {AC in Extract]10, the
prisoner was forced to remain standing for hours.{Extract]

Now it is clear that the element starting at tag 2 ends at tag 5,
overlapping with the element starting at tag 4 and ending at tag 7.
Importantly, not only have we coloured di�erently the elements
(2-5) and (4-7) in order to make their respective opening and closing
tags match, but also have we given a common colour to the elements
(3-10), (4-7) and (8-9), which indicates that the two expressions (4-7)
and (8-9) belong to the same AC (3-10), for instance.
Gra�s. �e notion of gra�s follows the above intuition. Gra�s
are coloured LeAGs that are anchored onto an existing LeAG. �ey
express, either locally or at the scale of the whole document, some
additional enrichment on top of the annotation that has, at a certain
point in time, been done already.

Figure 4: A LeAG and a matching eAG, where an element
(B) has two fathers, one in the uncoloured hierarchy, and
the other in a gra�. �e colours of B, namely #G and # (un-
coloured), are repeated in the context of its son element α .

Consider the LeAG L1 at the end of paragraph 4.2.1. L1 identi�es
one AC and its constituting expressions (Exp), within an extract.
A gra� must be de�ned in order to identify, in the same extract,
another AC, e.g. the AC regarding the beating, since this addition
will result in a non-hierarchical LeAG. �is is done as follows:
(1) �e element of the existing annotation that will serve as the

context of the gra� is identi�ed: Extract, here.
(2) A name of ‘colour’, nameC , is de�ned, in the form:

nameC := # colour
where colour is a string that identi�es the gra�, e.g. “#Red”.

(3) �e range of the gra� is speci�ed by inserting, within the frame
of the context element, a pair of colour tags:

Otag := [nameC in context >
Ctag := < nameC in context]

with the nameC and context �elds as de�ned above. For instance,
the span of the AC regarding “the beating” is the following:
[Extract} An American observer who saw [#Red over

Extract>the beating that happened then reported that the o�-
cer “really worked [Exp in AC}him{Exp in AC] over”. A�er the
beating<#Red over Extract], […] {Extract]

(4) �en nameC serves as a context for the top elements of the
gra�. Here, one AC element spans over the whole gra�:
[Extract} […] An American observer who saw [#Red over

Extract>[AC in #Red}the beating that happened then reported
that the o�cer “really worked [Exp in AC}him{Exp in AC] over”.
A�er the beating{AC in #Red]<#Red over Extract], [Exp in

AC}the prisoner […] {Extract]
(5) Elements included in the top elements of the gra� are de�ned,

their context �eld keeping record of the colour of the upper
element. For instance, here, two Exp belong to the red AC:
[Extract}[…] An American observer who saw [#Red over

Extract>[AC in #Red}[Exp in AC#Red}the beating that hap-
pened then{Exp in AC#Red] reported that the o�cer “really
worked [Exp in AC}him{Exp in AC] over”. A�er [Exp in

AC#Red}the beating{Exp in AC#Red]{AC in #Red]<#Red over

Extract], [Exp in AC}the prisoner […] {Extract]
Similarly, had one Exp element had any child, the context �eld
of the tags de�ning that element would have been Exp#Red.

Based on that principle, the LeAG L2 on �gure 5 identi�es the
three anaphoric chains regarding the prisoner, the beating and the
American observer respectively – which is a case of simulation-
based multilayer annotation with self-overlap.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

DocEng2017, September 2017, Malta V. Barrellon et al.

L1 :[Extract}An ARVN o�cer asked [Exp in AC}a young prisoner{Exp in

AC] questions, and when [Exp in AC}he{Exp in AC] failed to answer, beat
[Exp in AC}him{Exp in AC]. [#Blue over Extract>[AC in #Blue}[Exp

in AC#Blue}An American observer who saw [#Red over Extract>[AC

in #Red}[Exp in AC#Red}the beating<#Blue over Extract]{Exp in

AC#Blue]{AC in #Blue] that happened then{Exp in AC#Red] reported that
the o�cer “really worked [Exp in AC}him{Exp in AC] over”. A�er [Exp in

AC#Red}the beating{Exp in AC#Red]{AC in #Red]<#Red over Extract],
[Exp in AC}the prisoner{Exp in AC]{AC in Extract]was forced to remain
standing for hours.{Extract]

Figure 5: �ree-layered LeAG.

Complements. (1) Gra�s are added on top of an existing anno-
tation spanning over the whole document. Before the �rst gra�
is de�ned, the annotation has to be hierarchical9. �us we can
refer to this underlying hierarchical annotation as the uncoloured
hierarchy of a LeAG. Tags of this hierarchy either have no explicit
colour or, when they also belong to a coloured gra�, the colour of
that gra� plus a ‘blank’ colour, # – see element α in �gure 4. (2) A
gra� may be de�ned either on the underlying hierarchy (�gure 4)
or on an element from another gra�. (3) An element may have
several fathers, belonging to gra�s or to the uncoloured hierarchy
indi�erently (cf. element B, �gure 4). (4) �e span of the gra� shall
not necessarily equal the one of its context element (�gure 5).

4.2.3 Standard inserts: A�ributes; structured comment. So far,
we have seen how to label the primary resources by means of en-
tangled hierarchies of elementary spanning elements. Still, editing
is not only about labelling: sometimes, additional, structured in-
formation must be added on top of the labels. In XML, this kind of
information constitutes elements’ a�ributes; still, adding a�ributes
to an element is like annotating the element itself, that is, for the
editor, inserting secondary, structured data that does not bear on
the primary resources but on the tags.
Similarly, providing the editor with means to express critical in-
formation, not by labelling the primary resources, but by inserting
assertions is a useful feature. Introductions, comments and punctual
notes, in their digital form, fall into that category of annotations.
A�ributes and punctual comments share the property of not being
expressible with elementary spanning elements. In LeAG, both
will be represented by means of inserts. An insert is similar to
void elements in XML in that: (1) it is both opening and closing,
which means, in the LeAG vocabulary, that inserts start and end at
the same position; (2) it is self-contained, in the sense that the tag
representing the insert is the insert’s content.
Attribute insert: general syntax. �e syntax of an a�ribute in-
sert respects the following formula:

InsertA := [Att of context ; LeAG]

where context is the coloured name of the element whose a�ributes
are described in the insert, and LeAG is some structured data con-
form to the LeAG model, constituting the content of the a�ributes.

9�is is not a tough constraint, since a single element spanning over the whole corpus
is an elementary hierarchical annotation.

Attribute insert: example. So far, the passage of �e Village of
Ben Suc as a whole was simply labelled as an Extract. �e follow-
ing LeAG provides, as a�ributes of the Extract, the author’s name,
the title and the publication year of the novel:
[Extract}[Att of Extract ; [author}Jonathan Schell

{author][title}The Village of Ben Suc{title][year}1967

{year]]An ARVN o�cer, […] for hours.{Extract]
�e insert corresponds, in eAG, to a hierarchy of elements bearing
the su�x :Att, included in the element Extract:

In the LeAG, there is no need neither to specify the :Att su�x for
the elements de�ned inside the a�ribute insert, nor to indicate in
the context �eld of the top elements among them, that they are
included in the insert10. �e same applies to comment inserts:
Comment inserts: general11 syntax. �e general syntax of a
comment insert is the following:

InsertC := [name :Att in context (, ID) ? ; LeAG]
where name is the name of the insert, context is the coloured name
of the elements the insert is the son of and LeAG structured data
conform to the LeAG model, constituting the content of the com-
ment. �e ID �eld will be discussed in the paragraph 4.2.4.
Comment insert: an example. �e following LeAG incorporates
a comment regarding the context of �e Village of Ben Suc:
[Extract}An ARVN[Comment:Att in Extract ; [Att of Comment ;

[authorOfComment}Barrellon et al.{authorOfComment]]The

mention of the [acronym}ARVN{acronym] refers to the Vietnam

War.] o�cer asked […] for hours.{Extract]
A comment being an element, it may possess a�ributes, as illus-
trated above (e.g. to specify the name of its authors).
Inserts in a train of tags. �e case of inserts within a train of
tags has to be discussed. Consider the LeAG [A}...{A][B in A ;
LeAG][A}...{A]. In the absence of a schema, it is not possible to
assess to which A element B belongs. If there is a schema that does
not restrict the position of the element B either at the beginning or
at the end of the element A, neither.
Second, consider [A}...[B in A ; L1][C in A ; L2]...{A].
�e LeAG itself is not ambiguous: it states that the inserts B and C
occur at the same position. Yet, in the perspective of parsing the
LeAG into an eAG (cf. paragraph 6), since in the corresponding eAG,
two inserts will form a sequence, there is no indication in the LeAG
about which insert will come �rst. �e following conventional rule
clari�es those situations:
Rule 4.2.3 When there is no schema or when the schema does
not clarify the following situations, it shall be considered that (1)
when an insert occurs in a train of tags where an opening and a
closing tags identically match the context �eld of the insert, then
the insert conventionally belongs to the opening element; (2) when
two inserts with the same context �eld occur in the same train of
tags, the alphabetical order between the tags considered as strings
provides a conventional order between the inserts.
10Id est, there is no need to write [author in Att of Extract}, for instance.
11A re�nement of the following syntax will be proposed in the paragraph 4.2.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Linear Extended Annotation Graphs DocEng2017, September 2017, Malta

4.2.4 Links and �oting elements. �e last aspect of eAGs that
needs to be translated into LeAG is links or quotes. We have seen
that in eAG, links and quotes are expressed harmoniously with the
other elements (i.e. by means of nodes and edges) and, for that
reason, can be properly validated. In particular, compared to XML
where a link is but an ID/IDREF pair, in SeAG/eAG, the nature of
the two elements connected by a link can inherently be restricted.
Still, since links and quotes denote distant connections across the
corpus that may result in cyclic annotations (i.e. along the text
stream, the beginning of an element comes a�er its end), it is not
possible to represent them by means of pairs of tags along the text
stream. �us, LeAG makes use of an additional feature: the ID �eld.
ID �elds work as an identi�er of either the source or the end of
a connection (link/quote), hence enabling to position the extreme
nodes of such elements inside the LeAG, that is, to position the
elements themselves. Yet, ID �elds are not tag identi�ers. Indeed,
regardless of the parsing strategy adopted, there is no one-to-one
correspondence between the tags of a LeAG and the nodes of an
eAG expressing the same annotation, as evidenced below12:

Indeed, because the element A contains other elements, the tag [A}
translates into two nodes whose reference values point towards the
position of [A} inside the document, connected by an edge A:In,
while the tag [B} relates to one node only. Conversely, two tags
may relate to the same node: since the element C starts where B
ends, both {B] and [C} relate to the node that separates B and C .
Yet, a �ner correspondence between the LeAG tags and a subset of
the nodes of the corresponding eAG can be exploited for expressing
links and quotes: (1) an opening tag positions (and hence, matches)
the root of the corresponding element in the eAG; (2) a closing tag
positions the leaf of the corresponding element in the eAG; (3) an
insert positions both the root and the leaf of the corresponding
element in the eAG. ID �elds exploit that connection, as follows.
ID �elds. Since opening and closing tags of ESE relate to either
the root or the leaf of an element in the corresponding eAG, ESE
ID �elds contain a singleton value K . A contrario, an insert ID shall
possibly designate the root and the leaf of the corresponding eAG
element and thus contains a pair of values M and N :

ID := ID = K (singleton syntax)
ID := ID = M -> N (pair syntax)

Basic example. Let us consider the following comment and a
matching eAG (pink �ags represent the node identi�ers):

Noteworthily, the relation between ID values and root/leaves nodes
is only surjective. �us, the ID of the closing tag of an element and
that of an element that immediately follows have to be the equal
(e.g. {title, ID = 3] and [author, ID = 3}, above).

12Colours relate the eAG nodes / edges to the tags that de�ne their position and label.

�e syntax for links and quotes are based on that mechanism – plus
some improvements on the insert syntax.
�ote elements. �ote elements enable to include an element
identi�ed in the primary resources within a comment. In eAG,
quoting the ARVN acronym from the extract of �e Village of Ben
Suc within a comment can be done as follows:

�e two (orange) edges permit to structurally include the quoted
element inside the comment element.
In LeAG, since the content of a comment has to be wri�en inside
the insert itself, quoting, inside the LeAG �eld of a comment, an
element that has been identi�ed elsewhere in the annotation cannot
be done but by reference. �erefore, quoting elements appear as
special comment inserts, whose LeAG �eld has been replaced by
an ID �eld (with the pair syntax):

�ote := [name(in context)?(, ID1)? ; ID2]
IDi , i ∈ {1,2} := ID = Mi -> Ni

�e pair of values of the ID2 �eld must then refer to some tag(s)
somewhere else in the LeAG that delimit either an element or a
sequence of elements.
�ote: example �e LeAG representing the above eAG is:

[Extract}[Comment:Att in Extract ; The mention of the

Army of the Republic of Vietnam ([Quote ; ID = 1-> 2])

refers to the Vietnam War.]An [Acronym in Extract, ID =

1}ARVN{Acronym in Extract, ID = 2] o�cer […] hours.{Extract]

�is LeAG does correspond to the eAG above, since it states that
the Extract contains a Comment:A�, made out of some not anno-
tated text (which translates into an epsilon edge), followed by a
�ote containing an annotation graph whose root and leaf have
the identi�ers ‘1’ and ‘2’ respectively; Extract further contains an
Acronym, whose root and leaf identi�ers are ‘1’ and ‘2’ respectively.
Links. An eAG link is an element whose root is a node from an
element and whose leaf is a node from another element.
First, to represent such a graph in LeAG, we need to be able to
identify a node inside any element. Consider the link in �gure 3. It
connects the internal nodes of two AC:A� elements that contain
nothing but those nodes. Yet, the ID �elds of an insert with no
LeAG �eld, suit to represent those AC:A� elements, only identi�es
the root and leaf of the matching element, not an internal node. To
�ll this gap, we de�ne void inserts:

VoidInsert := [in context , ID]
ID := ID = N

Such an insert neither has a name nor a LeAG �eld, but it does have
a context (the element it is included in) and an ID �eld. Placed
immediately a�er an opening tag, e.g. [A}, a void insert [in A,
ID = 1] enables to give the identi�er ‘1’ to a node that, in the
corresponding eAG, is the node ending the A:In edge.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

DocEng2017, September 2017, Malta V. Barrellon et al.

Second, we need a means to express that an element may start
inside an element and end inside another one. For such a special
element, we de�ned link insert:

Link := [name :LinkTo in context , ID(; LeAG)?]
ID := ID = M -> N OR ID = -> N

�e LeAG �eld de�nes the content of the link; if empty, the link is
an edge. �e leaf of the link, identi�ed by the value of the variable
N above, must be an internal node of some element, represented
elsewhere by a void insert.
Link: example. Figure 3 illustrates how to annotate di�erent,
overlapping AC in an extract, and how links could reify an order
relation between them. �e following LeAG expresses the same
annotation, extended to three ACs (the prisoner, the beating, the
American observer) as in the eAG on �gure 3:

[Extract}An ARVN o�cer asked [AC in Extract}[AC:Att of

AC ; [Longer:LinkTo, ID = -> 2][Longer:LinkTo, ID

= -> 1]][Exp in AC}a young prisoner{Exp in AC] ques-
tions, and when [Exp in AC}he{Exp in AC] failed to answer,
beat [Exp in AC}him{Exp in AC]. [#Blue over Extract>[AC

in #Blue}[AC:Att of AC#Blue ; [in AC:Att#Blue, ID =

1]][Exp in AC#Blue}An American observer who saw [#Red over

Extract>[AC in #Red}[AC:Att of AC#Red ; [in AC:Att#Red,

ID = 2][Longer:LinkTo, ID = -> 1]][Exp in AC#Red}the
beating<#Blue over Extract]{Exp in AC#Blue]{AC in #Blue]

that happened then{Exp in AC#Red] reported that the o�cer “re-
ally worked [Exp in AC}him{Exp in AC] over”. A�er [Exp

in AC#Red}the beating{Exp in AC#Red]{AC in #Red]<#Red

over Extract], [Exp in AC}the prisoner{Exp in AC]{AC in

Extract]was forced to remain standing for hours.{Extract]

4.3 Parsing LeAG
Let us consider that two eAG are isomorphic i� there is a bijective
morphism ϕ between them so that a node and its image by ϕ share
the same reference value.
LeAG is designed as a markup syntax for eAG. Ideally, there should
have been a bijection between LeAGs and the classes of isomorphic
eAGs. Yet, this is not the case: �rst, because two equivalent LeAG
documents shall translate into the same eAG, and second, because
several non-isomorphic eAGs could match a given LeAG – which
is clearly problematic when considering parsing LeAG documents
into eAG. For instance, the elementary LeAG [A}...{A][A}...{A]
may reasonably translate into either of the following:

or any eAG made out of a sequence of two edges labelledA with the
right reference values, separated by any number of epsilon edges.
�e problem is we cannot, in the absolute, prefer one eAG over the
others, since all of them do represent the fact the LeAG document
contains two A elements in a row – and also, and most importantly,
because the di�erent eAG will not be validated against the same
schemas. Indeed, considering the three SeAGs below, the above
eAG [1] is validated by the schema [S1] only, [2] by both [S2] and
[S3], and [3] by [S3] only.

Choosing one solution against the others thus cannot be done but
by considering a prede�ned schema. Hence parsing a LeAG means:
given a SeAG, yielding a valid eAG that ‘represents well’ the LeAG
– if such an eAG exists.
In the following, we discuss how to design a deterministic schema-
aware LeAG parser. First, we propose to restrict SeAGs to non-
ambiguous (N-A) ones [5], ambiguous schemas resulting in non-
determinism. We then show that associating to the initial LeAG an
eAG, validated by a N-A SeAG, containing the same sequences of
elements, whose elements’ span is the same, and whose inclusion
relations are the same as in the LeAG, is deterministic in general –
but not in some cases. We identify those cases and we show that
there is a notion of a minimal eAG, that enables to deterministically
single out one valid eAG among the others (up to isomorphism13).
Non-ambiguous SeAG. A SeAG is non-ambiguous (N-A) i� given
any label sequencew , there is at most one path connecting the root
of the SeAG to its leaf that, epsilon edges set apart, spells w [5].
Non N-A SeAG will result in non-deterministic parsing. See the
following schema, that matches the LeAG [A}...{A][A}...{A] in
two di�erent ways – see graphs [1] and [2] below:

LeAG-eAG label sequences. First, we want to stress the fact the
sequence of the tags in a LeAG implies the sequences of labels along
the di�erent paths the corresponding eAG is made out of, provided
the eAG is so that each element of the LeAG has one and only one
corresponding element in the eAG.
First let us consider hierarchical LeAGs. �e rule 4.2.3 implies there
is only one way to read the tags from a given train of tags, regardless
of the order in which they are wri�en: this ensures that each of
the set of tags of the same colour, in a LeAG, de�nes one and only
one hierarchy of elements. Since a given hierarchy of elements
translates into one and only one sequence of labels (epsilon edges
set apart) in the eAG model14, a hierarchical LeAG can be associated
only one label sequence in the eAG model – epsilon edges set apart.
Now given gra�s are hierarchies of elements that are included in a
given element of the LeAG15, and given links and quotes are also
hierarchical structures whose connection with the rest of the eAG
is determined by the identi�er of their root and leaf, the previous
discussion extends to LeAGs in general: the sequence of the labels
along the paths of the eAG representing a gra�, link, quote, is
deterministically implied by the LeAG.
eAG equivalence. Two non-isomorphic eAGs are equivalent i�
their elements form bijective pairs, so that: 1) the elements from
each pair share the same name and 2) their previous, following and
father and son elements, if they exist, form pairs, and 3) so that the
reference values and identi�ers at their root/leaf are identical.
Finding a valid eAG. Hierarchies form paths in an eAG. �e label
sequence of each hierarchical structure of an eAG matching a given
LeAG is, as shown above, uniquely de�ned by the LeAG.
13�e whole discussion that follows is ‘up to isomorphism’.
14E.g. ‘A contains X ’ translates into the label sequence: [X:In / A / X:Out].
15We consider gra�s are included in their context element, while an element might
belong to both a gra� and an outer element: it is always possible to change a gra�
sharing an element with its context into two gra�s strictly included in this context.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Linear Extended Annotation Graphs DocEng2017, September 2017, Malta

Validating a LeAG L is then quite simple. If L is hierarchical, be ls
the eAG label sequence corresponding to L. If there is a path in the
schema whose label sequence, ϵ edges apart, spells out ls , the LeAG
is valid and a valid corresponding eAG can be de�ned. If L contains
one gra�: be ls the eAG label sequence matching the uncoloured
hierarchy within L, and l ′ the label sequence for the gra�: L is valid
if the schema contains a path that spells out ls and another path,
inside the element in that path that matches the element in which
there is a gra�, that spells out l ′. Recursively, this principle applies
for gra�s on gra�s; it can be adapted for links and quotes.
Conveniently, in a N-A SeAG, two paths cannot spell the same
label sequence, so if there is a path in a schema, say, that matches
a hierarchical label sequence, then it is unique. Identically, if, in
the context of an element, there is a path that matches the label
sequence of a gra�, it is also unique. If there are more than one valid
eAG, then we know they still all correspond to the same paths in
the schema. �is means that some schemas are non-deterministic,
i.e. that they validate several non-isomorphic, equivalent eAGs.
N-A Schemas validating several equivalent eAGs. We provide
the following result: non deterministic N-A SeAGs are the SeAGs
that contain a sequence of at least two epsilon edges.
A sequence of (two) epsilon edges may happen in two di�erent
pa�erns: the edges either form a cycle or not. �e �rst, general
problem with a sequence of two epsilon edges is, since epsilon
edges are not represented in LeAG, that the reference values of the
nodes of the sequence that do not work as the root or the leaf of
an element are undetermined. For instance, the reference of the
orange node in I ′Sa on �gure 6 can be given any value between r1
and r2. Hence, several eAGs, di�ering only by one reference value,
can be associated to the le� LeAG on that �gure.
Additionally, non-determinism may result in structurally di�erent
graphs. Cyclic sequences of two epsilon edges may result, in a
valid, hierarchical eAG, in any even sequence of epsilon edges.
�en, single-layered LeAG annotations, that translate into single-
pathed eAGs, will be associated an in�nity of equivalent, valid eAGs:
see ISa in �gure 6. N-A schemas containing only linear sequences
of two epsilon edges will, on the contrary, be deterministic for the
parsing of hierarchical LeAGs, but not in case of simulation-based
multilayering (�gure 6, right). Cyclic epsilon sequences will also
be problematic in case of simulation-based multilayering.
One can check that the cases of non-determinism above necessitate
a sequence of no less than two epsilon edges: the schemas that
contain no or isolate epsilon edges are deterministic.
Minimal eAG. In order to make LeAG parsing with N-A schema
deterministic, that is, to ensure that an equivalent class of LeAG
documents be associated only isomorphic eAGs, we must single
out one of the equivalent eAGs as a unique parsing solution.
LetXS be an equivalent class of eAGs validated by the same schema
S . For G ∈ XS , let us denote |VG | and |EG | the cardinal of its sets
of nodes and edges respectively. We claim that, up to isomorphism,
there is only one eAG M ∈ XS that minimises both the values
size = |VM | × |EM | and Sref =

∑
v ∈VM ref(v). �en let M be the right

representative of that eAG class for parsing under S .
LeAG parsability. For any class of LeAG documents, there is at
most one minimal eAG validated by a given N-A SeAG schema,
that preserves the LeAG elements, elements’ span, identi�ers and
inclusion relations.

Figure 6: Parsing a LeAG (top, right and le�) against a N-
A SeAG schema (middle) may yield more than one equiva-
lent eAG, either di�ering on reference values (r?) or by their
structure (dotted orange epsilon edges).

5 RELATEDWORK
Many schema-aware data models have been speci�cally proposed
to overcome the limitations of XML by enabling, at the very least,
the expression of not only one, but several hierarchies onto the
same resources. Among the most notable such ‘multistructured’
data models, we may mention MulaX [13], XConcur [24], MSXD
[7], Rabbit/Duck grammars [27]. �ose are all built upon XML and
make use of the same fundamental notions like elements, a�ributes,
inclusion, etc. �e general validation strategy for those models is
to extract or isolate the di�erent hierarchies of elements present in
the documents, and validate each separately; they also investigate
inter-hierarchy constraints.
LMNL [32] represents a more stripped-down vision of multilayer
annotation. In many respects, LeAG borrows from LMNL. In LMNL,
the user can identify ranges in a character stream and name them
by means of pairs of opening and closing tags. Ranges themselves
can be annotated by (meta)ranges, which inspired the a�ribute
syntax in LeAG. Yet LMNL claims to be an annotation language
solely, and not a structuring language: in particular, LMNL does
not provide the user with means to represent inclusion or sibling
relations. As we have seen in paragraph 4.1, indeed, inclusion is
either represented by nesting, which limits the data model to trees,
or by means of an explicit syntax; LMNL does not propose such
syntax, and yet allows overlap and multilayering. By sweeping out
the notion of inclusion, LMNL seemingly clears the paradox out;
yet LMNL is not absolutely blind to the charms of hierarchies: it
lies upon the notion of ‘layers’, that is, ranges that fully contain
the ranges that start and end in their scope, which is reminiscent
of XML hierarchies – but if such pa�erns cannot be interpreted in
structural terms, can they be but fortuitous pa�erns? Still, because
hierarchies are a classic and fundamental annotation structure [34],
the LMNL model comes along with XML generators that can ex-
tract hierarchies from the data. Our point, on that ma�er, is that
since hierarchies are so central, the best is to enable the editors to
have direct control over their expression – which indeed demands
additional syntax. Apart from those critical considerations, LMNL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

DocEng2017, September 2017, Malta V. Barrellon et al.

is an important annotation model, that goes beyond most others, in
terms of expressivity; moreover, it bene�ts from a grammar-based
validation language [31], able to embrace the multilayer documents
as a whole, which can be compared only to RDF validators (or to
the SeAG we propose [2]).
Indeed, several annotation models have originated from the RDF
community. One may think of the pioneering RDFTef [33], the
Open Annotation data model [22] or EARMARK [16]. �e RDF
data model, which imposes no restriction on the shape of the re-
sulting graph, is very expressive; moreover, RDF annotation can
be used as a complement to an existing TEI annotation [1], which
is a way to ally the best of two worlds. One limitation though of
RDF-based annotation languages is the current lack of a proper
and computationally e�cient validation mechanism. OWL is not
natively suitable for validation [21, 25]; tweaks aiming at the ex-
pression of, say, integrity constraints, have been experimented, but
results in huge execution time [30]. Nonetheless, RDF validation is
a promising �eld of research, as illustrated by the ShEx [18] and
SHACL [15] projects. Time complexity still seems to be quite high,
but cu�ing it down is being investigated [29].

6 CONCLUSION
In this paper, we introduced LeAG, an inline markup syntax for
extended Annotation Graphs. eAG is a stand-o� annotation model,
based upon a general, cyclic graph formalism: as one may expect,
the model is thus highly expressive, �t to express multilayer an-
notation, but also distant connections across the annotation. �e
LeAG syntax illustrates that a similarly expressive inline markup
model can be de�ned, at least for textual annotation. To achieve
that goal, we de�ned a limited number of necessary syntactical
structures (gra�s and inserts). �is way, the LeAG syntax is kept
as simple as possible, while opening wide prospects in terms of
editorial enrichments.
We also established the parsability of LeAG into eAG, that is, the
fact a LeAG document translates into one corresponding eAG. �is
aspect of the LeAG syntax is crucial, since it indirectly provides
the LeAG documents with a validation language, that is, SeAG,
that comes as the validation mechanism for eAG. SeAG does not
rely upon the notion of grammars, like most validation languages
do, but on the simulation relation. From a technical point of view,
simulation-based validation shines by enabling the validation of
cyclic data, while keeping the algorithmic costs low. Moreover,
as illustrated throughout this article, the ability of SeAG schemas
to validate anaphoric chain annotations, which is a canonical lin-
guistic annotation, also evidences the editorial relevance of that
particular kind of validation for annotation purposes.

REFERENCES
[1] Gioele Barabucci, Angelo Di Iorio, Silvio Peroni, Francesco Poggi, and Fabio Vitali.

2013. Annotations with EARMARK in practice: a fairy tale. In Proceedings of the
1st International Workshop on Collaborative Annotations in Shared Environment:
metadata, vocabularies and techniques in the Digital Humanities. ACM, 11.

[2] Vincent Barrellon, Pierre-Edouard Portier, Sylvie Calabre�o, and Olivier Ferret.
2016. Schema-aware Extended Annotation Graphs. In Proceedings of the 2016
ACM symposium on Document engineering. ACM.

[3] Soběslav Benda, Jakub Klı́mek, and Martin Nečaskỳ. 2013. Using schematron
as schema language in conceptual modeling for XML. In Proceedings of the
Ninth Asia-Paci�c Conference on Conceptual Modelling-Volume 143. Australian
Computer Society, Inc., 31–40.

[4] Steven Bird and Mark Liberman. 2001. A formal framework for linguistic anno-
tation. Speech communication 33, 1 (2001), 23–60.

[5] Anne Brüggemann-Klein. 1993. Regular expressions into �nite automata. �eo-
retical Computer Science 120, 2 (1993), 197–213.

[6] Gerrit Brüning, Katrin Henzel, and Dietmar Pravida. 2013. Multiple encoding in
genetic editions: the case of” Faust”. Journal of the TEI 4 (2013).

[7] Emmanuel Bruno and Elisabeth Murisasco. 2006. MSXD: a model and a schema
for concurrent structures de�ned over the same textual data. In Database and
Expert Systems Applications. Springer, 172–181.

[8] Hugh A Cayless. 2013. Rebooting TEI Pointers. Journal of the Text Encoding
Initiative 6 (2013).

[9] Charles Chastain. 1975. Reference and Context. In Language, Mind, and Knowl-
edge, Keith Gunderson (Ed.). Vol. 7. University of Minessota Press, Chapter 4,
194–231.

[10] TEI Consortium, Lou Burnard, Syd Bauman, and others. 2008. TEI P5: Guidelines
for electronic text encoding and interchange. TEI Consortium.

[11] Dan Cristea, Nancy Ide, and Laurent Romary. 2009. Marking-up multiple views
of a Text: Discourse and Reference. arXiv preprint arXiv:0909.2715 (2009).

[12] Paolo D’Iorio and Michele Barbera. 2011. Scholarsource: A digital infrastructure
for the humanities. Switching Codes. �inking through New Technology in the
Humanities and the Arts (2011), 61–87.

[13] Mirco Hilbert, Andreas Wi�, and Oliver Schonefeld. 2005. Making CONCUR
work. In In Extreme Markup Languages.

[14] HV Jagadish, Laks VS Lakshmanan, Monica Scannapieco, Divesh Srivastava,
and Nuwee Wiwatwa�ana. 2004. Colorful XML: one hierarchy isn’t enough. In
Proceedings of the 2004 ACM SIGMOD international conference on Management of
data. ACM, 251–262.

[15] Holger Knublauch and Arthur Ryman. 2015. Shapes Constraint Language
(SHACL). W3C First Public Working Dra� 8 (2015), W3C.

[16] Silvio Peroni. 2014. Markup beyond the trees. In Semantic Web Technologies and
Legal Scholarly Publishing. Springer, 45–93.

[17] Pierre-Édouard Portier, Noureddine Cha�i, Sylvie Calabre�o, Elöd Egyed-
Zsigmond, and Jean-Marie Pinon. 2012. Modeling, encoding and querying
multi-structured documents. Information Processing & Management 48, 5 (2012),
931–955.

[18] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold Solbrig. 2014. Shape
expressions: an RDF validation and transformation language. In Proceedings of
the 10th International Conference on Semantic Systems. ACM, 32–40.

[19] Francesco Ranzato and Francesco Tapparo. 2010. An e�cient simulation al-
gorithm based on abstract interpretation. Information and Computation 208, 1
(2010), 1–22.

[20] Allen H Renear, Elli Mylonas, and David Durand. 1993. Re�ning our notion of
what text really is: �e problem of overlapping hierarchies. (1993).

[21] Dave Reynolds, Carol �ompson, Jishnu Mukerji, and Derek Coleman. 2005.
An assessment of RDF/OWL modelling. Digital Media Systems Laboratory, HP
Laboratories Bristol 28 (2005).

[22] Robert et al. Sanderson. 2013. Open annotation data model. W3C community
dra� (2013).

[23] Desmond Schmidt. 2012. �e role of markup in the digital humanities. Historical
Social Research/Historische Sozialforschung (2012), 125–146.

[24] Oliver Schonefeld. 2007. XCONCUR and XCONCUR-CL: A constraint-based
approach for the validation of concurrent markup. InData Structures for Linguistic
Resources and Applications. Proceedings of the Biennial GLDV Conference.

[25] Evren Sirin. 2010. Data validation with OWL integrity constraints. In Web
Reasoning and Rule Systems. Springer, 18–22.

[26] C Michael Sperberg-Mc�een. 1991. Text in the electronic age: Texual study and
textual study and text encoding, with examples from medieval texts. Literary
and Linguistic Computing 6, 1 (1991), 34–46.

[27] C Michael Sperberg-Mc�een. 2006. Rabbit/duck grammars: a validation method
for overlapping structures. In Extreme Markup Languages.

[28] C Michael Sperberg-Mc�een and Claus Huitfeldt. 2000. Goddag: A data struc-
ture for overlapping hierarchies. In Digital documents: Systems and principles.
Springer, 139–160.

[29] Slawek Staworko, Iovka Boneva, Jose E Labra Gayo, Samuel Hym, Eric G
Prud’hommeaux, and Harold Solbrig. 2015. Complexity and Expressiveness
of ShEx for RDF. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 31.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[30] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L McGuinness. 2010. Integrity
Constraints in OWL.. In AAAI.

[31] Jeni Tennison. 2007. Creole: Validating overlapping markup. In Proceedings of
XTech.

[32] Jeni Tennison and Wendell Piez. 2002. �e Layered Markup and Annotation
Language (LMNL).. In Extreme Markup Languages.

[33] Giovanni Tummarello, Christian Morbidoni, and Elena Pierazzo. 2005. Toward
Textual Encoding Based on RDF.. In ELPUB.

[34] Andreas Wi�. 2010. Di�erent views on markup. Text, Speech and Language
Technology (2010), 1.

	Abstract
	1 Introduction
	2 Extended Annotation Graphs
	3 A running example
	4 Linear extended Annotation Graphs
	4.1 Inline multilayer annotation
	4.2 The LeAG syntax
	4.3 Parsing LeAG

	5 Related work
	6 Conclusion
	References

