Introduction to applied cryptography – Lecture 2

Omar Hasan

Books

- The content in the lectures is drawn from the following books:
 - Applied Cryptography, Second Edition Bruce Schneier
 - An Introduction to Cryptography, version 8.0 PGP Corporation

- A **public-key cryptosystem** named after its three inventors—Ron Rivest, Adi Shamir, and Leonard Adleman.
- RSA supports authentication of the participants (through digital signatures) as opposed to Diffie-Hellman, which does not.
- RSA gets its security from the difficulty of factoring large numbers.
- Recovering the plaintext from the public key and the ciphertext is conjectured to be equivalent to factoring the product of two primes.

- Let e, d, n be positive integers, and p, q be prime numbers, where n = pq, then:
 - Public key: (e, n)
 - **Private key:** (d, n)
- Encryption:

 $C = E(M) = M^{e} \pmod{n}$

• Decryption:

 $M = D(C) = C^{d} \pmod{n}$

Key Generation: Public key

- Choose two random large prime numbers, p and q, of equal length. p = 47 and q = 71.
- Compute n: n = pq
 n = 47 * 71 = 3337
- Compute φ : $\varphi = (p 1)(q 1)$ $\varphi = 46 * 70 = 3220$
- Choose a random integer e, such that e and φ are relatively prime.
 e = 79
 - In other words: $gcd(e, \varphi) = 1$ gcd(79, 3220) = 1
 - Where, gcd: greatest common divisor
- Public key: (e = 79, n = 3337)

Key Generation: Private key

- Use the extended Euclidean algorithm to compute d, such that: $ed = 1 \pmod{\varphi}$
 - In other words: $d = e^{-1} \pmod{\varphi}$

 $d = 79^{-1} \pmod{3220} = 1019$

• Private key: (d = 1019, n = 3337)

Extended Euclidean algorithm, modular multiplicative inverse calculator: https://planetcalc.com/3298/ Modular exponentiation: https://planetcalc.com/8979/

Encryption

• The encryption function:

 $C = E(M) = M^{e} \pmod{n}$

Example

- M = 688
- Public key: (e = 79, n = 3337)
- Encryption:

 $C = E(688) = 688^{79} \pmod{3337} = 1570$

Decryption

• The decryption function:

 $M = D(C) = C^{d} \pmod{n}$

Example

- C = 1570
- Private key: (d = 1019, n = 3337)
- Decryption:

 $M = D(1570) = 1570^{1019} \pmod{3337} = 688$

Encryption of larger messages

- To encrypt a large message m, first break it into numerical blocks smaller than n.
- If n has 100 digits, then each message block, m_i, should be under 100 digits long.
- The encrypted message, c, will be made up of similarly sized message blocks, c, of about the same length.

Example

• To encrypt the message:

m = 6882326879666683

- First break it into small blocks. The message is split into six blocks, $m_{\rm i}$:

$$m_1 = 688$$

 $m_2 = 232$
 $m_3 = 687$
 $m_4 = 966$
 $m_5 = 668$
 $m_6 = 003$

Example

• The first block is encrypted as

 $688^{79} \mod 3337 = 1570 = c_1$

 Performing the same operation on the subsequent blocks generates an encrypted message:

c = 1570 2756 2091 2276 2423 158

Decryption

 To decrypt the entire message, decrypt each encrypted block c_i.

Example

• Ciphertext:

c = 1570 2756 2091 2276 2423 158

 Decrypting the message requires performing exponentiation using the decryption key of 1019, so

 $1570^{1019} \mod 3337 = 688 = m_1$

• The rest of the message can be recovered in this manner.

Exercise

• Ciphertext:

c = 564 648 324 243 696 562 331 689

- Public key: (e = 11, n = 703)
- Private key: (d = 59, n = 703)
- The decryption function:

 $M = D(C) = C^{d} \pmod{n}$

• ASCII:

65	А	66	В	67	С	68	D	69	Е
70	F	71	G	72	Н	73	I	74	J
75	Κ	76	L	77	Μ	78	Ν	79	0
80	Р	81	Q	82	R	83	S	84	Т
85	U	86	V	87	W	88	Х	89	Y
90	Z								13 / 37

Solution

- 564 648 324 243 696 562 331 689
- 564 ⁵⁹ (mod 703)
- G Y M N A S E B

- The security of RSA depends on the problem of factoring a large number, i.e. n, the product of p and q.
 - Any adversary will have the public key, e, and the modulus, n. To find the decryption key, d, he has to factor n.

-
$$n = pq; d = e^{-1} \mod ((p - 1)(q - 1))$$

- It is also possible to attack RSA by guessing the value of (p - 1)(q - 1). This attack is no easier than factoring n.
- A cryptanalyst can also try every possible d until he stumbles on the correct one. This brute-force attack is even less efficient than trying to factor n.

 $- m = c^{d} \mod n$

Chosen Ciphertext Attack against RSA, Scenario 1

 Eve, listening in on Alice's communications, manages to collect a ciphertext message, c, encrypted with RSA in her public key.

m = c d mod n

- To recover m, she first chooses a random number, r, such that r is less than n. She gets Alice's public key, e. Then she computes
 - x = r e mod n
 - y = x c mod n
 - $t = r^{-1} \mod n$
- If $x = r^{e} \mod n$, then $r = x^{d} \mod n$.

- Now, Eve gets Alice to sign y with her private key, thereby decrypting y.
- Alice sends Eve $u = y^d \mod n$
- Now, Eve computes:
 - tu mod n
 - $= r^{-1} y^{d} \mod n$
 - $= r^{-1} x^{d} c^{d} mod n$
 - = c d mod n

= m

• Eve now has m.

Chosen Ciphertext Attack against RSA, Scenario 2

- Eve wants Alice to sign m₃.
- She generates two messages, m₁ and m₂, such that:

 $- m_3 = m_1 m_2 \pmod{n}$

• If Eve can get Alice to sign m_1 and m_2 , she can calculate m_3 :

$$- m_3^{d} = (m_1^{d} \mod n)(m_2^{d} \mod n)$$

• **Moral:** Never use RSA to sign a random document presented to you by a stranger.

- A digital signature serves the same purpose as a handwritten signature.
- However, a handwritten signature is easy to counterfeit.
- A **digital** signature is superior to a handwritten signature in that it is very **hard to counterfeit**.
- Moreover, a digital signature **attests to the contents** of the information as well as to the **identity of the signer**.

- Instead of encrypting information using someone else's public key, you encrypt it with your private key.
- If the information can be **decrypted** with your **public** key, then it must have originated with you.

- Public key digital signatures provide authentication, data integrity, and non-repudiation.
- Authentication: Digital signatures let the recipient of information verify the authenticity of the information's origin.
- **Integrity:** Digital signatures also allow verification that the information was not altered while in transit.
- **Non-repudiation:** Digital signatures can prevent the sender from claiming that he or she did not actually send the information.

Exercise

• Plaintext:

M = "MESSAGE" or just "M"

- RSA public key: (e = 11, n = 703)
- RSA private key: (d = 59, n = 703)
- Signing (encryption) and verifying (decryption) functions:

 $C = E(M) = M^{d} \pmod{n}; M = D(C) = C^{e} \pmod{n}$

• ASCII:

65	А	66	В	67	С	68	D	69	Е
70	F	71	G	72	Н	73		74	J
75	Κ	76	L	77	Μ	78	Ν	79	0
80	Р	81	Q	82	R	83	S	84	Т
85	U	86	V	87	W	88	Х	89	Y
90	Z								23 / 37

- A one-way hash function takes variable-length input

 a message of any length, even thousands or millions of
 bits.
- It then produces a **fixed-length output**, e.g., 256 bits.
- The hash function ensures that, if the input is changed in any way — even by just one bit — an entirely different output value is produced (avalanche effect).
- A hash function is efficiently computable. Computing the hash of an n-bit string should have a running time that is O(n).
- An application: hash tables

An application:

- Using digital signatures without hash functions is slow, and it produces an enormous volume of data—at least double the size of the original information.
- **PGP** uses a cryptographically strong **hash function** on the **plaintext** the user is signing. This generates a fixedlength data item known as a **message digest**.

- Then PGP uses the digest and the private key to create the digital signature.
- PGP transmits the signature and the plaintext together.
- Upon receipt of the message, the recipient uses PGP to recompute the digest, thus verifying the signature.

Cryptographic hash function

- For a hash function to be **cryptographically secure**, it must have the following additional properties:
 - 1) Collision resistance
 - 2) Hiding

Collision resistance

 A collision occurs when two distinct inputs produce the same output.

- A hash collision. x and y are distinct values, yet when input into hash function H, they produce the same output.
- Collision resistance: A hash function H is said to be collision resistant if it is infeasible to find two values, x and y, such that $x \neq y$, yet H(x) = H(y).

Hiding

- If we are given the output of the hash function y = H(x), there is no feasible way to determine the input, x.
- In order to be able to achieve the hiding property:
 - No value of x should be particularly likely.
 - That is, x has to be chosen from a **large set**.

Homomorphic Cryptosystems

Additive Homomorphic Cryptosystems:

• Product of ciphertexts ⇒ Sum of plaintexts

$$E(x) * E(y) = E(x + y)$$

 $E(3) * E(4) = E(3 + 4) = E(7)$

Zero Knowledge Proofs (ZKP)

- A Prover convinces a Verifier that a statement is true
- No additional information is revealed

ZKP: Set Membership

- Given a ciphertext $E_u(x)$ and a public set S
- User u proves: x ∈ S
- **x** is not revealed

ZKP: Plaintext Equality

- Given two ciphertexts $E_u(x)$ and $E_v(x)$
- User \boldsymbol{u} proves: Both $\boldsymbol{E}_{\boldsymbol{u}}(\boldsymbol{x})$ and $\boldsymbol{E}_{\boldsymbol{v}}(\boldsymbol{x})$ encrypt \boldsymbol{x}
- **x** is not revealed

Secret Sharing

• Split a secret into n shares: $x_1, x_2, ..., x_n$

• Send the shares to *n* users

• $m \leq n$ users required to unlock the secret

Secure Multiparty Computation

- There are **n parties** in a network. Each party has **an input** which is **private**.
- The n parties wish to **compute some joint function** over their inputs such that **all inputs remain private**, i.e., known only to their owners.
- Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party.

Examples

Yao's Millionaire Problem:

- **Two millionaires**, Alice and Bob, wish to learn **which of them is richer** without revealing their individual wealth.
- Two private numbers x and y each belonging to a different party, and the goal is to solve the inequality while preserving the privacy of the inputs.

Private Sum, Product, etc.:

 n parties wish to compute some function such as sum or product over their inputs such that all inputs remain private.37/37