Introduction to applied cryptography - Lecture 2

Omar Hasan

Books

- The content in the lectures is drawn from the following books:
- Applied Cryptography, Second Edition - Bruce Schneier
- An Introduction to Cryptography, version 8.0 - PGP Corporation

RSA

- A public-key cryptosystem named after its three inventors-Ron Rivest, Adi Shamir, and Leonard Adleman.
- RSA supports authentication of the participants (through digital signatures) as opposed to Diffie-Hellman, which does not.
- RSA gets its security from the difficulty of factoring large numbers.
- Recovering the plaintext from the public key and the ciphertext is conjectured to be equivalent to factoring the product of two primes.

RSA

- Let $\mathbf{e}, \mathbf{d}, \mathbf{n}$ be positive integers, and \mathbf{p}, \mathbf{q} be prime numbers, where $\mathbf{n}=\mathbf{p q}$, then:
- Public key: (e, n)
- Private key: (d, n)
- Encryption:

$$
C=E(M)=M^{e}(\bmod n)
$$

- Decryption:

$$
M=D(C)=C^{d}(\bmod n)
$$

RSA

Key Generation: Public key

- Choose two random large prime numbers, p and q, of equal length. $\mathbf{p}=47$ and $\mathbf{q}=71$.
- Compute n :

$$
\begin{array}{ll}
n=p q & \boldsymbol{n}=47 * \mathbf{7 1}=\mathbf{3 3 3 7} \\
\varphi=(p-1)(q-1) & \boldsymbol{\varphi}=\mathbf{4 6} * \mathbf{7 0}=\mathbf{3 2 2 0}
\end{array}
$$

- Compute φ :
- Choose a random integer e, such that e and φ are relatively prime.
$\mathbf{e}=79$
- In other words: $\operatorname{gcd}(e, \varphi)=1 \quad \operatorname{gcd}(79,3220)=1$
- Where, gcd: greatest common divisor
- Public key: ($\mathbf{e}=\mathbf{7 9}, \mathbf{n}=\mathbf{3 3 3 7}$)

RSA

Key Generation: Private key

- Use the extended Euclidean algorithm to compute d, such that: ed $=1(\bmod \varphi)$
- In other words: $d=e^{-1}(\bmod \varphi)$

$$
d=79^{-1}(\bmod 3220)=1019
$$

- Private key: (d = 1019, $\mathbf{n}=\mathbf{3 3 3 7}$)

RSA

Encryption

- The encryption function:

$$
C=E(M)=M^{e}(\bmod n)
$$

Example

- $M=688$
- Public key: ($\mathbf{e}=\mathbf{7 9}, \mathbf{n}=\mathbf{3 3 3 7}$)
- Encryption:

$$
C=E(688)=688{ }^{79}(\bmod 3337)=1570
$$

RSA

Decryption

- The decryption function:

$$
M=D(C)=C^{d}(\bmod n)
$$

Example

- $\mathbf{C}=1570$
- Private key: ($\mathbf{d}=\mathbf{1 0 1 9} \mathbf{~} \mathbf{n}=\mathbf{3 3 3 7}$)
- Decryption:

$$
M=D(1570)=15700^{1019}(\bmod 3337)=688
$$

RSA

Encryption of larger messages

- To encrypt a large message m, first break it into numerical blocks smaller than \mathbf{n}.
- If \mathbf{n} has $\mathbf{1 0 0}$ digits, then each message block, $\mathbf{m}_{\mathbf{i}}$, should be under $\mathbf{1 0 0}$ digits long.
- The encrypted message, c, will be made up of similarly sized message blocks, $\mathbf{c}_{\mathbf{i}}$, of about the same length.

RSA

Example

- To encrypt the message:
$\mathrm{m}=6882326879666683$
- First break it into small blocks. The message is split into six blocks, m_{i} :

$$
\begin{aligned}
& m_{1}=688 \\
& m_{2}=232 \\
& m_{3}=687 \\
& m_{4}=966 \\
& m_{5}=668 \\
& m_{6}=003
\end{aligned}
$$

RSA

Example

- The first block is encrypted as
$688^{79} \bmod 3337=1570=c_{1}$
- Performing the same operation on the subsequent blocks generates an encrypted message:

$$
\text { c = } 15702756209122762423158
$$

RSA

Decryption

- To decrypt the entire message, decrypt each encrypted block c_{i}.

Example

- Ciphertext:
c = 15702756209122762423158
- Decrypting the message requires performing exponentiation using the decryption key of 1019, so $1570^{1019} \bmod 3337=688=m_{1}$
- The rest of the message can be recovered in this manner.

RSA

Exercise

- Ciphertext:

c = 564648324243696562331689

- Public key: $(\mathbf{e}=\mathbf{1 1}, \mathbf{n}=\mathbf{7 0 3})$
- Private key: ($\mathbf{d}=\mathbf{5 9}, \mathbf{n}=\mathbf{7 0 3}$)
- The decryption function:

$$
M=D(C)=C^{d}(\bmod n)
$$

- ASCII:

65	A	66	B	67	C	68	D	69	E
70	F	71	G	72	H	73	I	74	J
75	K	76	L	77	M	78	N	79	O
80	P	81	Q	82	R	83	S	84	T
85	U	86	V	87	W	88	X	89	Y
90	Z						$13 / 37$		

RSA

Solution

$\begin{array}{llllllll}\text { - } & 564 & 648 & 324 & 243 & 696 & 562 & 331 \\ 689\end{array}$

- $564{ }^{59}(\bmod 703)$....
- 71
- G

89
77
78
65
836966
Y M N
N
A S
E B

Security of RSA

- The security of RSA depends on the problem of factoring a large number, i.e. n, the product of \mathbf{p} and \mathbf{q}.
- Any adversary will have the public key, e, and the modulus, \mathbf{n}. To find the decryption key, \mathbf{d}, he has to factor \mathbf{n}.
$-n=p q ; d=e^{-1} \bmod ((p-1)(q-1))$

Security of RSA

- It is also possible to attack RSA by guessing the value of $(\mathbf{p}-\mathbf{1})(\mathbf{q - 1})$. This attack is no easier than factoring n.
- A cryptanalyst can also try every possible d until he stumbles on the correct one. This brute-force attack is even less efficient than trying to factor n.
- $m=c^{d} \bmod n$

Security of RSA

Chosen Ciphertext Attack against RSA, Scenario 1

- Eve, listening in on Alice's communications, manages to collect a ciphertext message, c, encrypted with RSA in her public key.

$$
m=c^{d} \bmod n
$$

- To recover m, she first chooses a random number, r, such that r is less than n. She gets Alice's public key, e. Then she computes

$$
\begin{aligned}
& -x=r^{\mathrm{e}} \bmod n \\
& -y=x^{\mathrm{c}} \bmod n \\
& -t=r^{-1} \bmod n
\end{aligned}
$$

- If $x=r^{e} \bmod n$, then $r=x^{d} \bmod n$.

Security of RSA

- Now, Eve gets Alice to sign y with her private key, thereby decrypting y.
- Alice sends Eve $u=y^{d} \bmod n$
- Now, Eve computes:
- tu modn
$=r^{-1} y^{d} \bmod n$
$=r^{-1} x^{d} C^{d} \bmod n$
$=c^{d} \bmod n$
$=m$
- Eve now has m.

Security of RSA

Chosen Ciphertext Attack against RSA, Scenario 2

- Eve wants Alice to sign m_{3}.
- She generates two messages, m_{1} and m_{2}, such that:
$-m_{3}=m_{1} m_{2}(\bmod n)$
- If Eve can get Alice to sign m_{1} and m_{2}, she can calculate m_{3} :
$-m_{3}{ }^{d}=\left(m_{1}{ }^{d} \bmod n\right)\left(m_{2}{ }^{d} \bmod n\right)$
- Moral: Never use RSA to sign a random document presented to you by a stranger.

Digital signatures

- A digital signature serves the same purpose as a handwritten signature.
- However, a handwritten signature is easy to counterfeit.
- A digital signature is superior to a handwritten signature in that it is very hard to counterfeit.
- Moreover, a digital signature attests to the contents of the information as well as to the identity of the signer.

Digital signatures

- Instead of encrypting information using someone else's public key, you encrypt it with your private key.
- If the information can be decrypted with your public key, then it must have originated with you.

Digital signatures

- Public key digital signatures provide authentication, data integrity, and non-repudiation.
- Authentication: Digital signatures let the recipient of information verify the authenticity of the information's origin.
- Integrity: Digital signatures also allow verification that the information was not altered while in transit.
- Non-repudiation: Digital signatures can prevent the sender from claiming that he or she did not actually send the information.

Digital signatures

Exercise

- Plaintext:

M = "MESSAGE" or just "M"

- RSA public key: $(\mathbf{e}=\mathbf{1 1}, \mathbf{n}=\mathbf{7 0 3})$
- RSA private key: ($\mathbf{d}=\mathbf{5 9}, \mathbf{n}=\mathbf{7 0 3}$)
- Signing (encryption) and verifying (decryption) functions:

$$
C=E(M)=M^{d}(\bmod n) ; \quad M=D(C)=C^{e}(\bmod n)
$$

- ASCII:

65	A	66	B	67	C	68	D	69	E
70	F	71	G	72	H	73	I	74	J
75	K	76	L	77	M	78	N	79	O
80	P	81	Q	82	R	83	S	84	T
85	U	86	V	87	W	88	X	89	Y
90	Z						$23 / 37$		

Hash functions

- A one-way hash function takes variable-length input - a message of any length, even thousands or millions of bits.
- It then produces a fixed-length output, e.g., 256 bits.
- The hash function ensures that, if the input is changed in any way - even by just one bit - an entirely different output value is produced (avalanche effect).
- A hash function is efficiently computable. Computing the hash of an n-bit string should have a running time that is $O(n)$.
- An application: hash tables

Hash functions

Input

Hash functions

An application:

- Using digital signatures without hash functions is slow, and it produces an enormous volume of data-at least double the size of the original information.
- PGP uses a cryptographically strong hash function on the plaintext the user is signing. This generates a fixedlength data item known as a message digest.

Hash functions

- Then PGP uses the digest and the private key to create the digital signature.
- PGP transmits the signature and the plaintext together.
- Upon receipt of the message, the recipient uses PGP to recompute the digest, thus verifying the signature.

Hash functions

Cryptographic hash function

- For a hash function to be cryptographically secure, it must have the following additional properties:

1) Collision resistance
2) Hiding

Collision resistance

- A collision occurs when two distinct inputs produce the same output.

- A hash collision. x and y are distinct values, yet when input into hash function H , they produce the same output.
- Collision resistance: A hash function H is said to be collision resistant if it is infeasible to find two values, x and y, such that $x \neq y$, yet $H(x)=H(y)$.

Hiding

- If we are given the output of the hash function $\mathbf{y}=\mathbf{H}(\mathbf{x})$, there is no feasible way to determine the input, x.
- In order to be able to achieve the hiding property:
- No value of x should be particularly likely.
- That is, x has to be chosen from a large set.

Homomorphic Cryptosystems

Additive Homomorphic Cryptosystems:

- Product of ciphertexts \Rightarrow Sum of plaintexts

$$
\begin{aligned}
& E(x) * E(y)=E(x+y) \\
& E(3) * E(4)=E(3+4)=E(7)
\end{aligned}
$$

Zero Knowledge Proofs (ZKP)

- A Prover convinces a Verifier that a statement is true
- No additional information is revealed

ZKP: Set Membership

- Given a ciphertext $\boldsymbol{E}_{u}(x)$ and a public set \boldsymbol{S}
- User u proves: $x \in S$
- x is not revealed

ZKP: Plaintext Equality

- Given two ciphertexts $E_{u}(x)$ and $E_{v}(x)$
- User u proves: Both $E_{u}(x)$ and $E_{v}(x)$ encrypt x
- x is not revealed

Secret Sharing

- Split a secret into \boldsymbol{n} shares: $\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$

- Send the shares to \boldsymbol{n} users

- $\boldsymbol{m} \leq \boldsymbol{n}$ users required to unlock the secret

Secure Multiparty Computation

- There are \mathbf{n} parties in a network. Each party has an input which is private.
- The n parties wish to compute some joint function over their inputs such that all inputs remain private, i.e., known only to their owners.
- Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party.

Examples

Yao's Millionaire Problem:

- Two millionaires, Alice and Bob, wish to learn which of them is richer without revealing their individual wealth.
- Two private numbers x and y each belonging to a different party, and the goal is to solve the inequality while preserving the privacy of the inputs.

Private Sum, Product, etc.:

- n parties wish to compute some function such as sum or product over their inputs such that all inputs remain private.37/37

