A Decentralized Privacy Preserving Reputation
Protocol for the Malicious Adversarial Model

Omar Hasan, Lionel Brunie, Elisa Bertino, Fellow, IEEE, and Ning Shang

Abstract—Users hesitate to submit negative feedback in repu-
tation systems due to the fear of retaliation from the recipient
user. A privacy preserving reputation protocol protects users by
hiding their individual feedback and revealing only the reputation
score. We present a privacy preserving reputation protocol for the
malicious adversarial model. The malicious users in this model
actively attempt to learn the private feedback values of honest
users as well as to disrupt the protocol. Our protocol does not
require centralized entities, trusted third parties, or specialized
platforms, such as anonymous networks and trusted hardware.
Moreover, our protocol is efficient. It requires an exchange of
O(n+log N) messages, where n and N are the number of users
in the protocol and the environment respectively.

Index Terms—Reputation, privacy, trust, decentralization, ma-
licious adversarial model.

I. INTRODUCTION

Reputation systems are a powerful security tool for mod-
ern distributed applications where users consume as well
as provide resources, however, their trustworthiness is often
unknown. The reputation of a user is computed as a function of
feedback about them gathered from fellow users. A reputation
system mitigates the disruptive effect of malicious users by as-
signing them low reputation scores and consequently limiting
their capabilities and influence in the application.

Examples of reputation systems include: (1) Reputation
systems for online auction and e-commerce sites such as
ebay.com and amazon.com, which identify fraudulent vendors.
(2) iovation.com protects businesses from online fraud by
using a reputation system to expose devices such as com-
puters, tablets and smart phones that are associated with
chargeback, identity theft, and account takeover attacks. (3)
Reputation systems for online programming communities such
as advogato.org and stackoverflow.com filter users who post
spam.

The issue with most existing reputation systems is that the
feedback provided by users is public. This makes users hesitant
to submit negative feedback due to the fear of retaliation
from the recipient user [1]. A privacy preserving reputation
protocol protects users by hiding their individual feedback and
revealing only the reputation score.

Copyright (c¢) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

O. Hasan and L. Brunie are with the University of Lyon, CNRS, INSA-
Lyon, LIRIS, UMRS5205, F-69621, France e-mail: omar.hasan@insa-lyon.fr,
lionel.brunie@insa-lyon.fr.

E. Bertino is with the Department of Computer Science, Purdue University,
IN 47907, USA e-mail: bertino@cs.purdue.edu.

N. Shang is with Qualcomm Inc., 5775 Morehouse Dr, San Diego, CA
92121, USA e-mail: nshang @qti.qualcomm.com.

In a previous paper [2], we presented the non-cryptographic
k-shares decentralized privacy preserving reputation protocol
for the semi-honest (also known as honest-but-curious) ad-
versarial model. The agents (who represent users) in that
model are supposed to follow the protocol according to the
specification. In this paper, we present the Malicious-k-shares
protocol, which provides security under the stronger malicious
adversarial model. The agents in this model are unrestricted in
their behavior to learn private information and to disrupt the
protocol.

A. Contributions

We consider a multi-agent environment composed of N
agents. Let us consider an agent ¢ in the environment and refer
to it as the target agent. Agent ¢ has interacted with n < N
other agents in the environment who have assigned it private
feedback values. We refer to these feedback providers as the
source agents of the target agent ¢. The Malicious-k-shares
protocol allows a querying agent ¢ to compute the reputation
of a target agent ¢ as the mean of the private feedback values
held by its source agents. The protocol aims to preserve the
privacy of the source agents by preventing disclosure of their
private feedback values under the malicious adversarial model
(described in Section II-B). The novel contributions of our
work are summarized below.

In the Malicious-k-shares protocol, an agent can preserve
its privacy by partially trusting on only k fellow feedback
providers, where k is much smaller than n — 1, the size of
the set of fellow feedback providers. This idea is central in
our protocol and allows us to build a protocol that requires
an exchange of only O(n + log N) messages and O(n? +
log N) bytes of information, where n and N are the number
of agents in the protocol and the environment respectively.
This approach improves on the classic approach (as employed
by Gudes et al. [3] and Pavlov et al. [4]) where an agent is
required to partially trust on all n—1 fellow feedback providers
to preserve its privacy which results in high communication
complexity. In this paper, we use three real and large trust
graphs to demonstrate that a high majority of agents can find &
sufficiently trustworthy agents in a set of n—1 fellow feedback
providers such that & is very small compared to n— 1 (Section
V-B).

Agents in our protocol can quantify the risk to their privacy
before submitting their feedback. This allows us to extend the
protocol such that agents can abstain if the risk to their privacy
is above the desired threshold. We show using the three real
trust graphs that even if agents abstain, accurate reputation

values can be computed from the feedback submitted by only
those agents whose privacy is preserved (Section V-C).

The Malicious-k-shares protocol prevents malicious agents
from taking two actions that are particularly challenging to
address in a decentralized privacy preserving reputation system
without relying on trusted third parties: (1) A malicious agent
can take advantage of private feedback and submit a value
that is outside the legal interval for feedback. For example,
a malicious agent can submit a value such as —99 when the
feedback interval is [0,1]. (2) A malicious agent can make
erroneous computations, for example, it can report a random
number instead of reporting a correct sum.

The protocol addresses the above challenges through in-
novative constructions (described in Section IV-A) based on
set-membership and plain-text equality non-interactive zero-
knowledge proofs and an additive homomorphic cryptosystem.
To the best of our knowledge, our protocol is the most efficient
decentralized additive privacy preserving reputation protocol
under the malicious adversarial model. It requires the exchange
of only O(n +log N) messages and O(n? + log N) bytes of
information. Compare this to the protocol by Pavlov et al. [4]
that requires O(n3 + N) messages and at least O(n® + N)
bytes of information using similar building blocks.

B. Outline

In Section II, we give a general framework for decentralized
privacy preserving reputation systems in the malicious adver-
sarial model. In Section III, we describe some building blocks
that we utilize in the construction of our protocol. In Section
IV, we present our proposal for a new decentralized privacy
preserving reputation protocol. We also analyze the security
and the complexity of the protocol in this section. In Section
V, we use three real trust graphs to experimentally evaluate
two hypotheses that the protocol is based on. In Section VI,
we give a comparison of our protocol with other reputation
systems in the literature. We conclude and present directions
for future work in Section VIIL.

II. FRAMEWORK

In this section, we establish a framework that allows us to
describe and analyze the protocol in Section IV. However,
the reader may skip directly to Section IV-A for a quick
overview of the protocol without delving into the specifics
of the framework.

A. Agents, Trust, and Reputation

We model our environment as a multi-agent environment.
An agent represents a user. Let A denote the set of all agents
in the environment. |A| = N.

We subscribe to the definition of trust by sociologist Diego
Gambetta [5], which characterizes trust as binary-relational,
directional, contextual, and quantifiable as subjective proba-
bility. Our formal definition of trust attempts to capture each
of these characteristics.

Let D denote an asymmetric binary relation on the set A.
Let T C D be the set of all existing trust relationships between

agents. (s,t) € T, where s,t € A, implies that an agent s has
a trust relationship toward an agent .

Let ¥ denote the set of all actions. Examples of actions
include: “prescribe correct medicine”, “deliver product sold
online”, “preserve privacy”, etc.

Let perform denote a function, such that perform : T x
U — {true, false}. The function perform(s,t,)) outputs
true if agent ¢ performs the action v anticipated by agent
s, or it outputs false if ¢ does not perform the anticipated
action. Let the subjective probability P(perform(s,t,v) =
true) denote agent s’s belief that agent ¢ will perform the
action 1.

Definition 1: Trust. The trust of an agent s in an agent ¢
is given as the triple (sTt,, P(perform(s,t,) = true)),
where s,t € A, (s,t) € T, ¥ € U, and P(perform(s,t, 1)) =
true) € [0,1].

When the context of trust (action) is clear, we adopt the
simplified notation fs; for P(perform(s,t,¢) = true). We
can also refer to f,; as agent s’s feedback about agent .

An agent s is said to be a source agent of an agent ¢ in the
context of an action 1 if s has a trust relationship toward ¢
in the context). The set of all source agents of an agent ¢ in
context 1) is given as S; ;. The simplified notation S; is used
instead of S; ,, when the context 7 is clear.

Definition 2: Reputation. Let S; = {s1...s,} be the set
of source agents of an agent ¢ in context ¢. The reputation of
agent ¢ in context ¢ is given as:

2ica f
repo(fore - fo) = ==L (M

The function repg implements the reputation of an agent ¢
as the mean of the feedback values of its source agents. The
reputation of an agent ¢ is denoted by 7, ,, or 7, when the
context) is clear.

A limitation of the reputation protocol that we present in
this paper is that it can only compute reputation as the mean
of the feedback values. An alternative function that can be
implemented by the protocol is the sum of the feedback values.
However, other possible functions for computing reputation
such as weighted mean and probability distribution are not
supported by the current protocol.

We note that an advantage of reputation computed as mean
is that it is an intuitive statistic. The eBay reputation system
(ebay.com), which is one of the most successful reputation
systems, represents reputation as the simple sum of feedback
values. We derive the mean from the sum in order to normalize
the reputation values. However, it is an interesting avenue
for future work to explore efficient decentralized privacy
preserving solutions for computing reputation as weighted
mean, probability distribution, etc.

Definition 3: Reputation Protocol. Let II be a multi-party
protocol. Then II is defined as a Reputation Protocol, if (1)
the participants of the protocol include: a querying agent g,
a target agent ¢, and n source agents of ¢ in the context v,
(2) the inputs include: the feedback of the source agents in
context ¢, and (3) the output of the protocol is: agent ¢ learns
the reputation 7 of agent ¢.

B. Adversary

We refer to the coalition of dishonest agents as the adver-
sary. In this paper, we propose a solution for the malicious
adversarial model. Malicious agents actively attempt to learn
private information of honest agents as well as to disrupt
the protocol. Specifically, malicious agents may (1) refuse to
participate in the protocol, (2) prematurely abort the protocol,
(3) selectively drop messages that they are supposed to send,
(4) tamper with the communication channels, (5) wiretap the
communication channels, and (6) provide illegal information
(for example, provide out of range values as their inputs, make
incorrect computations).

C. Privacy

Definition 4: Preservation of Privacy (by an Agent). Let
x be an agent s’s private data that agent s reveals to an agent
u. Then agent w is said to preserve the privacy of agent s w.r.t.
x, if (1) u does not use x to infer more information, and (2)
u does not reveal x to any third party.

Let action p = “preserve privacy’.

Definition 5: Trusted Third Party (TTP). Let S C A be
a set of n agents, and TT Ps € A be an agent. Then T7T Ps
is a Trusted Third Party (TTP) for the set of agents S if for
each s € S, P(perform(s, TTPs, p) = true) = 1.

We define security threshold as a parameter that can be
assigned a value in [0, 1] according to the security needs of
an application. A value of the security threshold closer to 1
indicates a stricter security requirement. We consider as high
any probability greater than or equal to the security threshold,
and as low any probability less than 1— security threshold.

We adopt the Ideal-Real approach [6] to define privacy
preserving reputation protocols.

Definition 6: Ideal Privacy Preserving Reputation Proto-
col. Let II be a reputation protocol (Definition 3). Then II is
an ideal privacy preserving reputation protocol under a given
adversarial model, if: (1) the inputs of all n source agents of ¢
are private, (2) 11 Ps, is a participant, where S, = S, 4 is the
set of all source agents, (3) m < n of the source agents (given
as set M) and agents ¢ and ¢ are considered to be dishonest,
however, g wishes to learn the correct output, (4) agents S; —M
and TTPs, are honest, (5) as part of the protocol, T7T Fs,
receives the private inputs from the source agents and outputs
the reputation r, , to agent g, and (6) over the course of the
protocol, the private input of each agent s € S; — M may be
revealed only to the TT'F, .

In an ideal privacy preserving reputation protocol, it is
assumed that for each agent s € S; — M, the adversary does
not gain any more information about the private input of agent
s from the protocol other than what he can deduce from what
he knows before the execution of the protocol and the output,
with probability P(perform(s, TTPs,, p) = true) = 1.

Definition 7: Real Privacy Preserving Reputation Proto-
col. Let I be an ideal privacy preserving reputation protocol
(Definition 6). Then R is a real privacy preserving reputation
protocol w.r.t. I, if: (1) R has the same parameters (partici-
pants, private inputs, output, adversary, etc.) as I, except that
there is no TT'Ps, as a participant (2) with high probability,

the adversary learns no more information about the private
input of any agent s than it can learn in protocol I.

D. Problem Definition

Let Sty = {s1...s,} be the set of all source agents of
agent ¢ in the context of action . Find a reputation protocol II,
which takes private input fs; = P(perform(s,t,v) = true)
from each agent s € S¢, and outputs the reputation r; y of the
target agent ¢ to a querying agent q. Reputation is computed as
repg. Agents ¢, t, and an additional m of the source agents
are considered to be dishonest, where m < n. However, q
wishes to learn the correct output and therefore does not take
any action that alters the output. The reputation protocol II
is required to be decentralized and secure under the malicious
adversarial model. If computing r; , is not possible due to the
disruptive actions of certain agents, then the protocol outputs
the identity of those agents to the querying agent q.

III. BUILDING BLOCKS

A. Additive Homomorphic Cryptosystem

Let E4(.) denote the encryption function with the public
key PK of agent s in an asymmetric cryptosystem C. The
cryptosystem C is said to be additive homomorphic if we can
compute F,(z+y), given only E¢(x), Es(y), and PK,. As an
example, let us consider two integers, 3 and 4. A cryptosystem
C is additive homomorphic if given only E,(3), Es(4), and
PK,, we are able to obtain E4(3 +4) = E,(7).

We use the Paillier cryptosystem [7] as it offers the follow-
ing properties (in addition to additive homomorphic encryp-
tion) that allow us to construct a secure reputation protocol:

« Randomized encryption. Randomized encryption im-
plies that an attacker cannot distinguish between the
encryptions of different plaintexts even if the plaintexts
and the key are known. For example, consider an attacker
who is given two integers, 3 and 4, their encryptions,
E;(3) and E(4), and the encrypting public key PK.
The attacker is unable to draw correspondence between
the ciphertexts E;(3), Es(4), and the integers 3, 4.
Cryptosystems that do not support randomized encryption
(for example, RSA [8] without padding), always generate
the same ciphertext for a given pair of plaintext and
encryption key. Such cryptosystems are not suitable when
the plaintext space is small (for example, a plaintext space
such as {1,2,3,4,5}).

o Non-interactive zero-knowledge proofs. The Pail-
lier cryptosystem allows construction of efficient non-
interactive zero-knowledge proofs of set membership
(Section III-B) and plaintext equality (Section III-C).

The additive homomorphic encryption property of the Pail-
lier cryptosystem can be informally stated as: Es(mj) X
Es(m2) = E (m; + my), where m; and my are two
plaintext messages. This implies that the multiplication of two
ciphertexts gives the encrypted sum of their plaintexts.

B. Zero-Knowledge Proof of Set Membership

Let F = {m,...,m,} be a public set of p messages, and
E(m;) be an encryption of m; with a prover’s public key,
where m; is secret. A zero-knowledge proof of set membership
allows the prover to convince a verifier that E'(m;) encrypts
a message in F.

A standard interactive zero-knowledge proof comprises of
three moves, that is, three messages exchanged between the
prover and the verifier. In the first move, the prover sends
a cryptographic commitment to the verifier. In the second
move, the verifier sends a random challenge to the prover to
test the commitment. The third move is the prover’s response
to the random challenge of the verifier. An interactive zero-
knowledge proof can be converted to a non-interactive zero-
knowledge proof using the Fiat-Shamir heuristic [9]. In a non-
interactive proof, there is only one move made by the prover
in which he sends the cryptographic commitment as well as
a hash of the commitment to the verifier. The proof can be
verified with this supplemental information without the need
for additional moves.

In a non-interactive version of the zero-knowledge proof of
set membership, we abstract the part of the proof generated by
the prover as the function setMembershipZ K P(E(m;),F),
abbreviated as smzkp(E(m;),F).

The zero-knowledge proof of set membership is specified
for the Paillier cryptosystem as follows: Let (n,g) be a
prover’s public key, F = {m,...,m,} be a public set of p
messages, and ¢ = g™ -r™ mod n? an encryption of m;, where
1 is secret, and r is a random integer. A zero-knowledge proof
of set membership allows the prover to convince a verifier that
c encrypts a message in [F.

An interactive zero-knowledge proof of set membership for
the Paillier cryptosystem is described by Baudron et al. [10].
Our non-interactive adaptation of the proof, using the Fiat-
Shamir heurisitic, is given in Figure 6 (Appendix B).

C. Zero-Knowledge Proof of Plaintext Equality

Let E,(m) and E,(m) be the encryptions of a message
m with the public key of agents w and v respectively. A
zero-knowledge proof of plaintext equality allows a prover to
convince a verifier that £, (m) and E,(m) encrypt the same
message.

In a non-interactive version of the zero-knowledge

proof of plaintext equality, we abstract the part of
the proof generated by the prover as the function
plaintext EqualityZ K P(E, (m), E,(m)), abbreviated

as pezkp(By(m), Ey(m)).

The zero-knowledge proof of plaintext equality is specified
for the Paillier cryptosystem as follows: Let (mi,g1) and
(ng, g2) be the public keys of agents 1 and 2 respectively.
Given two encryptions ¢; = g - r]' mod n? and c; =
g5 -r5? mod n3, a zero-knowledge proof of plaintext equality
allows a prover to convince a verifier that ¢; and co encrypt
the same message.

An interactive zero-knowledge proof of plaintext equality
for the Paillier cryptosystem is described by Baudron et al.
[10]. In Figure 7 (Appendix B), we present our non-interactive

version of the proof, which has been obtained using the Fiat-
Shamir heurisitic.

D. Source Managers

We define a source manager of an agent ¢t as a fellow
agent who maintains the set S;. The idea of source managers
is inspired by score managers in EigenTrust [11]. When a
source agent assigns feedback to a target agent ¢, it reports
that event to each of its source managers. The source managers
add the source agent to the set S; that they each maintain. A
Distributed Hash Table (DHT), such as Chord [12], is used to
locate the source managers.

It is important to note that the source managers are con-
sidered to be potentially dishonest. To learn a set St DS a
querying agent can retrieve the set maintained by each of the
source managers and take a union of the sets. The querying
agent will learn St DSy as long as at least one of the source
managers is honest. Let us consider that there is an even
probability that any given source manager is either honest
or dishonest. Then the probability that at least one of all 7,
source managers of an agent ¢ will be honest is 1 — 2% This

probability is 75% at n; = 2, 97% at 1, = 5, and 99% at
n =1

IV. THE MALICIOUS-k-SHARES PROTOCOL
A. Protocol Overview

In the Malicious-k-shares protocol, each source agent s
relies on at most k agents to preserve his privacy. Agent s
selects these k agents based on his own knowledge of their
trustworthiness in the context of preserving privacy and sends
each of them an additive share of his private feedback value.
The advantages of this approach are twofold. Firstly, an agent
is able to quantify and maximize the probability that its privacy
will be preserved. This also allows us to extend the protocol
such that an agent can abstain from providing feedback if the
risk to its privacy is high. Secondly, limiting the number of
shares to k < n, results in a protocol that requires an exchange
of only O(n +log N) messages and O(n? +log N) bytes of
information.

In the Malicious-k-shares protocol, each source agent s
must prove that it has generated correct shares, that is, the
sum of all shares is a value that lies in the legal interval for
feedback. An agent s sends each of the % trusted agents a share
encrypted with the recipient agent’s public key. The shares
are relayed through the querying agent q. We would like ¢
to add these shares using the additive homomorphic property,
however, this is not possible because the shares are encrypted
with different keys. As a solution, agent s also encrypts each
of the shares with his own public key and submits them to
q. Additionally, it submits a set-membership zero-knowledge
proof that the sum of these shares belongs to the legal interval.
The querying agent can verify the veracity of this claim by
using the additive homomorphic property to add the set of
shares encrypted with agent s’s key and then by verifying the
proof. It still remains to show that the original shares sent
to the trusted agents are correct. To show this, agent s gives
a plaintext-equality zero-knowledge proof for each share that

shows that a share encrypted with the recipient’s public key
and a share encrypted with the sender’s public key contain
the same plaintext. Verification of the equality of all pairs of
shares verifies that agent s indeed sent correct shares.

In the Malicious-k-shares protocol, each source agent s
must prove that it has computed the correct sum of the shares.
The querying agent g can compute the encrypted sum of
the shares from the copies of the encrypted shares that it
received and relayed to agent s. However, ¢ cannot decrypt
the sum because it is encrypted with the recipient agent’s
public key. Agent s computes the sum and sends it to ¢
encrypted with ¢’s public key. Agent s also sends a plaintext-
equality zero-knowledge proof that shows that the encrypted
sum independently computed by ¢ and the encrypted sum
sent by agent s hold the same value. Verification of the proof
convinces ¢ that agent s computed the sum correctly.

B. Protocol Outline

The important steps of the protocol are outlined below. The
steps 1, 7, 8, 13, and 14 are performed by the querying agent
q. Whereas, the steps 2 — 6, and 9 — 12, are performed by
each source agent s € S;.

1) Imitiation. The protocol is initiated by a querying agent
g to determine the reputation 7, of a target agent ¢.
Agent q retrieves S; = S; y, which is the set of source
agents of agent ¢ in the context). Agent q verifies S;
from the source managers of ¢. Agent ¢ then sends S;
to each source agent s € S;.

2) Select Trustworthy Agents. Each agent s € S; selects k
other agents in S;. Let us refer to these agents selected
by s as the set Uy = {us1...us,}. Agent s selects
these agents such that: P(—perform(s,us1,p)) X ... X
P(—perform(s,us , p)) is low. That is, the probability
that all of the selected agents will collude to breach agent
s’s privacy is low.

3) Prepare Shares. Agent s then prepares k£ + 1 shares
of its secret feedback value fs;. The shares, given as:
Zs1...Ts k41, are prepared in the following manner:
The first k shares are random numbers uniformly dis-
tributed over a large interval (for example, [0,252 — 1]).
The last share is selected as follows: x5 x+1 = (for —
Zle xs;) mod M, where M is a publicly known
modulus.

The preparation of the shares in this manner implies
that: (Zf:ll xs;) mod M = fs. That is, the sum of
the shares mod M 1is equal to the feedback value. The
sum of the shares, Zfil X, lies in the interval [(hs X
M), (hs x M) + F], where h; = (Zfill xs;) div M,
and fy € [0, F].

Since each of the k + 1 shares is a number uniformly
distributed over a large interval, no information about
the secret can be learned unless all of the shares are
known.

4) Encrypt Shares. Agent s then encrypts each of the
k + 1 shares with its own public key to obtain:
Es(xs51) ... Es(xs xt+1). It also encrypts each share z ;

5)

0)

7)

8)

9)

with the public key of agent u,;, for i € {1...k}, to
obtain: E, ,(7s1)... By, , (Ts k).

Generate Zero-Knowledge Proofs. Agent s computes:
Bs = (Bs(xs1) X ... X BEs(xs k4+1)) mod n?, where ng
is the RSA modulus in the public key of agent s. The
result of this product is the encrypted sum of agent s’s
shares, that is 3, = ES(Zfill xs,;) (due to the additive
homomorphic property).

Agent s then generates one non-interactive set member-
ship zero-knowledge proof: smzkp(8s, [(hs x M), (hs X
M) + F]). The proof proves to a verifier that the
ciphertext 35 encrypts a value that lies in the interval
[(hs X M), (hs x M) + F]. In other words, the proof
shows that the ciphertext contains a valid feedback value
(considering mod M).

Agent s also generates k non-interactive plain-
text equality zero-knowledge proofs. Each proof
pezkp(Es(xs,), Eu, ,(xs:)), where i € {1l...k},
proves to a verifier that the two ciphertexts, one en-
crypted with the public key of s and the other encrypted
with the public key of u ;, contain the same plaintext.
A verifier who verifies these zero-knowledge proofs will
be convinced that agent s has prepared the shares such
that they add up to a correct feedback value. Moreover,
the verifier will be assured that the shares destined for s’s
trustworthy agents correspond to those correct shares.
Send Encrypted Shares and Proofs. Agent s sends
all encrypted shares, that is, Es(zs1)...Es(Zsk+1)
and E,, (r51)...Ey,, (sr), as well as all zero-
knowledge proofs, that is, smzkp(Bs, [(hs x M), (hs X
M) + F]) and peka<Es(ms,i)a Eus,i(xs,i))’ i €
{1...k}, to agent gq.

Verify the Proofs. Agent ¢ independently computes S
and verifies the proofs received from each agent s. Their
verification confirms that agent s has prepared the shares
correctly. Agent g receives and verifies the proofs of all
source agents before proceeding to the next step.
Relay the Encrypted Shares. Agent ¢ relays to each
agent u € S;, the encrypted shares received for it
from agents who considered it trustworthy. That is, each
encrypted share E,,_ ,(z), prepared by an agent s for
agent us ;, is relayed to agent ug ;.

The shares are relayed through agent ¢, therefore, any
agent who drops a message would be easily identified.
However, agent ¢ does not learn any of the shares by
relaying them since the shares are encrypted with the
public keys of the destination agents.

Compute Sum of the Shares. Each agent s € S,
receives the encrypted shares of the agents who consid-
ered it trustworthy. Agent s computes 7, as the product
of those encrypted shares along with the ciphertext of
its own (k + 1)’th share z, ,41. Due to the additive
homomorphic property, v is an encryption of the sum
of the plaintexts of those shares. Agent s decrypts 7, to
obtain the plaintext sum o.

Adding the (k+1)’th share provides security in the case
when s receives only one share. If there is no (k+1)’th

share to add, then agent ¢ would learn the received share.
Secrecy of the (k + 1)’th share itself is not critical to
the security of the protocol.

Encrypt the Sum. Agent s then encrypts o5 with agent
¢’s public key to obtain E, (o).

Generate Zero-Knowledge Proof. Agent s then gener-
ates a non-interactive plaintext equality zero-knowledge
proof: pezkp(vs, E4(0s)). The proof proves to a verifier
that the two ciphertexts, one encrypted with the public
key of s and the other encrypted with the public key of
q, contain the same plaintext.

Agent ¢, who can independently compute 7, can be
convinced by this proof that E;(o,) contains the correct
sum of the shares.

Send Encrypted Sum and Proof. Agent s sends the
encrypted sum E, (o) and the zero-knowledge proof
pezkp(7ys, Eq(0s)) to agent g.

Verify the Proof. Agent ¢ independently computes v,
and verifies the zero-knowledge proof received from
each agent s. Its verification confirms that the agent
has computed the sum of the shares correctly. Agent
q receives and verifies the proofs of all source agents
before proceeding to the next step.

Compute Reputation. Agent ¢ decrypts E,(os) to
obtain o, for each agent s € S;. Agent ¢ then computes

Tt = ((ZSGSt as) mod M)/n.

10)

1)

12)

13)

14)

C. Protocol Specification

The protocol is specified in Figures 1 and 2. Tables IV and
V summarize the notation used in the protocol specification.

For the purpose of this protocol, we consider feedback
values to be integers in the range [0, F'] (for example, [0, 10]).
The reputation computed by the protocol can be normalized
to the interval [0, 1] by dividing the result by F.

Let M be a publicly known modulus, such that M > F', and
Vte A: Y s, fst < M. Moreover, M is sufficiently smaller
than 2%, where k is the security parameter — the length in
bits of the RSA modulus n in the cryptographic keys of the
agents (for example, k = 2048, and M = 280y,

Let [0, X] be a large interval (for example, [0,23? — 1]).

To generate the zero-knowledge proof
setMembershipZ K P(Bs,[(hs x M),(hs x M) + F))
in step 10 of the event PREP, an agent s requires the
randomization rg, of the encryption [3,, which can be
computed as follows: rg, =rs1 X ... X Is x41, Where rg ; is
the randomization used for the encryption of Es(zs ;).

To generate the zero-knowledge proof
plaintext EqualityZK P(vs, E4(0s)) in step 4 of the event
VERIFIED_SHARES, an agent s requires the randomization
r-, of the encryption v, which can be computed as follows:
ry, = (g7% - 5)t/ms med (=D(@=1) mod ng, where g and
n, are in the public key of s, and p and q are in the secret
key, ng = pq.

The protocol uses the following functions: timestamp() —
Returns current time. random(¢,() — Returns a random num-
ber uniformly distributed over the interval [£, (], where £ < (.
set_of_trustworthy(s, S) — Returns a set of agents U; =

{ts1...usk}, where U C S. The set U is selected such
that: P(—perform(s,us1,p)) X ...x P(—-perform(s,us x, p))
is low.

Protocol: Malicious-k-shares

Participants: Agents: ¢, t, and the agents inthe set S; = S , = {s1...sn}.
Agents g, t, and a subset of S; of size m < n are considered to be dishonest,
however, g wishes to learn the correct output and therefore does not disrupt the
protocol. n > 3.

Input: Each agent s € S, has a private input fs; = P(perform(s,t,¢) =
true).

Output: Agent g learns r; , the reputation of agent ¢ in the context +, or agent
q learns the identity of the agents who disrupt the protocol.

Setup: Agent ¢ maintains S; = S; ;, the set of its source agents in the context).
All communication takes place over authenticated point-to-point channels that are
resistant to wire-tapping and tampering.

Events and Associated Actions:

agent g initiates the protocol to determine

send tuple (REQUEST_FOR_SOURCES, ¢) to ¢

receive tuple (SOURCES, v, S;) from ¢

verify S, from the source managers of ¢

retrieve the public key PK ; of each agent s € S; from a certificate authority
S; < S b> initialize the set of agents who are expected to send their shares
0 <+ 0> a cumulative sum for computing reputation

Vs < ¢, for each agent s € S; > initialize the sets of encrypted shares

T < timestamp()

send tuple (PREP, q, t, 7, S;) to each agent s € S

OONOUTAWN =

agent ¢ receives the tuple (REQUEST_FOR_SOURCES, 1) from agent ¢
1 send tuple (SOURCES, 7, S¢) to ¢

an agent s € S; receives the tuple (PrREP, q, t, 7, S,) from agent ¢
> select trustworthy agents
1 Us « set_of_trustworthy(s, Sy — {s})
> prepare shares
fori <« 1tok
do z, ; + random(0, X)

Ty kg1 — (for — b1 Ts,i) mod M

hs < (Zfill ws,i) div M

> retrieve public keys

retrieve the public key of each v € U, and the public key of ¢

from a certificate authority

> encrypt shares

7 encrypt g1 ...xs k41 With the public key of s
to obtain Es(wsyl) e Es(w57k+1)

8 encryptzs 1 ...z With the public key of us 1 ... us k
respectively to obtain B | (2s,1) ... Eu, (Ts,k)
> generate zero-knowledge proofs

9 ﬁs < (Es(ms,l) X ... X Es(wsvk+1)) mod n

10 generate setMembershipZKP (B, [(hs X M), (hs X M) + F])

11 fori<« 1tok

12 do generate plaintextEqualityZKP(Es(xs,:), Eu, ; (%s,1))

> send the encrypted shares and the proofs to ¢ '

18 T+ (Us, Ea(s1), -5 B (s k41), Buy 1 (£51), -+ By (24 ,5),
hs, setMembershipZKP(8s, [(hs X M), (hs X M) + FY]),
plaintextEqualityZKP (Es(zs,1), Eus’1 (s,1))s- -,
plaintextEqualityZKP (Es(zs,k), Eu (zs,5)))

14 send tuple (SHARES, q, t, T, I__Z) to ¢

(S VI \V]

o

2
s

Fig. 1: Protocol: Malicious-k-shares

D. Security Analysis — Correctness

In the protocol Malicious-k-shares (Figure 1), agent ¢ either
learns the correct reputation of agent ¢ in the context 1, or
learns the identity of a malicious agent who has disrupted the
protocol, under the malicious adversarial model.

In this section we analyze correctness in the context of
the messages sent by the source agents under the malicious
adversarial model. Correctness under the semi-honest model
is analyzed in detail in the extended technical report [13].

Each agent s € S; communicates exclusively with agent g.
If an agent s takes any of the actions 1 to 3 (Section II-B), it

Protocol: Malicious-k-shares (contd.)

agent g receives the tuple (SHARES, g, t, T, T;) froman agent s € S;

> verify the set membership proof
1 ,85 <—(E5(ms,1) X ... XES(Is,k+1)) mod mi
2 verify setMembershipZKP (B, [(hs X M), (hs X M) + F])

> verify the plaintext equality proofs
3 fori« 1tok
4 do verify plaintextEqualityZKP(Es (vs,:), Eu, ; (%s,:))
> manage the sets of encrypted shares to be relayed '
fori« 1tok

doVy , + Vu , U{Ey ,(zsi)}

> subtract s from the set of agents who are yet to send their shares
7 S, + S, — {s}

> if shares have been received from all source agents then relay the shares
8 ifS, =¢
9 then S} <« S, [> initialize the set of agents who are yet to send their sum
0 send tuple (VERIFIED_SHARES, q, t, 7, V,,) to each agent u € S;

o o,

1

an agent s € S; receives the tuple (VERIFIED_SHARES, q, t, 7, V) from agent
q
> compute sum of the shares
1 s ((HCEVS c) X ES(IS,k+1)) mod Eng
2 05+ Ds(vs)
> encrypt the sum
3 encrypt o with the public key of ¢ to obtain E, (o)
> generate zero-knowledge proof
4 generate plaintextEqualityZKP(vs, Eq(0s))
> send the encrypted sum and the proof to ¢
5 send tuple (AGGREGATE, q, t, T, Eq(0s), pezkp(vs, Eq(cs)) to g

agent ¢ receives the tuple (AGGREGATE, q,t, T, Eq(0s), pezkp(vs, Eq(0s))
from an agent s € S;

> verify the proof
1 5 « ((Teev, ©) X Es(ws,5+1)) mod n2
2 verify plaintextEqualityZKP(vs, Eq(0s))

> decrypt the sum
3 0.« Dg(Eq(0))

> compute intermediate sum for reputation
4 0+ 0+o0;

> subtract s from the set of agents who are yet to send their sum
5 S, « S, — {s}
> if sum has been received from all source agents, compute reputation
ifS, = ¢

thenr, ,, < (0 mod M)/n

~N o

Fig. 2: Protocol: Malicious-k-shares (contd.)

would be exposed as malicious to agent q. Note: Agent q can
then remove the malicious agent from the set of source agents
and restart the protocol. Eventually, only those agents who do
not take actions 1 to 3 will remain in the set of source agents.

An agent s € S; is unable to tamper with the communication
channels since we assume that all communication takes place
over authenticated point-to-point channels that are resistant to
tampering. Since each agent s € S; communicates exclusively
with agent ¢, it will be exposed as malicious if it does not
conform to these requirements.

Wiretapping the communication channels has no effect on
the correctness of the protocol.

The first tuple of information that an agent
s € S; provides to agent ¢ is: (SHARES,gq,ft, T,Z:),
where 7, = (Us, Es(zsi), - FEsxspt1),
Eu, (zs1), -- By, (2sk), setMembershipZKP (S, F),
plaintextEqualityZKP (E; (z.1), Eu, (2s1)) e
plaintextEqualityZKP (E, (x4 1), Eu, , (Tsk)))-

The correctness of the first four elements of the tuple and
the set Uy can be trivially verified by agent ¢q. The remaining
information pertains to the shares prepared by agent s. The
shares have been prepared correctly if the following conditions

hold true: (1) the shares add up to a value in [(h x M), (h X
M)+ FJ;) E,, ,(zs1), ..., By, , (xs%) encrypt the same
shares as E (:csﬂ),' cow Bs(zs 1) respectively;) By, (7s1),

«o» By, , (75x) are encrypted with the public keys of agents
Ug, 1 - . - Us,j; Tespectively.

The first condition holds true for an agent s if the verifica-
tion of setMembershipZKP (s, [(hs x M), (hs x M)+ F1]) by
agent q is successful. Agent g can verify the proof since it can
independently compute 3, (due to the additive homomorphic
property of the cryptosystem), F' and M are publicly known,
and h, is provided by agent s. An incorrect value of hg will
result in failure of the verification of the zero-knowledge proof.
A zero-knowledge proof that shows membership in an interval
with an incorrect h, has no effect on the final output of the
protocol since it is computed as mod M.

The second and third conditions hold true for an agent s
if the verification of each plaintextEqualityZKP(E,(xs;),
E., . (rs;)) by agent ¢ is successful, where i € {1...k}.
Agent g can verify these proofs since it can independently
retrieve the public keys of agents s and w1 ...u,) from a
certificate authority.

If the wverification of the one set-membership zero-
knowledge proof and the %k plaintext-equality zero-knowledge
proofs provided by an agent s succeeds, it implies that agent s
has provided correct information pertaining to the shares that
it prepared. Otherwise, agent s can be considered as malicious.

The second tuple of information that an agent s €
S: provides agent ¢ is: (AGGREGATE, g¢,t,7, Ey(os),
pezkp(vs, Eq(os)).

The correctness of the first four elements of the tuple can
be trivially verified by agent ¢q. The remaining information
pertains to the sum os. The sum has been computed correctly
if the following condition holds true: s and E, (o) encrypt
the same plaintext.

The condition holds true for an agent s if the verification
of pezkp(vs, E4(0s)) by agent g is successful. Agent ¢ can
verify the proof since it can independently compute v, (due to
the additive homomorphic property of the cryptosystem) and
it can independently retrieve the public key of agent s from a
certificate authority.

E. Security Analysis — Privacy

The probability that the protocol will not preserve agent
s’s privacy can be stated as: P(-perform(s,us1,p)) X

. X P(—perform(s,us,p)). We assume that the agents
Ug,1...Us are selected such that this probability is low.
Therefore, with high probability, the adversary learns no more
information about fy; than it can learn in the ideal protocol
with what it knows before the execution of the protocol and
the outcome.

The protocol Malicious-k-shares is a real privacy preserving
reputation protocol (Definition 7) under the malicious model,
because: (1) Malicious-k-shares has the same parameters as
the ideal protocol (except the TT'P), and (2) the adversary
does not learn any more information under the malicious
adversarial model about the private input of any agent s in
Malicious-k-shares than it can learn in the ideal protocol,

with high probability: 1 — (P(—perform(s,us1,p)) X ... X
P(—perform(s, us k, p)))-

In this section we analyze privacy only in the context
of attack 6 in which an agent provides illegal information
(Section II-B) under the malicious adversarial model. Privacy
under the semi-honest model and under the other attacks of the
malicious model is analyzed in detail in the extended technical
report [13].

If a source agent u € S; provides illegal information, it has
no effect on the condition that all first £ shares of agent s
must be known to breach agent s’s privacy. Agent u provides
no information to agent s or agent g that would result in agent
s divulging any extra information.

Agent ¢ may provide an illegal S;, however, that has no
effect on the protocol since g also retrieves and verifies S;
from agent ¢’s source managers.

Agent ¢ sends two types of messages to source agents:
PREP, and VERIFIED_SHARES.

PREP: Agent ¢ may create S; itself in order to attack an
agent s € S;. The set may be created such that it contains
all dishonest agents except agent s who is under attack.
However, we assume that P(—perform(s,us1,p)) X ... X
P(—perform(s, us i, p)) is low. That is, there exist trustworthy
agents in the protocol such that agent s receives a high enough
privacy guarantee.

VERIFIED_SHARES: Agent ¢ may substitute the shares sent
by other agents to an agent s with shares that it has created
itself. Agent ¢ may also not relay a share at all. In both these
cases, the best outcome for ¢ would be to learn agent s’s
(k + 1)’th share. This has no effect on the privacy of agent
s since agent q is still unable to learn its first k shares. Each
of those shares is encrypted and can only be decrypted by its
destination agent.

The protocol may be extended such that an agent s is
allowed to abstain if the privacy guarantee is not sufficient.
The extension would be as follows: The agent who wishes to
abstain would generate the shares such that their sum equals
zero. The abstaining agent would inform the querying agent
that it has abstained, and would prove that the sum of the
shares equals zero.

1) An Attack on the Ideal Protocol: We describe an attack
in which the adversary attempts to determine the private
feedback of a source agent over the course of two reputation
queries. Consider the scenario when a new agent s is added
to the set of source agents S;. Let S; = S; U {s}. Let the
reputation of the target agent ¢t be r, and 7’; for the set of
source agents S; and S; respectively. A querying agent ¢ that
queries the reputation of the target agent ¢ with both sets of
source agents can compute the private feedback of agent s as
fst = (r; x (n+1)) = (1, x n), where n = |S;|. A similar
attack can also determine the private feedback of an existing
source agent that drops out from the set of source agents.

The ideal protocol (Definition 6) is vulnerable to this
attack. Consequently, the Malicious-k-shares protocol is also
vulnerable as it emulates the ideal protocol. We note that this
is a general issue for all protocols (including Pavlov et al. [4]
and Gudes et al. [3]) that can produce the sum of the feedback
values of the following sets of source agents: S, and S; U {s}

or S; — {u}, where s ¢ S; and u € S;.

We have previously described this attack in our paper
[2] on the non-cryptographic k-shares decentralized privacy
preserving reputation protocol for the semi-honest model.
Additionally, we have discussed three possible defenses to
counter this attack in our previous work. These solutions can
also be applied to the protocol described in the current work.
We briefly describe the three solutions below and refer the
reader to our previous work for further details.

1) Each source agent retrieves a random number from a
trusted random number generator and adds it to its
feedback. The sum of the random numbers perturbs the
reputation score with a different value each time the
reputation is calculated.

2) Two or more source agents who trust each other in the
context of preserving privacy form a trusted subset. The
agents in a trusted subset submit feedback in tandem,
that is, they either all submit their feedback or none of
them does. Thus, at best, an attacker can only learn the
cumulative sum of multiple feedback values instead of
an individual feedback value.

3) A source agent probabilistically decides whether to par-
ticipate in the protocol or to abstain from the protocol.
The effect achieved is that the attacker can no longer
deterministically create the set of agents who will submit
their feedback about a given target agent.

F. Complexity Analysis

TABLE I: Protocol Malicious-k-shares — Complexity.

Tuple Occur- IDs Cipher- SMZKPs | PEZKPs
rences texts

REQUEST_FOR |1

_SOURCES

SOURCES 1 n

PREP n nXxXn=
n2

SHARES n kn kn n kn

VERIFIED n kn

_SHARES

AGGREGATE n n n

Total 4n + 2 n+n2+ 2kn+n |n kn +n
kn

Complexity O(n) O(n?) O(kn) O(n) O(kn)

Table I presents an analysis of the complexity of the
Malicious-k-shares protocol. The column “Occurrences” an-
alyzes the number of messages exchanged. Whereas, the
columns “IDs”, “Ciphertexts”, “SMZKPs”, and “PEZKPs”
analyze the bandwidth usage of the protocol.

The protocol requires O(n) messages to be exchanged. The
protocol also performs a DHT lookup in the initiation phase,
which requires an additional O(log N) messages (assuming
Chord). Thus, the total number of messages exchanged is
O(n) + O(log N) = O(n + log N), where n is the number
of source agents in the protocol and N is the total number of
agents in the system respectively.

In terms of bandwidth usage, the protocol requires trans-
mission of the following amount of information: O(n?)

agent IDs, O(kn) ciphertexts, O(n) non-interactive zero-
knowledge proofs of set membership, O(kn) non-interactive
zero-knowledge proofs of plaintext equality, and an additional
O(log N) messages of constant size for the DHT lookup.

The size of the IDs, the ciphertexts, and the PEZKPs
(Section III-C, Figure 7) is constant. Moreover, the size of
the SMZKPs (Section III-B, Figure 6) is also constant, given
that p = |F| is constant. Thus, the complexity of the protocol
in terms of bytes of information transferred can be stated as
O(n?)+0(kn)+0(n)+0(kn)+0O(log N) = O(n*+log N).
We observe in Section V-B that k < n.

Moreover, k can be considered as a constant in the protocol.
k can be set as a system-wide constant. Alternatively, in the
extended version of the protocol where agents can abstain, the
querying agent can be given the choice to set k. The trade-off
between a lower and a higher value of k is possible lower
participation from the source agents and higher bandwidth
usage respectively.

V. EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the following two
hypotheses that the Malicious-k-shares protocol is based on:

1) A source agent can preserve its privacy by trusting on
only k fellow source agents, where k£ is much smaller
than n — 1, the size of the set of all fellow source agents.

2) Accurate reputation values can be computed even if
the source agents whose privacy can not be preserved
abstain and thus do not provide their feedback values.

The first hypothesis places emphasis on the notion that a
source agent can find k sufficiently trustworthy agents that
enable it to preserve its privacy, even if k£ is much smaller
than n — 1. The fact that a source agent is able to preserve
its privacy with k trustworthy agents, where k < n — 1, has
already been validated in Section IV-E.

A. Datasets

A trust graph can be defined as a weighted directed graph
G = (A, T,F), in which the set of vertices corresponds to
the set of agents A, the set of edges corresponds to the set
of binary trust relationships T, and the set of weights of the
edges is given as a set of feedback values .

We use three real trust graphs as the datasets for our
experiments. These three trust graphs have been independently
evolved by the communities of advogato.org, squeak.org, and
robots.net. The members of each of these communities rate
each other in the context of being active and responsible
members of the community. A common element between the
three sites is that they use the same reputation system and thus
offer the same set of feedback values. The choice of feedback
values are master, journeyer, apprentice, and observer, with
master being the highest level in that order. The trust graphs
were obtained from the site trustlet.org on May 30, 2012.

Table 1II lists the number of users, the number of ratings,
and the distribution of the ratings in each of the three trust
graphs. Figure 3 shows the distribution of the potential target
agents in each trust graph according to the minimum size of

TABLE II: Trust Graphs.

Advogato Squeak Robots
No. of users 14,020 766 16,620
No. of ratings 56,652 2,928 3,593
Ratings / user 4.04 3.82 0.22
master ratings 31.9% 31.8% 35.4%
Jjourneyer ratings 40.0% 32.0% 26.0%
apprentice ratings 18.7% 33.2% 35.2%
observer ratings 9.4% 3.0% 3.4%

the set of their source agents. The graphs in Figure 3 also plot
the instances of source agents in the trust graphs.

The members of the communities are expected to not
post spam, not attack the reputation system, etc. Thus, we
consider that the context “be a responsible member of the
community” comprises of the context “be honest”. Since
we quantify trust as probability, we heuristically substitute
the four feedback values of the trust graphs as follows:
master = 0.99, journeyer = 0.70, apprentice = 0.40, and
observer = 0.10.

For the experiments, we define the lowest acceptable proba-
bility that privacy will be preserved as 0.90. This implies that
a set of two trustworthy agents must include either one master
rated agent or two journeyer rated agents for this threshold to
be satisfied.

B. Experiment 1

1) Objective: Observe the effect of increasing the value of
k on the percentage of the instances of source agents whose
privacy is preserved.

2) Setup: The maximum number of fellow source agents
that an agent can trust on is n — 1. A fraction of the size of
this set can be stated as k x (n— 1), where « € [0, 1]. For our
experiments, we equate k = [« x (n — 1)]. This allows us to
use x (kappa) to vary the value of k as a fraction of n — 1.

We query the reputation of all agents with at least min
source agents. We vary s from 0.01 to 1 with an increment
of 0.01 and observe the percentage of the instances of source
agents whose privacy is preserved. The set of experiments is
run with min € {10,25,50, 75,100} for the Advogato trust
graph and with min € {10,15,20,25} for the Squeak and
Robots trust graphs. As discussed in Section IV-E, the privacy
of a source agent s is preserved if P(—perform(s,us1,p)) X

. X P(—perform(s,us,p)) is low, which is less than or
equal to 0.1 in our case. w1 ... U,) are the agents that agent
S trusts.

3) Analysis: In the results of the experiment on the Ad-
vogato trust graph (Figure 4a), we observe that for min = 25,
the privacy of 71% of the instances of source agents is
preserved when x = 0.01. That is, 71% of the source agents
find sufficiently trustworthy agents among only 1% of their
fellow source agents in order to preserve their privacy. The
percentage is 82% at k = 0.04 at which stage the function
nearly converges and there is no significant improvement in
the percentage by increasing « any further. Convergence is
reached at x = 0.03 for the functions of min = 50 and above.
Even for min = 10, convergence is reached at the fairly low
value of x = 0.12. It is thus evident that in the Advogato trust

100000

)) " Target agéents —— j ' TarPet‘a ents ——) ! Tarﬁ:eta‘ents —
Instances of source agents ---- Instances of source agents ---- Instances of source aaems e
10000 %% %x oo
1000 | fane 1000 [
e
@ o . o @
T 1000 [g . T
] @ y @
g 8 100} 8 100} E
S 100} 5 5
3 3 3
o o o
10 b 10 b
10+
1 . , , . , 1 , , | . , , 1 , , . | . , , .
0 100 200 300 400 500 600 0 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80

90

min - minimum size of the set source agents

(a) Advogato

10000

10000

min - minimum size of the set of source agents

(b) Squeak

min - minimum size of the set of source agents

(c) Robots

Fig. 3: Distribution of the potential target agents and the instances of source agents

@
a

©
S
e —

N
=]

Percentage of the instances of source agents
whose privacy is preserved
o S
& a

60
0

min=100
=75
min=50

min=25

min=10

100

05 06 07
kappa

(a) Advogato

01 02 03 04

©
@

o
-3

©
<Q

min=25

whose privacy is preserved
© © © ©
@ S & >

Percentage of the instances of source agents
©
~

©
2

min=15,20

min=10

Percentage of the instances of source agents

whose privacy is preserved

o
=2

o
=3

o
g

o
>

o
o

o
>

o
@

o
Y

IN
©

min=15

min=20

min=25

min=10

01

05 06 07
kappa

(b) Squeak

02 03 04

Fig. 4: Effect of increasing x on the percentage of instances of source agents

90

75

Percentage of reputation values

osm-—

855

80|

100

01

02 03 04 05 06 07
kappa

(c) Robots

whose privacy is preserved

Percentage of reputation values

Percentage of reputation values

10003

min=10 ——
min=15 -->¢--
60 o min=20 -3
55t min=100 - - % min=25 -3 60 min=25 g3
<=0.05 <=0.1 <=0.15 <=0.2 <=0.25 <=0.05 <=0.1 <=0.15 <=0.2 <=0.25 <=0.05 <=0.1 <=0.15 <=0.2 <=0.25
Disparity Disparity Disparity
(a) Advogato (b) Squeak (c) Robots

Fig. 5: Disparity

graph, a source agent can preserve its privacy by trusting on
only k fellow source agents, where %k is much smaller than
n — 1, the size of the set of all fellow source agents. Raising %
over a certain threshold offers no advantage. This conclusion is
also supported by the results of the experiments on the Squeak
(Figure 4b) and Robots (Figure 4c) trust graphs. The Robots
trust graph is quite sparse as compared to the other two graphs.
It has an average user to ratings ratio of only 0.22 compared to
the Advogato and Squeak trust graphs that have a ratio of 4.04
and 3.82 respectively. Yet the percentage of the instances of
source agents whose privacy is preserved converge very early
in the Robots trust graph as well.

The privacy of a source agent s
P(—perform(s,us1,p)) X ...

is preserved if
X P(ﬁperform(S,us,kaP)) is

low, that is, if the probability that all the k fellow source agents
that s considers trustworthy will turn out to be dishonest is low.
Thus, whether the privacy of a source agent s will be preserved
depends on whether s can find k sufficiently trustworthy agents
among fellow source agents. However, in certain cases, an
agent s is unable to find k sufficiently trustworthy agents even
if kappa = 1 (that is, k& = n — 1) and even if there are
more than 100 source agents in the protocol. This is because
the agent s either does not have trust relationships toward its
fellow source agents or the relationships are not strong enough.
The functions in Figure 4 do not converge to 100% due to the
existence of such agents whose privacy cannot be preserved
no matter how large is k or how high is min. However, we
observe in Section V-C that such agents are in the minority.

A high percentage of the agents are able to find sufficiently
trustworthy agents among their fellow source agents in order
to preserve their privacy in real trust graphs. We note that
protocols in the literature such as Pavlov et al. and Gudes et
al. that rely on all n — 1 fellow source agents of an agent to
preserve its privacy will also fail to protect the privacy of the
agents who cannot preserve their privacy in our protocol. This
is because all n — 1 fellow source agents are not trustworthy
enough. On the contrary, our protocol can be extended to allow
agents to abstain from submitting feedback thus protecting
their privacy.

C. Experiment 2

1) Objective: Observe the accuracy of the reputation values
computed when source agents whose privacy can not be
preserved abstain and thus do not provide their feedback
values.

2) Setup: Let B be the set of source agents that abstain and
thus do not provide their feedback values, where B C S; and
S; is the set of all source agents of the target agent . Let r; be
the reputation computed using feedback from all source agents
in S; and let r; be the reputation computed using feedback
from only the agents who do not abstain, that is, the agents
in the set S; — B.

We define the disparity of a reputation value as |r;—r}|. That
is, the absolute difference between the reputation computed
with all source agents and the reputation computed with only
the source agents in S; — B. The disparity ranges from O to 1.
The lower the disparity, the more accurate is the reputation.
A disparity of 0 means that a reputation value computed with
less than all source agents is exactly the same as it would be
if computed with all source agents.

We compute the reputation of all target agents with at
least min source agents twice. Firstly, with all source agents
submitting their feedback. Secondly, with only those source
agents submitting feedback whose privacy can be preserved.
We then compute the disparity between the two values of
reputation for each target agent. We count the number of
instances of reputation values where disparity is less than the
values in {0.05,0.1,0.15,0.20,0.25} respectively.

3) Analysis: In the results of the experiment on the Ad-
vogato trust graph (Figure 5a), we observe that for min = 25,
the disparity of over 76% of reputation values is less than
or equal to the low value of 0.05. Over 96% of reputation
values have a disparity of less than or equal to just 0.1. For
min = 75 and above, the disparity of 100% of the instances
of reputation values is less than or equal to the fairly low
value of 0.15. Thus, it is evident that even if source agents
whose privacy can not be preserved abstain, the reputation
of a high percentage of target agents can still be calculated
with high accuracy as the mean of the feedback values. This
inference is supported by the results of the experiments on the
Squeak (Figure 5b) and Robots (Figure 5c) trust graphs. For
min = 25, 100% of all reputation values have a disparity of
less than or equal to 0.05 in both the Squeak and the Robots
trust graphs.

VI. RELATED WORK

Pavlov et al. [4] propose a decentralized privacy preserving
reputation protocol for the malicious adversarial model. The
protocol comprises of two steps: (1) The first step is the
execution of a witness (feedback provider) selection scheme,
which guarantees the inclusion of a certain number of honest
witnesses as participants. (2) The second step is the decentral-
ized computation of the reputation as the sum of the feedback
values. According to our analysis, the protocol requires an
exchange of O(n3+ N) messages and at least O(n3+N) bytes
of information, where n is the number of witnesses selected
and N is the number of all potential witnesses. The witness
selection scheme requires O (V) messages. The decentralized
computation of the reputation uses Pederson Verifiable Secret
Sharing. Each witness sends messages to every other n — 1
participating witnesses. The result is an additional exchange
of O(n®) messages. In contrast, our protocol requires an
exchange of only O(n+1log N) messages and O(n?+log N)
bytes of information. In addition to innovative cryptographic
constructions, an important reason for the lower complexity is
that each agent in our protocol selects k fellow agents based
on their trustworthiness, where k& < m. This eliminates the
need for a costly witness selection scheme as well as the
need for each agent to exchange messages with n — 1 fellow
agents. Another key difference is that our protocol allows
entities to quantify and to minimize the risk to their privacy
before feedback is submitted. We use three real and large trust
graphs to demonstrate that a high majority of agents can find &
sufficiently trustworthy agents in a set of n—1 fellow feedback
providers even with k as very small compared to n — 1.

Gudes et al. [3] present a protocol for the malicious ad-
versarial model that augments their Knots reputation system
[14] with privacy preserving features. The Knots reputation
system is a personalized reputation system, which implies
that feedback is collected only from the entities whom the
querying entity trusts. The protocol by Gudes et al. eliminates
the need for a witness selection scheme but still requires O(n?)
messages for the decentralized computation of reputation.

The decentralized reputation system proposed by Kinateder
and Pearson [15] requires a Trusted Platform Module (TPM)
chip at each agent. The TPM enables an agent to demonstrate
that it is a valid agent and a legitimate member of the repu-
tation system without disclosing its true identity. This permits
the agent to provide feedback anonymously. A later system by
Kinateder et al. [16] avoids the hardware modules, however,
it requires an anonymous routing infrastructure at the network
level. Our approach does not mandate hardware modules or
specialized platforms such as anonymous networks.

Androulaki et al. [17] propose a reputation scheme for
pseudonymous peer-to-peer systems in anonymous networks.
Users in such systems interact only through disposable
pseudonyms such that their true identity is not revealed. The
reputation protocol has two key objectives: (1) unlinkability
between pseudonyms and true identities, and (2) unforgeabil-
ity, that is, users are unable to forge good reputation. These
objectives are achieved primarily by using e-cash [18], [19],
a cryptographic digital currency that offers anonymity and

unforgeability. Reputation is awarded in the form of e-coins
called repcoins. The querying of reputation requires a constant
number of messages. The weakness of the system is that it
requires the presence of a centralized entity called the bank.
Additionally, the system also requires that all communication
take place over an anonymous network, such as a network
using Onion routing [20]. In contrast, our protocol is truly
decentralized and does not require a specialized platform such
as an anonymous network to operate. Schiffner et al. [21] also
present privacy preserving reputation protocols based on e-
cash and anonymous networks, however, their solution is also
centralized.

The reputation system described by Kerschbaum [22] is
another centralized privacy preserving reputation system. Ker-
schbaum introduces the requirement of authorizability, which
implies that only the users who have had a transaction with a
ratee are allowed to rate him. This property prevents users who
have not transacted with a ratee from assigning him feedback
and thus possibly reduces the impact of attacks such as bad
mouthing and self promotion.

Bethencourt et al. [23] propose a centralized reputation
system based on proof systems for bilinear groups, key private
encryption, and their new cryptographic primitive called signa-
tures of reputation. A user in the reputation system can verify
that the reputation of a target user is composed of feedback
provided by distinct feedback providers. The objective is to
prevent colluding users from augmenting each other’s repu-
tation by taking advantage of privacy. The reputation system
achieves this property while maintaining the anonymity of all
users.

A number of surveys on reputation systems appear in the lit-
erature that discuss the issues of reputation systems including
privacy. Notable surveys on reputation systems include those
by Jgsang at el. [24], Hoffman et al. [25], and Pinyol and
Sabater-Mir [26].

Table III presents a comparison of our protocol with other
reputation systems in the literature. The comparison illustrates
that our protocol is the most efficient in terms of the number of
messages exchanged in decentralized environments. Moreover,
our protocol does not require trusted third parties or spe-
cialized platforms, such as anonymous networks and trusted
hardware.

VII. CONCLUSION AND FUTURE WORK

In this article, we have presented a privacy preserving
reputation protocol for the malicious adversarial model. The
protocol counters attacks by malicious agents such as submit-
ting illegal feedback values or making erroneous computations.
The characteristics that differentiate the protocol from other
protocols in the literature include: (1) full decentralization,
(2) no need for trusted third parties and specialized platforms,
(3) low communication complexity.

Our experiments on three real and large trust graphs demon-
strate the validity of the two hypotheses that the Malicious-k-
shares protocol is based on: (1) A source agent can preserve
its privacy by trusting on only £ fellow source agents, where
k is much smaller than n — 1, the size of the set of all fellow

TABLE III: Protocol Malicious-k-shares — Comparison.

System Archi- Building Blocks Complexity
tecture M g
Malicious-k-shares D Zero-knowledge O(n+log N)
proofs, Homomorphic
encryption
Pavlov et al. [4] | D Verifiable secret sharing, | O(n® 4+ N)
(WSS-2) Discrete log commitment
Gudes et al. [3] D Random permutation, O(n3 + N)
(Scheme 3) Verifiable secret sharing,

Discrete log commitment
Trusted hardware plat-

Kinateder and Pear- D Not Provided

son [15] form, Digital signatures
Androulaki et al. | C E-cash, Blind signatures, O(1)
[17] Anonymous networks
Steinbrecher [27] C Pseudonym and identity | O(1)
management
Schiffner et al. [21] C E-cash, Anonymous net- O(1)
works
Kerschbaum [22] C Homomorphic encryp- | O(1)
tion, Cryptographic
pairings
Bethencourt et al. | C Signatures of reputation, | O(1)
[23] Proof systems for bilinear
groups, Key private en-
cryption

D — Decentralized, C — Centralized

source agents. (2) Accurate reputation values can be computed
even if the source agents whose privacy can not be preserved
abstain and thus do not provide their feedback values.

As future work, we aim to develop a decentralized privacy
preserving reputation system that can counter the slandering
and self-promotion attacks. In slandering, a user submits
unjustifiable negative feedback to intentionally malign the
reputation of a rival user. In self-promotion, a user achieves the
inverse by submitting highly positive feedback to artificially
increase his or a friend’s reputation. Privacy prevents account-
ability of such users. Our goal is to develop a system that
preserves the privacy of users yet exposes users who mount
these attacks.

APPENDIX A
NOTATION USED IN MALICIOUS-k-SHARES

TABLE IV: Notation used in Malicious-k-shares.

Notation Description

A The set of all agents in the environment

c A ciphertext

F A positive integer constant. fs; € [0, F']. For example, F' = 10.

fst The feedback of a source agent s about a target agent ¢

hs The quotient when the sum of the shares of an agent s is divided by
M. hs = (k! 2, 4) div M.

Is A vector that contains the encrypted shares and the proofs sent by
an agent s to the agent ¢

k Constant k is the number of agents that each source agent s selects
to send shares to. k < n.

k The security parameter. The length in bits of the RSA modulus in
the cryptographic keys of the agents. For example, k = 2048.

M A publicly known modulus. M > F.Vt € A : Zsegt fst < M.
M < 2%, For example, k = 2048, M = 280,

m The number of dishonest source agents in S;. m < n.

n The cardinality of the set S;. n = [S;].

Ng The RSA modulus in the public key of an agent s

PK, The public key of an agent s

q The querying agent

Tt =T The reputation of an agent ¢ in the context

TABLE V: Notation used in Malicious-k-shares. (contd.)

Notation Description

St = Sty The set of source agents of agent ¢ in the context v

S; An intermediate set that is initialized to S;. The set of agents who
are expected to send their shares and sums to agent q.

s A source agent. s € S;.

t The target agent

Us The set of fellow source agents that an agent s selects as trustworthy

u A source agent. u € S;.

Vau The set of encrypted shares that agent g receives from other agents
and then relays to agent w

X A large positive integer constant. z5,; € [0, X|. For example, X =
252 1,

Ts,i The " share of an agent s

Bs The encrypted sum of an agent s’s shares. B = Eg (Zf:ll Ts,i).

Vs The encrypted sum of the shares received by an agent s and agent
s’s (k + 1)’th share x4 41

[A cumulative sum for computing reputation

o5 The sum of the shares received by an agent s and agent s’s (k+1)’th
share T5 r41

T A timestamp

P An action. The context for trust.

APPENDIX B
NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Protocol: Non-Interactive-ZKP-Set-Membership

Participants: A prover and a verifier.

Input: Prover: n, g, m;, p, r, ¢ = g™i - ™ mod n?. Verifier: n, g, p, c.

Output: The verifier is convinced that ¢ encrypts a message in F.

Setup: Public knowledge: A set F = {mg, ..., m,}, and the prover’s public key
(m, g). hash(z) is a cryptographic hash function secure against a computationally
PPT bounded adversary.

Steps:

Prover

1) Prover picks at random z in Z;

2) Prover randomly picks p — 1 values e; in Zy, where j # i

3) Prover randomly picks p — 1 values v; in Z., where j # i

4) Prover computes u; = v;? - (g™ /)i mod n2, where j # 4, and u; =
2" mod n>

5) Prover computes e = hash({ui ...up))

6) Prover computes e; = e — Z#_i e; mod n

7) Prover computes v; = z - r®i - g(“_zj?f'i €)™ mod n

8) Move 1: Prover sends uj, v;, e;, where j € {1...p}, to the verifier

Verifier

1) Verifier computes e = hash({ui ...up))
2) Verifier checks that e = Zj e; mod n

3) Verifier checks that v§ = u; - (¢/g™)%7 mod n?foreachj € {1...p}

Fig. 6: Protocol: Non-Interactive Zero-Knowledge Proof of Set
Membership

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments.

REFERENCES

[1] P. Resnick and R. Zeckhauser, “Trust among strangers in internet
transactions: Empirical analysis of ebay’s reputation system,” Volume
11 of Advances in Applied Microeconomics, pp. 127-157, 2002.

[2] O. Hasan, L. Brunie, and E. Bertino, “Preserving privacy of
feedback providers in decentralized reputation systems,” Comput-
ers & Security, vol. 31, no. 7, pp. 816 — 826, October 2012,
http://dx.doi.org/10.1016/j.cose.2011.12.003.

[3] E. Gudes, N. Gal-Oz, and A. Grubshtein, “Methods for computing trust
and reputation while preserving privacy,” in Proc. of DBSec’09, 2009.

Protocol: Non-Interactive-ZKP-Plaintext-Equality
Participants: A prover and a verifier.

Input: Prover: ny, g1, n2, g2, m, ry, ra, 1 = g7 - rr;'l
u'g"’ mod mg. Verifier: m1, g1, na2, g2, ¢1, ca2.

Output: The verifier is convinced that ¢; and ¢ encrypt the same message.
Setup: Public knowledge: The public keys (n1, g1) and (n2, g2). hash(z) is
a cryptographic hash function secure against a computationally PPT bounded
adversary.

Steps:

2 _ om
mod ny, c2 = g3 -

Prover

1) Prover picks at random z in [0, 2“‘[

2) Prover randomly picks s, € Z; ands; € Z;,

3) Prover computes u; = g7 - 57 mod m?, foreach j € {1, 2}
4) Prover computes e = hash({ul, usz))

5) Prover computes z = z + m - e

6) Prover computes v; = s; - r; mod ny, for each j € {1, 2}
7) Move 1: Prover sends z, u1, ug, vi, vo to the verifier

Verifier

1) Verifier computes e = hashg((ul, uz))
2) Verifier checks that =z € [0, 2%[

3) Verifier checks that g7 - w:” = uj - c§ mod m? foreach j € {1,2}

Fig. 7: Protocol: Non-Interactive Zero-Knowledge Proof of
Plaintext Equality

[4] E. Pavlov, J. S. Rosenschein, and Z. Topol, “Supporting privacy in
decentralized additive reputation systems,” in Proceedings of the Second
International Conference on Trust Management (iTrust 2004), Oxford,
UK, 2004.

[5] D. Gambetta, Trust: Making and Breaking Cooperative Relatioins.
Department of Sociology, University of Oxford, 2000, ch. Can We Trust
Trust?, pp. 213 — 237.

[6] O. Goldreich, The Foundations of Crypto. - Vol. 2.
Press, 2004.

[7]1 P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proceedings of the 17th International Conference on
Theory and Application of Cryptographic Techniques, 1999.

[8] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, p. 120126, 1978.

[9] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to

identification and signature problems,” in CRYPTO’86, 1986.

O. Baudron, P-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard,

“Practical multi-candidate election system,” in Proc. of PODC’01, 2001.

S. D. Kamvar, M. T. Schlosser, and H. GarciaMolina, “The eigentrust

algorithm for reputation management in p2p networks,” in Proc. of the

12th Intl. Conf. on World Wide Web (WWW 2003), Budapest, Hungary,

May 2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”

in Proc. of the 2001 Conf. on Applications, Technologies, Architectures,

and Protocols for Computer Communications, 2001, pp. 149-160.

O. Hasan, L. Brunie, E. Bertino, and N. Shang, “A decentralized privacy

preserving reputation protocol for the malicious adversarial model,”

LIRIS, France, http:/liris.cnrs.fr/Documents/Liris-5609.pdf, Tech. Rep.

RR-LIRIS-2012-008, 2012.

N. Gal-Oz, E. Gudes, and D. Hendler, “A robust and knot-aware

trust-based reputation model,” in Proceedings of the Joint iTrust and

PST Conferences on Privacy, Trust Management and Security (IFIPTM

2008), 2008.

M. Kinateder and S. Pearson, “A privacy-enhanced peer-to-peer reputa-

tion system,” in Proc. of the 4th Intl. Conf. on E-Commerce and Web

Technologies, 2003.

M. Kinateder, R. Terdic, and K. Rothermel, “Strong pseudonymous

communication for peer-to-peer reputation systems,” in Proceedings of

the 2005 ACM symposium on Applied computing, 2005.

E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin, “Reputation

systems for anonymous networks,” in Proc. of PETS 08, 2008.

D. Chaum, “Blind signatures for untraceable payments,” in Proc. Ad-

vances in Cryptology (CRYPTO ’82), 1982.

“Blind signature systems,” in Advances in

(CRYPTO’83), 1983.

Cambridge Univ.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

(19]

Cryptology

[20] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the USENIX Security Sym-
posium, 2004.

[21] S. Schiffner, S. Clau, and S. Steinbrecher, “Privacy and liveliness for
reputation systems,” in Proc. of EuroPKI’09, 2009, pp. 209 — 224.

[22] F. Kerschbaum, “A verifiable, centralized, coercion-free reputation sys-
tem,” in Proc. of the 8th ACM workshop on privacy in the e-society
(WPES’09), 2009.

[23] J. Bethencourt, E. Shi, and D. Song, “Signatures of reputation: Towards
trust without identity,” in Proc. of the Intl. Conf. on Financial Cryptog-
raphy (FC ’10), 2010.

[24] A. Josang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision Support Systems, vol. 43,
no. 2, pp. 618 — 644, March 2007.

[25] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Computing Surveys,
vol. 41, no. 4, December 2009.

[26] I. Pinyol and J. Sabater-Mir, “Computational trust and reputation models
for open multi-agent systems: a review,” Artificial Intelligence Review,
2011.

[27] S. Steinbrecher, “Design options for privacy-respecting reputation sys-
tems,” in Security and Privacy in Dynamic Environments, 2006.

Omar Hasan is Assistant Professor at the Institut
National des Sciences Appliquées (INSA), Univer-
sity of Lyon, France. His research interests include
distributed systems, information privacy, and trust
and reputation management. He received his PhD in
computer science from INSA, University of Lyon.
Prior to his current position, he was a researcher
on the SOCEDA project of the French Agence
Nationale de la Recherche (ANR). Additionally, he
was a visiting researcher at Purdue University, USA

for approximately one year. He also holds four years

of software engineering and R&D experience in the IT industry.

Lionel Brunie is Professor at the Institut National
des Sciences Appliquées (INSA), University of Lyon,
France since 1998. He was previously a faculty
member at the Ecole Normale Supérieure (ENS),
Lyon, France. He received his PhD in computer
science in 1992 from Joseph Fourier University,
Grenoble, France. In 1999, he created the INSA e-
learning department which he led until 2002. Then
from 2002 to 2006, he headed the Lyon doctoral
school in computer science (300+ registered PhD
students). In 2003, he co-founded the LIRIS lab in
which he acted as deputy director in 2006-2007. In 2007, he co-founded
the international doctoral college in “Multimedia Distributed and Pervasive
Secure systems (MDPS)”. He leads the LIRIS DRIM research team which
comprises of 10 permanent researchers and 20+ PhD students. His main
topics of interest include security and privacy, data management in large
scale and pervasive systems, collaborative information systems, and e-health
applications. He has led numerous national and international research projects;
he is the (co-)author of over 180 research papers; he has been member of over
70 scientific conference and workshop committees.

Elisa Bertino is Professor of Computer Science at
Purdue University, and serves as research director
of the Center for Education and Research in In-
formation Assurance and Security (CERIAS) and
Interim Director of Cyber Center (Discovery Park).
Previously, she was a faculty member and depart-
ment head at the Department of Computer Science
and Communication of the University of Milan. Her
main research interests include security, privacy, dig-
ital identity management systems, database systems,
distributed systems, and multimedia systems. She
is currently serving as chair of the ACM SIGSAC and as a member of
the editorial board of the following international journals: IEEE Security
& Privacy, IEEE Transactions on Service Computing, ACM Transactions on
Web. She also served as editor in chief of the VLDB Journal and editorial
board member of ACM TISSEC and IEEE TDSC. She co-authored the book
“Identity Management - Concepts, Technologies, and Systems”. She is a
fellow of the IEEE and a fellow of the ACM. She received the 2002 IEEE
Computer Society Technical Achievement Award for outstanding contributions
to database systems and database security and advanced data management
systems and the 2005 IEEE Computer Society Tsutomu Kanai Award for
pioneering and innovative research contributions to secure distributed systems.

Ning Shang is a product security engineer at Qual-
comm Inc. He received his PhD degree in mathemat-
ics from Purdue University, West Lafayette, Indiana.
Before coming to Qualcomm, he was a postdoc
researcher in the Department of Computer Science
at Purdue University and a software development
engineer at Microsoft. His research interests include
algorithmic number theory, curve-based cryptogra-
phy, and design and implementation of security
systems.

