Introduction to applied cryptography
 - Lecture 1

Omar Hasan

Books

- The content in the lectures is drawn from the following books:
- Applied Cryptography, Second Edition - Bruce Schneier
- An Introduction to Cryptography, version 8.0 - PGP Corporation

Security

"If I take a letter, lock it in a safe [or some box], hide the safe somewhere in New York [or any large city], then tell you to read the letter, that's not security. That's obscurity.

On the other hand, if I take a letter and lock it in a safe, and then give you the safe along with the design specifications of the safe and a hundred identical safes with their combinations so that you and the world's best safecrackers can study the locking mechanism—and you still can't open the safe and read the letter-that's security."

- Bruce Schneier

Some objectives of security

- Confidentiality. This is a necessary element for privacy. Confidentiality is an attribute of our capacity to protect our information from un-authorised access by intruders.
- Authentication. It should be possible for the receiver of a message to ascertain its origin; an intruder should not be able to masquerade as someone else.
- Integrity. It should be possible for the receiver of a message to verify that it has not been modified in transit; an intruder should not be able to substitute a false message for a legitimate one.
- Non-repudiation. A sender should not be able to falsely deny later that he sent a message.

Cryptography

- Cryptography is a building block for achieving security objectives such as confidentiality, authentication, integrity, non-repudiation, as well as others.
- Cryptography is the science of using mathematics to encrypt and decrypt data.
- Cryptography enables you to store sensitive information or transmit it across insecure networks so that it cannot be read by anyone except the intended recipient.

Encryption

- Data that can be read and understood without any special measures is called plaintext.
- The method of disguising plaintext in such a way as to hide its substance is called encryption.
- Encrypting plaintext results in unreadable gibberish called ciphertext.

Decryption

- The process of reverting ciphertext to its original plaintext is called decryption.

Keys

- In modern cryptography, both the encryption and decryption operations use keys.
- A key might be any one of a large number of values. The range of possible values of the key is called the keyspace.
- All of the security in the encryption and decryption algorithms is based on the keys.
- None of the security is based in the details of the algorithm. The algorithm can be published and analyzed.
- It doesn't matter if an eavesdropper knows your algorithm; if she doesn't know your particular key, she can't read your messages.

Some notation

- Plaintext is denoted by \mathbf{M}, for message, or \mathbf{P}, for plaintext. It can be a stream of bits, a text file, a bitmap, etc.
- Ciphertext is denoted by \mathbf{C}.
- An encryption function E, operates on M to produce C. $E(M)=C$
- A decryption function \mathbf{D} operates on C to produce M. $D(C)=M$
- Decrypting a message recovers the original plaintext. $D(E(M))=M$

Some notation

- A key is denoted by \mathbf{K}.
- Encryption and decryption operations that use this key are denoted as follows:
$E_{K}(M)=C$
$D_{K}(C)=M$
- Algorithms that use a different encryption key and decryption key are denoted below. The encryption key, K1, is different from the corresponding decryption key, K2.
$E_{K 1}(M)=C$
$D_{K 2}(C)=M$

Cryptosystem

- A cryptographic algorithm, or cipher, is a mathematical function used in the encryption and decryption process.
- A cryptographic algorithm works in combination with a key to encrypt the plaintext.
- The same plaintext encrypts to different ciphertext with different keys.

Cryptosystem

- The security of encrypted data is dependent on two things: the strength of the cryptographic algorithm and the secrecy of the key.
- A cryptographic algorithm, plus all possible keys and all the protocols that make it work, comprise a cryptosystem. Example: PGP, RSA.

Types of cryptosystems

- There are three major types of cryptosystems:

1) Cryptosystems based on symmetric-key cryptography
2) Cryptosystems based on public-key cryptography
3) Hybrid cryptosystems

Types of cryptosystems

- There are three major types of cryptosystems:

1) Cryptosystems based on symmetric-key cryptography
2) Cryptosystems based on public-key cryptography
3) Hybridl cryptosystems

Symmetric-key cryptography

- In conventional cryptography, also called symmetric-key or secret-key encryption, one key is used both for encryption and decryption.
- An example of a conventional cryptosystem is Data Encryption Standard (DES).

Symmetric-key cryptography

Advantage:

- Symmetric-key encryption and decryption is fast. Disadvantage:
- For a sender and recipient to communicate securely using symmetric-key encryption, they must agree upon a key and keep it secret between themselves.
- If they are in different physical locations, they must trust some secure communications medium to prevent the disclosure of the secret key during transmission.
- Thus, secure key distribution is a challenge.

Substitution cipher

- A simple type of symmetric or secret-key cryptography is a substitution cipher.
- A substitution cipher substitutes one piece of information for another. This is most frequently done by offsetting letters of the alphabet.
- An example is Caesar's cipher. The algorithm is to offset the alphabet and the key is the number of characters to offset it.
- For example, if we encode the word "SECRET" using Caesar's key value of 3, we offset the alphabet so that the 3rd letter down (D) begins the alphabet.

Substitution cipher

- Starting with:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
and sliding everything up by 3, you get DEFGHIJKLMNOPQRSTUVWXYZABC where $\mathbf{D}=\mathbf{A}, \mathbf{E}=\mathbf{B}, \mathbf{F}=\mathbf{C}$, and so on.

- Using this scheme, the plaintext, "SECRET" encrypts as "VHFUHW".
- To allow someone else to read the ciphertext, you tell them that the key is $\mathbf{3}$.

Substitution cipher

Some exercises

1) MRWEPCSR, key $=4$
2) KNXWXLLIHKML , key $=19$
3) $\operatorname{ERFVQRAPRP,~key~}=13$
4) GVMJOJIYZ, key = 21
5) DPSKLJDVWRQEHUJHU, key $=3$

Substitution cipher

Solutions

1) MRWEPCSR, key $=4$, INSALYON
2) KNXWXLLIHKML, key $=19$, RUEDESSPORTS
3) ERFVQRAPRP, key = 13, RESIDENCEC
4) GVMJOJIYZ, key = 21, LAROTONDE
5) DPSKLJDVWRQEHUJHU, key $=3$, AMPHIGASTONBERGER

Types of cryptosystems

- There are three major types of cryptosystems:

1) Cryptosystems based on symmetric-key cryptography
2) Cryptosystems based on public-key cryptography 3) Hybrid cryptosystems

Public-key cryptography

- Public-key cryptography is an asymmetric scheme that uses a pair of keys for encryption: a public key, which encrypts data, and a corresponding private key (secret key) for decryption.
Advantage:
- The problem of key distribution is solved by public-key cryptography.

Disadvantage:

- Public-key encryption is about 1,000 times slower than secret-key encryption.

Public-key cryptography

- You publish your public key to the world while keeping your private key secret.
- Anyone with a copy of your public key can then encrypt information that only you can read.

Public-key cryptography

- It is computationally infeasible to deduce the private key from the public key.
- Anyone who has a public key can encrypt information but cannot decrypt it.
- Only the person who has the corresponding private key can decrypt the information.

Public-key cryptography

- The advantage of public key cryptography is that it allows people who have no preexisting security arrangement to exchange messages securely.
- The need for sender and receiver to share secret keys via some secure channel is eliminated; all communications involve only public keys, and no private key is ever transmitted or shared.
- Two examples of public-key cryptosystems are RSA and Diffie-Hellman.

Diffie-Hellman

- Diffie-Hellman is a public-key cryptosystem, created in 1976, and named after its inventors Whitfield Diffie and Martin Hellman.
- Diffie-Hellman is a type of key exchange algorithm that enables two parties to agree upon a shared secret key by communicating over a channel that may be insecure.
- This is possible even if the two parties have no prior knowledge of each other.
- It gets its security from the difficulty of calculating discrete logarithms in a finite field.

Diffie-Hellman

1) Two users Alice and Bob, publicly share a modulus \boldsymbol{p} and a base \mathbf{g}.
2) Alice generates a secret random integer \boldsymbol{A}.

Bob generates a secret random integer \boldsymbol{B}.
3) Alice then calculates $a=g^{A}(\bmod p)$.

Bob calculates $b=g^{B}(\bmod p)$.
4) Alice sends a (Alice's public key) to Bob.

Bob sends b (Bob's public key) to Alice.
5) Alice computes: $K=b^{A}(\bmod p)$
6) Bob computes: $K=a^{B}(\bmod p)$

Where:

$$
K=b^{A}(\bmod p)=a^{B}(\bmod p)=g^{A B}(\bmod p)
$$

Diffie-Hellman

Alice	Bob
Parameters: p, g	
$\begin{aligned} & A=\operatorname{random}() \\ & a=g^{A}(\bmod p) \end{aligned}$	$\begin{array}{r} \operatorname{random}()=B \\ g^{B}(\bmod p)=b \end{array}$
$\begin{aligned} & a \longrightarrow \\ & \leftarrow b \end{aligned}$	
$K=g^{B A}(\bmod p)=b^{A}(\bmod p)$	$a^{B}(\bmod p)=g^{A B}(\bmod p)=K$
$\longleftarrow E_{K}$	ata) \longrightarrow

Diffie-Hellman

Example

1) Two users Alice and Bob, publicly share a modulus $\boldsymbol{p}=43$ and a base $\boldsymbol{g}=7$.
2) Alice generates a secret random integer $\boldsymbol{A}=\boldsymbol{8}$. Bob generates a secret random integer $\boldsymbol{B}=11$.
3) Alice then calculates $a=g^{A}(\bmod p)=7^{8}(\bmod 43)=6$. Bob calculates $b=g^{B}(\bmod p)=7^{11}(\bmod 43)=37$.
4) Alice sends a (Alice's public key) to Bob. Bob sends b (Bob's public key) to Alice.
5) Alice computes: $K=b^{A}(\bmod p)=37^{8}(\bmod 43)=\mathbf{3 6}$
6) Bob computes: $K=a^{B}(\bmod p)=6^{11}(\bmod 43)=36$

$$
\text { Secret key }=K=36
$$

Diffie-Hellman

- Diffie-Hellman is a public domain algorithm, which is well suited for use in data communication over insecure networks.
- However, Diffie-Hellman has some shortcomings when compared to other public-key cryptosystems such as RSA.
- For example, it does not support authentication of the participants (through digital signatures) and is thus susceptible to man-in-the-middle attacks.

Diffie-Hellman

Exercise

1) Two users Alice and Bob, publicly share a modulus $\boldsymbol{p}=43$ and a base $\boldsymbol{g}=7$.
2) Alice generates a secret random integer $\boldsymbol{A}=$? Bob generates a secret random integer $\boldsymbol{B}=$?
3) Alice then calculates $a=g^{A}(\bmod p)=$?

Bob calculates $b=g^{B}(\bmod p)=$?
4) Alice sends a (Alice's public key) to Bob.

Bob sends b (Bob's public key) to Alice.
5) Alice computes: $K=b^{A}(\bmod p)=$?
6) Bob computes: $K=a^{B}(\bmod p)=$?

- Secret key $=K=? \quad$ Attacker's knowledge?

Types of cryptosystems

- There are three major types of cryptosystems:

1) Cryptosystems based on symmetric-key cryptography
2) Cryptosystems based on public-key cryptography
3) Hybrid cryptosystems

Hybrid cryptosystem

- A hybrid cryptosystem combines the features of both secret and public-key cryptography. An example: PGP (Pretty Good Privacy).
- Secret-key encryption is about 1,000 times faster than public-key encryption.
- Whereas, public-key encryption provides a solution to key distribution and data transmission issues.
- Used together, performance and key distribution are improved without any sacrifice in security.

PGP

Encryption:

1) PGP creates a session key, which is a one-time-only secret key. This key is a random number.
2) The session key works with a secure and fast symmetric encryption algorithm to encrypt the plaintext; the result is the ciphertext.

PGP

Encryption:

3) The session key is then encrypted to the recipient's public key.
4) This public key-encrypted session key is transmitted along with the ciphertext to the recipient.

PGP

Decryption:

1) Decryption works in the reverse. The recipient's PGP uses his or her private key to recover the session key.
2) PGP then uses the session key to decrypt the conventionally encrypted ciphertext.

Hybrid cryptosystem

Review of the advantages of a hybrid cryptosystem

- A hybrid cryptosystem combines the features of both secret and public-key cryptography.
- Secret-key encryption is faster than public-key encryption.
- Whereas, public-key encryption provides a solution to key distribution and data transmission issues.
- Used together, performance and key distribution are improved without any sacrifice in security.

More about cryptographic keys

- A key is a value that works with an encryption algorithm to produce a ciphertext.
- Keys are essentially large integers.
- Key size is measured in bits e.g. 2048-bits. The bigger the key, the more secure the ciphertext.
- Public key size and conventional cryptography's secret key size are unrelated.
- A conventional 80-bit key has the equivalent strength of a 1024-bit public key.

Cryptanalysis

- The purpose of cryptography is to keep the plaintext and the keys secret from an adversary (also called eavesdropper or attacker).
- Attackers are assumed to have complete access to the communications between the sender and receiver.
- Cryptanalysis is the science of recovering the plaintext of a message without access to the key.
- A fundamental assumption in cryptanalysis is that the cryptanalyst has complete details of the cryptographic algorithm and implementation.
- The secrecy must reside entirely in the key.

Cryptanalytic attacks

- There are four general types of cryptanalytic attacks:

1) Ciphertext-only attack
2) Known-plaintext attack
3) Chosen-plaintext attack
4) Adaptive-chosen-plaintext attack

Ciphertext-only attack

- The cryptanalyst has the ciphertext of several messages, all of which have been encrypted using the same encryption algorithm.
- Recover the plaintext of as many messages as possible, or better yet deduce the key (or keys) used to encrypt the messages.
- Given: $C_{1}=E_{k}\left(P_{1}\right), C_{2}=E_{k}\left(P_{2}\right), \ldots C_{i}=E_{k}\left(P_{j}\right)$
- Deduce: Either $P_{1}, P_{2}, \ldots P_{i} ; k$; or an algorithm to infer P_{i+1} from $C_{i+1}=E_{k}\left(P_{i+1}\right)$

Known-plaintext attack

- The cryptanalyst has access not only to the ciphertext of several messages, but also to the plaintext of those messages.
- Deduce the key used to encrypt the messages or an algorithm to decrypt any new messages.
- Given: $P_{1}, C_{1}=E_{k}\left(P_{1}\right), P_{2}, C_{2}=E_{k}\left(P_{2}\right), \ldots P_{i}, C_{i}=E_{k}\left(P_{j}\right)$
- Deduce: Either k, or an algorithm to infer P_{i+1} from $C_{i+1}=$ $E_{k}\left(P_{i+1}\right)$

Chosen-plaintext attack

- The cryptanalyst not only has access to the ciphertext and associated plaintext for several messages, but he also chooses the plaintext that gets encrypted.
- Deduce the key used to encrypt the messages or an algorithm to decrypt any new messages encrypted.
- Given: $P_{1}, C_{1}=E_{k}\left(P_{1}\right), P_{2}, C_{2}=E_{k}\left(P_{2}\right), \ldots P_{i}, C_{i}=E_{k}\left(P_{j}\right)$, where the cryptanalyst gets to choose $P_{1}, P_{2}, \ldots P_{i}$.
- Deduce: Either k, or an algorithm to infer P_{i+1} from $C_{i+1}=$ $E_{k}\left(P_{i+1}\right)$

Adaptive-chosen-plaintext attack

- This is a special case of a chosen-plaintext attack.
- Not only can the cryptanalyst choose the plaintext that is encrypted, but he can also modify his choice based on the results of previous encryption.
- In a chosen-plaintext attack, a cryptanalyst might just be able to choose one large block of plaintext to be encrypted.
- Whereas, in an adaptive-chosen-plaintext attack he can choose a smaller block of plaintext and then choose another based on the results of the first, and so forth.

Security of algorithms

- An algorithm is considered computationally secure if it cannot be broken with resources available to the attacker under consideration.
- You can measure the complexity of an attack in different ways:
- Data complexity. The amount of data needed as input to the attack.
- Processing complexity. The time needed to perform the attack.
- Storage requirements. The amount of memory needed to do the attack.

Cryptanalysis of the Caesar cipher

- Ciphertext-only attack.
- 'Brute force' solution: Decrypt the ciphertext using each key and determine the fitness of each decryption.
- 25 possible keys.
- Determining fitness:
- Obtain the statistics of standard English text (e.g., Quadgram Statistics).
- Calculate the statistics of the deciphered text.
- Compare these statistics to those from standard English text.

Source for the content on cryptanalysis of the Caesar cipher:

Cryptanalysis of the Caesar cipher

- This method works by first determining the statistics of english text, then calculating the likelyhood that the ciphertext comes from the same distribution.
- An incorrectly deciphered (i.e. using the wrong key) message will probably contain sequences e.g. 'QKPC' which are very rare in normal English.
- In this way we can rank different decryption keys, the decryption key we want is the one that produces deciphered text with the fewest rare sequences.

Cryptanalysis of the Caesar cipher

An example

- Ciphertext:

YMJHFJXFWHNUMJWNXTSJTKYMJJFWQNJXYPSTBSFSIXNRUQJXYHNUMJWX

- Cryptanalysis:

key	plaintext	fitness
	XLIGEIWEVGMTLIVMWSRISJXLIIEVPM.	-442.22
	WKHFDHVDUFLSKHULVRQHRIWKHHDUOL	-495. 20
	VJGECGUCTEKRJGTKUQPGQHVJGGCTNK	-484.13
	UIFDBFTBSDJQIFSJTPOFPGUIFFBSMJ	-490.73
5	THECAESARCIPHERISONEOFTHEEARLI	-246.02
6	SGDBZDRZQBHOGDQHRNMDNESGDDZQKH.	-485.69
	RFCAYCQYPAGNFCPGQMLCMDRFCCYPJG	-481.17
	QEBZXBPXOZFMEBOFPLKBLCQEBBXOIF.	-478.19
	PDAYWAOWNYELDANEOKJAKBPDAAWNHE.	-415.66
10:	OCZXVZNVMXDKCZMDNJIZJAOCZZVMGD	-488.75
11:	NBYWUYMULWCJBYLCMIHYIZNBYYULFC	-490.46
12:	MAXVTXLTKVBIAXKBLHGXHYMAXXTKEB.	-490.82
13:	LZWUSWKSJUAHZWJAKGFWGXLZWWSJDA.	-483.63
	KYVTRVJRITZGYVIZJFEVFWKYVVRICZ.	-475.01
	JXUSQUIQHSYFXUHYIEDUEVJXUUQHBY.	-466.90
	IWTRPTHPGRXEWTGXHDCTDUIWTTPGAX.	-458.49
	HVSQOSGOFQWDVSFWGCBSCTHVSSOFZW.	-474.67
	GURPNRFNEPVCUREVFBARBSGURRNEYV.	-460.86
	FTQOMQEMDOUBTQDUEAZQARFTQQMDXU.	-467.13
	ESPNLPDLCNTASPCTDZYPZQESPPLCWT.	-454.29
	DROMKOCKBMSZROBSCYXOYPDROOKBVS	-461.91
	CQNLJNBJALRYQNARBXWNXOCQNNJAUR.	-479.58
	BPMKIMAIZKQXPMZQAWVMWNBPMMIZTQ.	-473.52
24:	AOLJHLZHYJPWOLYPZVULVMAOLLHYSP.	-474.57
$25:$	ZNKIGKYGXIOVNKXOYUTKULZNKKGXRO	-494.13

Cryptanalysis of the Caesar cipher

Python code

1)
2) from ngram_score import ngram_score
3) fitness = ngram_score('quadgrams.txt') \# load our quadgram statistics
4) from pycipher import Caesar
5)
6) def break_caesar(ctext):
7) \# make sure ciphertext has all spacing/punc removed and is uppercase
8) ctext = re.sub('[^A-Z]','",ctext.upper())
9) \# try all possible keys, return the one with the highest fitness
10) scores = []
11) for i in range(26):
12) scores.append((fitness.score(Caesar(i).decipher(ctext)),i))
13) return max(scores)
14)
15) \# example ciphertext
16) ctext = 'YMJHFJXFWHNUMJWNXTSJTKYMJJFWQNJXYPSTBSFSIXNRUQJXYHNUMJWX'
17) max_key = break_caesar(ctext)
18)
19) print 'best candidate with key (a,b) = '+str(max_key[1])+':'
20) print Caesar(max_key[1]).decipher(ctext)

Quadgram statistics

- Quadgrams: groups of 4 letters in a text (with spacing and punctuation removed)
- E.g. the quadgrams in the text ATTACK are: ATTA, TTAC, and TACK.
- Quadgrams from a large English text:

Quadgram	Count	Quadgram	Count
TION	13168375	AAOZ	2
NTHE	11234972	AAJQ	2
THER	10218035	ZZZV	1
THAT	8980536	ZZZJ	1
OFTH	8132597	ZZXW	1
\ldots		\ldots	

Quadgram statistics as a fitness measure

- To compute the probability of a piece of text being English, extract all the quadgrams, then multiply each of the quadgram probabilities.
- For the text ATTACK, the quadgrams are ATTA, TTAC, and TACK. The total probability is:

$$
p(A T T A C K)=p(A T T A) * p(T T A C) * p(T A C K)
$$

Where:

$$
p(A T T A)=\operatorname{count}(A T T A) / N,
$$

$$
N=\text { total number of quadgrams. }
$$

- A higher number means it is more likely to be English, while a lower number means it is less likely to be English.

Quadgram statistics as a fitness measure

Example

- Let's assume:
- Total number of quadgrams: 1000
- Quadgram frequencies: ATTA: 7, TTAC: 3, TACK: 11
- Computing the fitness measure for the text ATTACK:

$$
\begin{aligned}
& p(\text { ATTACK })=p(A T T A) * p(T T A C) * p(T A C K) \\
& \quad=(\operatorname{count}(A T T A) / N) *(\operatorname{count}(T T A C) / N) *(\operatorname{count}(T A C K) / N) \\
& \quad=(7 / 1000) *(3 / 1000) *(11 / 1000) \\
& \quad=0,000000231
\end{aligned}
$$

Quadgram statistics as a fitness measure

- Log probability: $\log (p(A T T A C K))=\log (p(A T T A))+\log (p(T T A C))+\log (p(T A C K))$
- Due to, $\log \left(a^{*} b\right)=\log (a)+\log (b)$
- Log probability is used as the fitness measure since the probabilities may be very small.
- From a sample English text with 2500000 total quadgrams:

Quadgram	Count	Log Probability
AAAA	1	-6.40018764963
QKPC	0	-9.40018764963
YOUR	1132	-3.34634122278
TION	4694	-2.72864456437
ATTA	359	-3.84509320105

Cryptanalysis of the Caesar cipher

Exercise

- Ciphertext: VHFUHW
- Keys to try: 3,5
- For each key, calculate the fitness of the deciphered text
- Quadgram statistics:
- Total: 4224127912
- Some quadgram frequencies:
- SECR: 203226, ECRE: 480393
- CRET: 226466, QCAP: 103
- CAPC: 3895, APCR: 1290

Cryptanalysis of the Caesar cipher

Solution

- Ciphertext: VHFUHW
- Plaintext: key as 3: SECRET; key as 5: QCAPCR
- $\log (p(S E C R E T))$

$$
\begin{aligned}
& =\log (p(\text { SECR }))+\log (p(\text { ECRE }))+\log (p(\text { CRET })) \\
& =\log (203226 / 4224127912)+\log (480393 / 4224127912) \\
& \quad \quad \quad \log (226466 / 4224127912) \\
& =-12.5326
\end{aligned}
$$

- $\log (p(Q C A P C R))$

$$
\begin{gathered}
=\log (103 / 4224127912)+\log (3895 / 4224127912) \\
\quad+\log (1290 / 4224127912)
\end{gathered}
$$

$$
=-20.1633
$$

