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Abstract

Moving object detection is one of the main challenges in many video monitoring appli-
cations. In this thesis, we address the difficult problem that consists in object segmenta-
tion when background moves permanently. Such situations occur when the background
contains water flow, smoke or flames, snowfall, rainfall etc. Object detection in moving
background was not studied much in the literature so far. Video backgrounds studied in
the literature are often composed of static scenes or only contain a small portion of mov-
ing regions (for example, fluttering leaves or brightness changes). The main difficulty
when we study such situations is to differentiate the objects movements and the back-
ground movements that may be almost similar. For example, an object in river moves at
the same speed as water. Therefore, motion-based techniques of the literature, relying
on displacements vectors in the scene, may fail to discriminate objects from the back-
ground, thus generating a lot of false detections. In this complex context, we propose
some solutions for object detection.

Object segmentation can be based on different criteria including color, texture, shape
and motion. We propose various methods taking into account one or more of these
criteria.

We first work on the specific context of wood detection in rivers. It is a part of
DADEC project (Détection Automatique de Débris pour l’Aide à l’Etude des Crues)
in collaboration with geographers. We propose two approaches for wood detection: a
naïve method and the probabilistic image model. The naïve approach is based on binary
decisions based on object color and motion, whereas the probabilistic image model uses
wood intensity distribution with pixel motion. Such detection methods are used for
tracking and counting pieces of wood in rivers.

Secondly, we consider a context in which we suppose a priori knowledge about ob-
ject motion is available. Hence, we propose to model and incorporate this knowledge
into the detection process. We show that combining this prior motion knowledge with
classical background model improves object detection rate.

Finally, drawing our inspiration from methods used for 2D texture representation,
we propose to model moving backgrounds using a frequency-based approach. More
precisely, the model takes into account the spatial neighborhoods of pixels but also their
temporal neighborhoods. We apply local Fourier transform on the obtained regions in
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order to extract spatiotemporal color patterns.
We apply our methods on multiple videos, including river videos under DADEC

project, image sequences from the DynTex video database, several synthetic videos and
some of our own made videos. We compare our object detection results with the exist-
ing methods for real and synthetic videos quantitatively as well as qualitatively.

Keywords: Object detection, segmentation, background model, motion model, dynamic
texture, local Fourier transform.
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Résumé

La détection et la reconnaissance d’objets dans des vidéos numériques est l’un des prin-
cipaux challenges dans de nombreuses applications de vidéo surveillance. Dans le cadre
de cette thèse, nous nous sommes attaqué au problème difficile de la segmentation
d’objets dans des vidéos dont le fond est en mouvement permanent. Il s’agit de sit-
uations qui se produisent par exemple lorsque l’on filme des cours d’eau, ou le ciel,
ou encore une scène contenant de la fumée, de la pluie, etc. Il s’agit d’un sujet assez
peu étudié dans la littérature car très souvent les scènes traitées sont plutôt statiques
et seules quelques parties bougent, telles que les feuillages par exemple, ou les seuls
mouvements sont des changements de luminosité. La principale difficulté dans le cadre
des scènes dont le fond est en mouvement est de différencier le mouvement de l’objet du
mouvement du fond qui peuvent parfois être très similaires. En effet, par exemple, un
objet dans une rivière peut se déplacer à la même allure que l’eau. Les algorithmes de
la littérature extrayant des champs de déplacement échouent alors et ceux basés sur des
modélisations de fond génèrent de très nombreuses erreurs. C’est donc dans ce cadre
compliqué que nous avons tenté d’apporter des solutions.

La segmentation d’objets pouvant se baser sur différents critères : couleur, texture,
forme, mouvement, nous avons proposé différentes méthodes prenant en compte un ou
plusieurs de ces critères.

Dans un premier temps, nous avons travaillé dans un contexte bien précis qui était
celui de la détection des bois morts dans des rivières. Ce problème nous a été apporté
par des géographes avec qui nous avons collaboré dans le cadre du projet DADEC (Dé-
tection Automatique de Débris pour l’Aide à l’Etude des Crues). Dans ce cadre, nous
avons proposé deux méthodes l’une dite " naïve " basée sur la couleur des objets à dé-
tecter et sur leur mouvement et l’autre, basée sur une approche probabiliste mettant en
oeuvre une modélisation de la couleur de l’objet et également basée sur leur déplace-
ment. Nous avons proposé une méthode pour le comptage des bois morts en utilisant
les résultats des segmentations.

Dans un deuxième temps, supposant la connaissance a priori du mouvement des ob-
jets, dans un contexte quelconque, nous avons proposé un modèle de mouvement de
l’objet et avons montré que la prise en compte de cet a priori de mouvement perme-
ttait d’améliorer nettement les résultats des segmentations obtenus par les principaux
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algorithmes de modélisation de fond que l’on trouve dans la littérature.
Enfin, dans un troisième temps, en s’inspirant de méthodes utilisées pour caractériser

des textures 2D, nous avons proposé un modèle de fond basé sur une approche fréquen-
tielle. Plus précisément, le modèle prend en compte non seulement le voisinage spatial
d’un pixel mais également le voisinage temporel de ce dernier. Nous avons appliqué
la transformée de Fourier locale au voisinage spatiotemporel d’un pixel pour construire
un modèle de fond.

Nous avons appliqué nos méthodes sur plusieurs vidéos, notamment les vidéos du
projet DADEC, les vidéos de la base DynTex, des vidéos synthétiques et des vidéos que
nous avons faites.

Mots clés: Détection d’objets, segmentation, modèle de fond, modèle de mouvement,
texture dynamique, transformée de Fourier locale.
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Introduction

Cameras are everywhere these days: public areas are monitored by several cameras in

order to increase public order and safety, private property is protected by means of

cameras, and shopping malls use cameras to prevent shoplifting. Monitoring systems

are still largely operated manually for anomaly detection, in which human operators

continuously watch the activities over monitoring screens. Computer vision methods

aim at reducing manual efforts involved in the process. In these techniques, image

features in the monitored scene are studied to avail object detection, which is one of the

first steps of video surveillance. Without a good object detection method, subsequent

actions such as event understanding and anomaly detection would be infeasible.

Object detection can be performed by segmenting the monitored scene into fore-

ground (objects of interest) and background (rest of scene). Each image pixel in the cur-

rent video frame is declared either as a foreground pixel or a background pixel based on

its various features. To perform the task with precision and accuracy, one can construct a

representation of background and/or foreground. Moreover, an object detection method

should be able to overcome obstacles inherent to complex environments. For example,

in outdoor scenarios, objects and background may have similar color or motion; objects

may pass through shadowed areas; global illumination may change rapidly etc.

In our thesis, we focus on videos containing dynamic backgrounds. Specifically, we

study videos consisting in continuous motion of backgrounds and objects (e.g. floating

objects in river, moving escalators, fire, smoke). Moreover, we consider videos acquired

in a static camera setting, so that any apparent motion arises from a real motion of

an object of interest or a part of the background. From the computer vision point of

view, color/texture, shape and motion are amongst the prominent characteristics used

in many object detection algorithms. In some cases, we may obtain prior motion knowl-

edge about these features (e.g. luggage moving on conveyor belts, pedestrian motion

etc.) and this information can be used for object detection. For example, regarding
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luggage on a conveyor, objects move with speed and towards a direction that may be

known, thus the information can be used for their detection. In some other cases, we

may have a priori on objects appearance or color. The use of skin color model in face

detection applications is an example of this category, where each pixel in the image is

classified into skin-color and non-skin color. In certain cases, we may have a priori on

object shapes (e.g. vehicle detection, leaf detection etc.). Using shape prior, one can avail

objects segmentation. In the current work, we aim to detect objects with a priori on their

motion and appearance.

More specifically, a part of our work is specialized towards floating wood detection

and counting in rivers, which is an example of object detection in moving background

where strong prior is available. The videos are produced under the DADEC project

(Détection Automatique de Débris pour l’aide à l’Etude des Crues). The project aims

to study the transport of fallen wood debris (small and large parts of trees) carried

with floods by using video analysis. During floods, water flow is largely turbulent

and carries a large amount of wood pieces. Remote monitoring of rivers is performed

during several years and the obtained videos are manually annotated by geographers,

almost frame per frame, in order to count the number of wood pieces passing through

the observed scene (examples are given in figure 1). Recording manually each wood

passage is extremely time-consuming and thus limits the study to reduced datasets.

Therefore, automatic wood detection using computer vision may allow to speed up the

process and to broaden the study to larger datasets.

Many detection methods address foreground extraction relying on statistical repre-

sentations of color/texture, motion or shape. Probabilistic representations are a way to

model the expected values of these characteristics, whether the considered pixel belongs

either to background or foreground. These representations can also be built in a manner

to combine the knowledge of multiple characteristics on each pixel. A frequently used

Figure 1: Two images from videos studied under DADEC project.
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method in the literature is background modeling, in which a pixel-wise statistical rep-

resentation of color characteristics with time is built. Basically, object detection can be

obtained by comparing the probability of each pixel in new frame to the corresponding

background model and classify it as foreground or background. Background models

keep the colors that stay a long time in the scene.

Object detection in outdoor videos in particular is a very challenging task. The

backgrounds we study in the context of the DADEC project contain many intensity vari-

ations, uneven brightnesses and motions that complicate background modeling based

on color. As a matter of fact, classical color-based background models may produce a lot

of false detections in such situations. Alternatively, due to the possibility of obtaining

prior object intensity distribution, we choose to learn it for wood detection. We propose

a probabilistic image model based on wood intensity/color distribution.

To achieve good segmentation in moving backgrounds, we can also include motion

information. Motion-based methods rely on the information from motion patterns ob-

served in the monitored scene. Object detection can be based on the dissimilar motion

characteristics of objects and backgrounds. However, color and motion are interlinked

within moving backgrounds where color patterns are different spatially and repetitive

with time. Therefore, neither color nor motion alone can achieve good object detection

in moving backgrounds, which consequently leads us to a combined approach based

on color and motion. We suppose that a priori object motion information is available.

We propose a motion model and learn the model parameters in the applications by an

offline process. The motion model is designed so that it can be used in conjunction

with any background subtraction technique. In this way, we blend object level motion

information with pixel level color information using a Bayesian framework for object

detection. The advantage of the combination is twofold (i.e. it reduces false detections

and number of miss-detection within foreground objects).

Another approach may be to use the periodicity of color to model moving back-

grounds, which are often composed of different textures. Unlike color, texture is not a

property of a single pixel, but rather of a spatial neighborhood around the pixel. Moving

color patterns forming dynamic textures vary spatially and appear repeatedly within

time. Thus, they cannot be properly modeled by the existing individual pixel-based

background modeling methods. There may be two possible reasons for shortcomings

of classic pixel-based background models in such cases. Primarily, they consider each

pixel independently and do not take into account spatial neighborhoods of pixels. Sec-

ondly, they do not take into account the temporal evolution of pixel values. To model

the spatiotemporal textures formed by these evolutions, we propose to use a frequency-
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based background model founded on 2D+T region around each pixel. The main idea

behind our approach is to model the spatiotemporal color patterns of the scene and use

the model for object detection. To our knowledge, no frequency-based approach was

previously used for background modeling. We apply our methods to multiple videos.

We use river videos in the framework of the DADEC project for wood detection. We

devise several synthetic videos as well to test our algorithms. In addition, we apply our

frequency-based method on videos containing dynamic textured backgrounds from the

DynTex database [Péteri et al., 2010]. Moreover, we make our own videos of floating

objects in rivers to test our method. We compare our object detection results with the

existing methods on real and synthetic videos both qualitatively and quantitatively.

Thesis organization:

We organize our thesis as follows:

Chapter 1: It presents a state of the art on object detection in video. We explain the exist-

ing methods commonly used in fixed camera scenarios. We divide the existing methods

on the basis of the three criteria, namely color, shape and motion, which the methods

use for object detection. We give an overview of the most frequently used background

modeling techniques. The prominent features of these are explained.

Chapter 2: We dedicate this chapter to intensity-based wood detection. We explain

the constraints and problems in the application. Due to an outdoor environment, the

difficulties arise from many physical phenomena, including brightness variations, cast

shadows, apparent similarity between water waves and wood objects etc. We propose

two methods for wood detection based on the intensity characteristics in the applica-

tion. In the first approach, each incoming frame is processed by two intensity based

segmentation methods separately. An inter-frame difference is applied as well and all

resulting segmentations are combined to extract moving objects. In the second approach,

we propose a probabilistic image model that uses wood intensity distribution for their

detection.

Chapter 3: In this chapter, we develop the motion model that incorporates object-level

prior motion knowledge. We use a Bayesian framework for combining object level mo-

tion information with pixel-level color information. In moving backgrounds, we explain

its relevance to differentiate moving objects from background motions.
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Chapter 4: It presents the spectral analysis of dynamic backgrounds. Moving back-

grounds exhibit the appearance of spatially varying and time repetitive textures. In this

regards, we analyze moving backgrounds and present the possibility to use spatiotem-

poral color information for background modeling.

Finally, we conclude and present future prospects of our work. In appendix A, we

present the application of wood tracking and counting in river videos, which involves

the wood detection algorithms described in chapter 2 for this purpose.
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Object detection in video analysis primarily depends on good image segmentation. Im-

age segmentation is a low level task which is essentially the core part of high level multi

tasks e.g. object tracking, object recognition and event understanding etc. Broadly speak-

ing, image features based on color/texture, shape and motion are the criteria which

existing methods use for object detection. The methods which use color/texture criteria

for object detection, either rely on a priori color information or rely on object and/or

background color-based statistical models. Some other methods use objects shapes as

criteria for their detection in videos. Similarly, some methods use motion features for

object detection. Therefore, we can summarize the existing methods under these crite-

ria. The division is not tight and some methods can be placed in more than one group.

We explain the prominent features of object detection techniques that are used in video

surveillance systems. We focus on the methods that are frequently used in the fixed

camera situations.

Common property of these object detection algorithms is that they produce a result-

ing binary segmented image with foreground pixels labeled as 1 and background pixels

labeled as 0. Before discussing these methods, we present some notations that are used

in our thesis work. Vector quantities are represented by small bold letters. In the current

image I the triplet of red, green and blue values of pixel x at time t is represented by

I(x, t) = [I1(x, t) I2(x, t) I3(x, t)]T

and D = 3 denotes the number of channels. F (x, t) is the binary label of pixel (x, t).

Probability are denoted by P throughout our thesis. The remaining notations are defined

when they are used.

1.1 Color and texture based object detection

In video analysis, a large number of methods exist which use color criteria for object

detection. In some applications, we may have information about object and/or back-

ground colors a priori and use them for image segmentation. Let us consider the ex-

ample of a colored moving object in homogeneous static background. In such case, we

may perform image segmentation by thresholding. Image thresholding is a simple ob-

ject detection method in which a global threshold is used for image segmentation (with

assumption on a priori color information). [Ritter and Wilson, 2000] explain the image

thresholding method to classify pixels as object or background. If a pixel color value

is within a given color range then assign the binary value 1 to it, else consider it as a
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background pixel and assign value 0 to it. However, the use of image thresholding tech-

niques for object detection in videos is limited. Due to the brightness variations in the

scene, the object colors and background colors may vary a lot. Therefore, to accommo-

date the color variations, statistical models are used to model the object or background

color distributions.

For object detection in video, the use of probabilistic color models is wide. These

models are built to represent either the color distributions of target objects or back-

ground. The models can be used to segregate moving objects from background. In

some methods, a priori object/background color information are used to compute statis-

tical models. In some other methods, object or background colors are learned to model

them. Therefore, these methods can be divided accordingly. First, we present object

color-based models and then we explain color-based background models.

1.1.1 Object color model

To perform foreground segmentation, some methods model the object colors. Skin-color

detection is an example of such methods. It plays an important role in a wide range

of image processing applications ranging from face detection, face tracking, gesture

analysis, content-based image retrieval systems and to various human computer inter-

action domains. Skin-color can also be used as the complementary information to other

features such as shape and geometry. It can be considered as a very effective tool for

identifying/classifying facial areas provided that the underlying skin-color pixels can be

represented, modeled and classified accurately. This is the reason why we have chosen

to explain it in detail.

The main goal of skin color models is to build a pixel classification rule that will

discriminate between skin and non-skin pixels. Identifying skin colored pixels in videos

involves finding the range of values in a color space for which most skin pixels would

fall in.

Primary steps for skin detection in an image using color information are

• to represent the image pixels in a suitable color space

• to model the skin and non-skin pixels using a suitable distribution and

• to classify the modeled distributions

Several color spaces are proposed for skin detection in the literature. The choice of

color space also determines how effectively one can model the skin-color distribution.

Skin-color distribution is modeled either by histogram models or by single/Gaussian
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mixture models. [Vezhnevets et al., 2003] and [Kakumanu et al., 2007] present surveys

of different color spaces for skin-color representation and skin-pixel detection methods.

Color space for skin detection:

The choice of color space can be considered as the first step in skin-color classification.

Several color spaces have been used for skin detection. The RGB color space is a default

color space for most available image formats. Any other color space can be obtained

from a linear or non-linear transformation from RGB. To reduce the dependence on

lighting, the RGB color components can be normalized so that the sum of normalized

components is unity. It has been observed that under certain assumptions, differences in

skin-color pixels due to lighting conditions and ethnicity can be greatly reduced using

normalized RGB space instead of RGB. Also, skin-color clusters in normalized RGB

space have relatively lower variance than the corresponding clusters in RGB and hence

are shown to be good for skin-color modeling and detection [Yang and Ahuja, 1999,

Störring et al., 2003, Sebe et al., 2004].

The perceptual features of color such as hue, saturation and value cannot be de-

scribed directly by RGB. The HSV color space has been used in skin detection methods

by [Wang and Yuan, 2001, Brown et al., 2001]. Similarly, orthogonal color spaces reduce

the redundancy present in RGB color channels and represent the color with statistically

independent components. The YCbCr space represents color as luminance (Y) computed

as a weighted sum of RGB values, and chrominance (Cb and Cr) computed by subtract-

ing the luminance component from B and R values. The YCbCr space is one of the most

popular choices for skin detection and has been used by [Chai and Bouzerdoum, 2000,

Hsu et al., 2002].

Skin modeling and classification:

Statistical models represent the probability density function (PDF) of skin color. There

are various methods in the literature to estimate such PDF. However, we only present,

histogram, single gaussian and mixture of gaussian models.

In the following paragraphs, we also present skin detection as a two classes classifi-

cation problem: skin pixel versus non-skin pixel classification.

A 2D or 3D color histogram can be used to represent the distribution of skin tones in

a given color space. The color space is quantized into a number of histogram bins. Each

histogram bin stores the count associated with the occurrence of the bin color in the

training data set. The histogram bin counts are converted into probability distribution,
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by normalizing them. For a given color c, probability P(c) is:

P(c) =
C(c)

T

where C(c) gives the count in the histogram bin associated with color c and T is the

total count obtained by summing the counts in all the histogram bins. P(c) corresponds

to the likelihood that a given color belongs to the skin. All the pixel values for which

the corresponding color likelihood is greater than a predefined threshold are defined as

skin pixels. [Zarit et al., 1999, Yoo and Oh, 1999] used a histogram-based approach to

classify skin pixels.

[Jones and Rehg, 2002] computed two different histograms, skin and non-skin his-

tograms. Given skin and non-skin histograms, the probability that a given color belongs

to skin and non-skin class is defined as

P(I(x, t)|skin) =
s(I(x, t))

Ts
, P(I(x, t)|nonskin) =

n(I(x, t))
Tn

where s(I(x, t)) is the bin value in the skin histogram, n(I(x, t)) is the bin value of the

non-skin histogram. Ts and Tn represents the total counts in skin and non-skin histogram

bins. From generic skin and non-skin histograms, [Jones and Rehg, 2002] demonstrate

that there is a reasonable separation between skin and non-skin classes.

Given the class conditional probabilities of skin and non-skin color models, a skin

classifier can be built using Bayes maximum likelihood (ML) approach [Duda et al.,

2002]. Using this, a given image pixel can be classified as skin, if

P(I(x, t)|skin)
P(I(x, t)|nonskin)

> ζ

where 0 ≤ ζ ≤ 1 is a threshold value which can be adjusted to trade-off between true and

false positives. The histogram-based Bayes classifier (also called as skin probability map)

has been widely used for skin segmentation. The method is simple and computationally

fast. In [Phung et al., 2005], the authors argue that the Bayesian classifier with histogram

technique is found to perform better compared to other tested classifiers.

Another approach for skin-color distribution modeling is to use Gaussian mixtures.

The advantage of these parametric models is that they have high capability of general-

ization with less training data and also that they have small storage requirements. Under

controlled brightness conditions, skin colors of different persons cluster in a small re-

gion in the normalized RGB color space [Yang and Waibel, 1996]. Skin-color distribution

is modeled through a single Gaussian N (µ, Σ) where µ and Σ are estimated over all the



1.1. Color and texture based object detection 13

color samples from the training data using Maximum Likelihood estimation approach.

The probability can be used directly as a measure of skin-color likeliness and the classifi-

cation is normally obtained by comparing it to a certain threshold empirically estimated

from the training data.

Though human skin-color samples for people of different races cluster in a small re-

gion in the color space, it has been shown that different modes co-exist within this cluster

and hence it cannot be modeled effectively by a single Gaussian distribution. Also, un-

der varying brightness conditions, the single mode assumption does not hold. Many

researchers, therefore, have used Gaussian mixtures. For example, a Gaussian mixture

density function (a sum of individual Gaussians) is used by [Yang and Ahuja, 1999].

Similarly, parameters of the GMM are approximated from the training data through the

iterative expectation-maximization (EM) technique. The method has been applied for

human face detection and recognition in videos [Hassanpour et al., 2008, Wang et al.,

2011].

1.1.2 Background Modeling

In most of real scenarios, objects and background share many colors, which makes it

difficult to isolate objects from the background. Similarly, in case of unknown object,

the color information can not be modeled due its unavailability. Therefore, colors in

the background can be learned. Several methods based on probabilistic background

models have been developed [Elhabian et al., 2008]. These methods are also referred

as background subtraction techniques, since the methods detect moving objects by sub-

tracting the current image from a background (also called reference) representation. The

notion of background subtraction gathers the background modeling step as well as the

classification step.

A recent survey of various background modeling techniques is presented in [Brutzer et al.,

2011]. We describe frequently used background models in this section, such as: Gaussian

mixture model [Stauffer and Grimson, 2000], non-parametric method of kernel density

estimation [Elgammal et al., 2002], CodeBook method [Kim et al., 2005] and VuMeter

[Goyat et al., 2006].

All these above-mentioned background models are individual pixel based methods.

We explain in details in the following paragraphs how color features are used by these

methods for background representation because we will compare our proposition to

these ones in the following. In particular, we describe the classification and model

update in each of them.
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1.1.2.1 Parametric method

A simple form of parametric model is to use a single gaussian per pixel for background

modeling. If we choose to model the background process of each pixel as a single

Gaussian distribution N , the probability of observing a value I(x) at pixel x can be

expressed [Landabaso, 2008]:

N (I(x), µ(x), Σ(x)) =
1

(2π)
D
2 |Σ(x)| 12

e−
1
2 (I(x)−µ(x))TΣ−1(I(x)−µ(x)) (1.1)

where µ(x) and Σ(x) are the mean vector and covariance matrix, respectively, of the

Gaussian corresponding to pixel x, and where D denotes the number of features con-

tained in vector I(x).

In single-Gaussian model systems [Wren et al., 1997, Horprasert et al., 1999, Jabri et al.,

2000], a pixel is considered as the foreground pixel if it does not fall within 2.5 standard

deviations of the mean of the distribution.

Gaussian mixture model:

The pixel-wise Gaussian Mixture Model (GMM) method has been proposed by [Stauffer and Grimson,

2000] for background modeling. Mixture of Gaussians is used in the literature to model

the variety of background colors that may appear at each pixel. If a background is mod-

eled by using mixture of Gaussians then the probability Pbackground of a value I(x) at

pixel x can be written as:

Pbackground(I(x), µ(x), Σ(x)) =
K

∑
i=1

ωi(x) ∗ N (I(x), µi(x), Σi(x))

=
K

∑
i=1

ωi(x)

(2π)
D
2 |Σi(x)|

1
2

e−
1
2 (I(x)−µi(x))

TΣ−1
i (x)(I(x)−µi(x)) (1.2)

where K is the total number of Gaussians and ωi(x) is the prior that a background pixel

is represented by a certain mode i of the mixture (∑K
i=1 ωi(x) = 1). These priors are

often named as the weights of the Gaussians. µi(x) and Σi(x) are the mean value and

covariance matrix of the ith Gaussian in the mixture for current pixel.

For red, green and blue (RGB) channel values, the covariance matrix can be written

as:

Σi(x) =







σ2
i1(x) Covi12(x) Covi13(x)

Covi12(x) σ2
i2(x) Covi23(x)

Covi12(x) Covi23(x) σ2
i3(x)







(1.3)
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where σ2
i and Covi are variances of the values of the corresponding channels and co-

variances between the values of the two channels that correspond to ith Gaussian of the

distribution. The computation of the probability requires the covariance matrix to be

inverted. To reduce computation time in covariance matrix inversion for each individ-

ual pixel, [Stauffer and Grimson, 2000] assume that all color channels are statistically

independent. Thus, the covariance matrix for the ith distribution becomes diagonal:

Σi(x) =







σ2
i1(x) 0 0

0 σ2
i2(x) 0

0 0 σ2
i3(x)







(1.4)

[Stauffer and Grimson, 2000] consider that all the color channels have the same variances

which leads to :

Σi(x) = σ2
i (x)







1 0 0

0 1 0

0 0 1







therefore, Eq. 1.1 in this context becomes

N (I(x), µ(x), Σ(x)) =
D

∏
d=1

1√
2πσd

e
− 1

2σ2
d
(Id(x)−µd(x))

2

(1.5)

which is the product of D unidimensional Gaussians. Similarly, assuming the indepen-

dence of channels in the mixture of Gaussians, Eq. 1.2 simplifies to:

Pbackground(I(x), µ(x), Σ(x)) =
K

∑
i=1

(ωi(x)
D

∏
d=1

1
√

2πσ2
id

e
− 1

2σ2
id
(Id(x)−µid(x))

2

) (1.6)

In the following paragraphs, we explain the pixel classification and the model update in

the GMM algorithm.

Background/Foreground classification:

In [Stauffer and Grimson, 2000], a pixel x is attributed to the ith Gaussian when the pixel

color value I(x) is within 2.5 standard deviations of the distribution mean µi(x). Then,

in order to determine whether a Gaussian represents a foreground or a background

process, Gaussians of each pixel are reordered according to ωi(x)
σi(x)

in the descending

order.

The first few Gaussians in the list correspond to the ones with more supporting ev-

idence (i.e. more times explaining incoming pixels) at the lowest variance (explained
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incoming pixels are always very similar). In other words, the first few Gaussians rep-

resent the background process if the background is relatively static (low variance σi(x))

and it is seen most of the time (high weight (ωi(x))). On the contrary, unassigned pixel

values and the values corresponding to the last Gaussians in the list are classified into

the foreground.

In the GMM method of [Stauffer and Grimson, 2000], a pixel is classified as a back-

ground pixel if its value matches one of the first B distributions decided by Eq. 1.7,

otherwise, it is classified as a foreground pixel.

B = arg min
b

b

∑
i=1

ωi(x) > T (1.7)

where i expresses the index of the Gaussians in the reordering ωi(x)
σi(x)

as mentioned above.

The process for creating new Gaussian mode is as follows: If none of the distribu-

tions matches the current pixel value, the least probable distribution is replaced with a

distribution with the current value as its mean value, an initially high variance and low

prior weight.

The foreground segmentation task becomes a problem of one-class classification

when model for only background class exists [Tax and Duin, 2001, Juszczak and Duin,

2003]. The classification in such case is harder than a standard two-class classification

problem. In two-class classification, a decision boundary is supported from both sides by

models of each of the classes (foreground and background). In one-class classification,

only the background class is available, i.e. just one side of the boundary is supported.

Based on the model of one class only, it is hard to decide how tight the boundary should

fit around the target class. The boundary is set as 2.5σi(x) in the GMM.

Furthermore, the system should adapt to illumination changes in the scene. There-

fore, the background model parameters are updated with time. Next, we discuss the

update mechanism in the GMM method.

Model update step:

The prime objective of the model update is to keep the background model as accurate as

possible. Therefore, the model update tries to accommodate background illumination

changes occurring with the passage of time. In the GMM model [Stauffer and Grimson,

2000], when a pixel value is observed, the weight ωi(x, t) of ith Gaussian is updated with
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time, as follows:

ωi(x, t) =







ωi(x, t− 1) + α(1−ωi(x, t− 1)) matched

(1− α)ωi(x, t− 1) not matched
(1.8)

Thus, the more often a Gaussian explains an incoming pixel, the higher its associated

weight is. Note that this is a low-pass filter average of weights, where the last samples

(latest in time) have exponentially more relevance than the older ones.

In the same way, variances σ2
i (x, t) and means µi(x, t) of the corresponding Gaussians

are updated accordingly:

µi(x, t) = (1− ρi(x))µi(x, t− 1) + ρi(x)I(x, t)

σ2
i (x, t) = (1− ρi(x))σ

2
i (x, t− 1) + ρi(x)(I(x, t)− µi(x, t− 1))T(I(x, t)− µi(x, t− 1))

(1.9)

where ρi(x) is the adaptation learning rate used in ith Gaussian and pixel x and it follows:

ρi(x) = αN (I(x, t)|µi(x), σi(x)) (1.10)

which acts as a low-pass filter. Thus, by updating means and variances, the system is

allowed to adapt to slow illumination changes.

In case of fixed camera, Gaussian-based background modeling is the most com-

mon approach used in the literature. [KaewTraKulPong and Bowden, 2001] proposed

a fast update method for GMM. They argued that adaptation in the GMM method of

[Stauffer and Grimson, 2000] was slow. They suggest that ρ is too small due to the

likelihood factor. This leads to too slow adaptations in the means and the covariance

matrices. Therefore, to improve update method, they propose to use L-recent window

update equations, where L = 1
α samples. Also, they propose to cut out the likelihood

term from ρ in Eq. 1.10. They apply their method for shadows removal in the detected

objects.

[Lee, 2005] proposed an effective learning algorithm to improve over the GMM

method [Stauffer and Grimson, 2000]. The author suggested some modifications in the

adaptation rate ρi. A variable is used to count the number of effective observations

for ith Gaussian and compute the appropriate learning rate. It is incremented when

parameters of a Gaussian are updated. When the Gaussian is reassigned, it is reset to 1

since the old Gaussian has perished and a new one was started with a single data point.

He showed that it improves the convergence speed and model accuracy. He also defined

the winner-take-all option, where only a single best-matching component is selected for
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the parameter update. The method is better when fast brightness changes occur than

GMM [Stauffer and Grimson, 2000].

A block based GMM method has also been proposed by [Chen et al., 2007]. They

divide the image into blocks and compute a contrast histogram as a descriptor for each

block. They further use these contrast histograms as a feature instead of individual pixel

color values (i.e. GMM algorithm) to build the background model.

Moreover, the GMM method has been combined with image spatial or temporal fea-

tures to improve pixel classification. [Javed et al., 2002] used, for example, the GMM

and intensity gradient simultaneously to remove shadows and compensate the bright-

ness variations. [Izadi and Saeedi, 2008] combined the spatial gradient with the GMM.

They isolated objects from the background and also removed shadows by using filter-

ing and morphological operations. Another method by [Huang et al., 2009], proposed

a background training parameter into the GMM. The training parameter uses region-

based scheme and incorporates both spatial and temporal information. The approach

addresses the problem of shadow detection in the foreground. [Cong et al., 2009] de-

tected moving objects by combining the GMM background model with the temporal

gradient (computed from successive frames). The combination leads the method to

accommodate brightness variations in the background model. Wolf and Jolion [2010] in-

tegrated motion information into GMM method on pixel level. They used optical flow

method for motion estimation. For each pixel, foreground/background classification is

performed on the combine likelihood of motion and color.

1.1.2.2 Non-parametric methods

Parametric models such as the GMM, assume that underlying distribution of colors

of each pixel can be represented by K normal distributions. In contrast to parametric

models, an approach based on non-parametric kernel density estimation was introduced

by [Elgammal et al., 2002]. In their approach, they do not assume any prior distribution

for underlying colors. Instead, they estimate the density function directly from colors.

The model keeps a sample color values for each pixel in the image and uses this

sample to estimate the density function of the pixel color density distribution. They

estimate that an observed pixel color value I(x) is based on L recent samples. It can be

expressed as:

Pbackground(I(x, t)) =
1
L

L

∑
i=1

D

∏
d=1

Kσd(Id(x, t)− Id(x, t− i)) (1.11)
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where Kσd is kernel function with bandwidth σd in the dth color channel. [Elgammal et al.,

2002] proposed to compute the median absolute deviation over the samples for consec-

utive color values of the pixel to estimate σ2
d for the corresponding color channel of each

pixel. Also, the median for each consecutive pair (I(x, i), I(x, i + 1)) is computed inde-

pendently for each color channel. They used Gaussian kernels for modeling the density

at a given pixel, so the Eq. 1.11 in their case becomes:

Pbackground(I(x, t)) =
1
L

L

∑
i=1

D

∏
d=1

1
√

2πσ2
d

e
− 1

2σ2
d
(Id(x,t)−Id(x,t−i))2

(1.12)

[Elgammal et al., 2002] argue that kernel density estimation can asymptotically converge

to any distribution with sufficient samples. For background/foreground pixel classifi-

cation, a pixel is considered as a foreground pixel if Pbackground(I(x, t)) < T, where T is

a global threshold for the whole image and can be adjusted to minimize the percentage

of false positive detections. Model update is done by adding new samples and ignoring

old samples. The entire model is recomputed on the basis of the last n observations.

Therefore, the method can adapt to more general and complex background variations.

[Elgammal et al., 2002] used fixed Gaussian kernels for modeling the density at a

given pixel. Therefore, it may suffer shortcomings when the background is composed of

high and low density areas. In [Mittal and Paragios, 2004], authors addressed the issue

and proposed variable bandwidth density estimation for background model (i.e. small

bandwidths and large bandwidths in high and low density areas respectively). Also,

they used motion information for foreground extraction. They extract the informa-

tion from video by using the optical flow method and combined it with probability

density estimation. They applied their method for object detection in non-stationary

background.

Similarly, [Ko et al., 2008] proposed to use spatial neighborhood of each pixel in the

computation of density estimation. Their method consists in analyzing the temporal

variation of intensity distributions, rather than pixel values. They represented the signa-

ture of each pixel using a distribution of pixel intensities in a neighborhood, and used

the Bhattacharyya distance to compare such distributions over time. This approach can

be viewed as a hybrid between pixel− and texture−level comparisons. The distribution

computed around a given location at current time could be viewed as a feature vector

describing the texture at that location. Thus, the distribution signature is relatively in-

sensitive to small movements of the highly textured background, and at the same time is

not tied to individual pixel values for detecting foreground objects. This enables slower
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background updates, and therefore minimizes the probability that the foreground object

be incorporated into the background. They applied the method to detect birds in the

natural environment.

In the following paragraphs, we present the codebook methods frequently applied

for background modeling in the literature.

CodeBook method:

[Kim et al., 2005] propose the CodeBook (CB) method to build a background model. It

is a quantization technique that uses long scene observations for each pixel. One or

several codewords are stored in the codebook for each pixel. The number of codewords

for a pixel depends on the background color variation. Therefore, all pixels do not have

the same number of codewords.

Each codebook contains some codewords to model a cluster of samples that con-

structs a part of background, ci(x) ∀ i = 1...χ. Each codeword is composed of following

information:

vi: mean (RGB) value of pixel, f : frequency of codeword,

Imax: high intensity bound of codeword, Imin: low intensity bound of codeword,

p: first occurrence of the codeword and q: last occurrence of the codeword,

λ: MNRL (maximum negative run length), represents the longest number of images

where the codeword does not occur in the sequence.

For each new pixel x, intensity is calculated by I =
√

I2
1 + I2

2 + I2
3 and vi = ( Īi1, Īi2, Īi3).

The color distortion δ between a given pixel x and a codeword ci can be computed by:

〈x, vi〉2 = ( Īi1 I1 + Īi2 I2 + Īi3 I3)2

||vi||2 = Ī2
i1 + Ī2

i2 + Ī2
i3

||x||2 = I2
1 + I2

2 + I2
3

δ(x, vi) =

√

||x||2 − 〈x, vi〉2

||vi||2
(1.13)

A pixel x at time t with an intensity I matches to a codeword ci, if I is in range [Imin,

Imax] and the color distortion δ is below a threshold ǫ. A new codeword is created for a

pixel x in the following way:

vi ← (I1, I2, I3) , Imin ← max {0, I − α} , Imax ← min {255, I + α}

f ← 1 , λ← t− 1 , p← t , q← t
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where α is a value which represents a tolerance of intensity. In the CB method, code-

words are assigned during the training period and are updated on the observation of

the frequency of appearance of these codewords for the same pixel. During the training

phase a codeword is updated for a given pixel x as follows:

Ī1 ← Ī1× f+I1
f+1 idem for I2 and I3

Imin ← I−α+ f×Imin
f+1 , Imax ← I+α+ f×Imax

f+1

f ← f + 1 , λ← max {λ, t− q} , p← p , q← t

In the detection phase, the codeword is updated like previously in training phase except

for Imin and Imax which are updated as follow, :

Imin ← (1− γ)(I − α) + γImin

Imax ← (1− γ)(I + α) + γImax

where γ is a coefficient to change adaptation speed. The codebook obtained during the

training time represents the training image sequence. It may contain objects information

as well, if objects are present in the scene during training time. Therefore, the codewords

for objects must be removed from the codebook. The variable λ is used for filtering the

codewords which are not updated. It is assumed that the codewords which represent

objects colors have higher values of λ, since codewords which represent objects are not

updated frequently. The codewords with λ ≤ λth are either deleted from the codebook

or not used in the process of code matching. For this reason, finding an optimal value

for λth is an important task. In [Kim et al., 2005], authors suggested that λth = τ
2 is a

good choice. τ is the duration of training time period. The higher value of λth leads to

add object color pixel into codebook. Similarly, smaller value of λth is unable to model

the background movement (like moving leaves).

The original CB method is modified by [Sigari and Fathy, 2008], in which authors

propose to use two layered CB models for each pixel. They denote these layers as

the main CB for permanent backgrounds and the hidden CB for non-permanent back-

grounds. They argue that if a new background appear after the training sequence, then

the original CB method cannot model it. They define three thresholds (λH, λadd and

λdel) for λ. The update process of the CB is as follows: Remove all codewords in the

hidden CB if λ > λH. Move the codewords from the hidden CB to the main CB who

stay longer than λadd in the hidden CB. Remove all codewords from the main CB who

do not appear longer than λdel. So, this method keeps the data in the hidden CB that
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are not important at the current instant but could be more important after. They show

that the method is very useful to have a good detection of waving trees for example.

The CB method gives good results in small background movements in comparison

to GMM. Especially, the CB methods work well compared to the GMM in case of global

brightness changes in the background. Also, shadow removal and object detection rate is

better than GMM method due to the model update method. A comparative analysis for

the two methods along with other background models has been done by [Dhome et al.,

2010], and is shown in Figure 1.1.

VuMeter method:

We present here another color-based background model proposed more recently. It is

known as the VuMeter [Goyat et al., 2006]. It is also a non parametric method based on

a discrete estimation of the probability distribution. The discretization of the probability

density function Pbackground is carried out with N bins for each parameter. For each pixel,

the authors consider the 3 color channels to be statistically independent which leads to

3.N elements instead of N3 elements for each parameter.

Thus, for a pixel color value I(x, t), the probability density function

Pbackground(I(x, t)) can be approximated by:

Pbackground(I(x, t)) =
D

∏
d=1

P(Id(x)) (1.14)

If b(x, t) denotes the bin index vector associated to I(x) and i is a bin index, then prob-

ability density per channel can be expressed as:

Pbackground(Id(x, t)) ≈ Kd

N

∑
i=1

πidδ(bd(x)− i) (1.15)

where δ is the Kronecker delta function, and Kd is a normalization constant to ensure

the following condition at each moment

N

∑
i=1

πid = 1

πid is a discrete mass function which is represented by a bin. At first image (t = 0), bins

values are set, πid = 1
N to have a sum to 1 as mentioned above. Similarly, at each new

pixel, when its value matches to a bin πid, the level of the bin is updated as follow:

πid(t + 1) = πid(t) + αδ(bd(x, t + 1)− i) (1.16)
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(a) (b) (c) (d) (e) (f)

Video 1 Video 2 Video 3 Video 4

Figure 1.1: Four synthetic videos [Dhome et al., 2010], results of six back-
ground modeling algorithms (a) GMM [Stauffer and Grimson, 2000], (b) Fast GMM
[KaewTraKulPong and Bowden, 2001], (c) Bayesian [Tuzel et al., 2005], (d) Block-level
GMM [Chen et al., 2007], (e) CodeBook [Sigari and Fathy, 2008] and (f) VuMeter
[Goyat et al., 2006].

After some time, i.e. after a lot of images, the bins which model the background have a

high value. Each new pixel with corresponding bins below an empirically set threshold

is assigned to the background. In RGB mode, each pixel is modeled by 3 VuMeter (one

per color channel). To consider a pixel as background, it must be detected as background

with each VuMeter.

To improve background detection and to reduce problems with edges between two

bins, the values of classes in the neighborhood of a matched class are also updated,

but to a lesser extent. A fixed learning rate is used for model update. To have a good

learning and adaptation of algorithm, it is necessary to have a good learning rate α and

a good threshold.

A comparative study of background subtraction algorithms is presented in [Dhome et al.,

2010]. The authors proposed a benchmark based on artificial videos. 4 different syn-

thetic videos are created with various background conditions. These situations include

light intensity variations, moving and stationary backgrounds, random noise, large and

small sized vehicles, moving persons etc. An advantage is that ground truth data is also
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available with the videos. They applied six background modeling algorithms and ana-

lyzed their segmentation results. These six algorithms are GMM [Stauffer and Grimson,

2000], a fast GMM [KaewTraKulPong and Bowden, 2001], Bayesian method [Tuzel et al.,

2005], block based GMM [Chen et al., 2007], the CodeBook method [Sigari and Fathy,

2008] and the VuMeter [Goyat et al., 2006]. The authors also discussed the evaluation

methods of image segmentation techniques and show that the best results are obtained

by using the VuMeter method [Goyat et al., 2006]. In Figure 1.1, the segmentation results

of the six algorithms are shown.

Texture based background model:

Texture is one of the important properties of visual surfaces which helps us to discrim-

inate one object from another, an object from the background, and to draw inferences

about 3D world [Jain and Karu, 1996]. Unlike other image features, such as intensity or

color, texture is not a property of a single pixel, but rather of a spatial neighborhood

around the pixel.

To detect moving objects in a textured background, an approach has been proposed

by [Zhong and Sclaroff, 2003], which uses an auto regressive moving average (ARMA)

model for dynamic textures [Doretto et al., 2003]. In this approach at any time t, we

observe a noisy version of the image

y(t) = I(t) + w(t)

where w(t) ∼ P(.) is an independent and identically distributed sequence drawn from

a known probability density function. Then, the image sequence {I(t)}t=1···τ of τ im-

ages is a (linear) dynamic texture if there exists a set of n spatial filters φ, such that

I(t) = φ(x(t)), where x(t) describes the dynamic texture’s state. Thus, the autoregres-

sive model for dynamic texture is expressed as:

x(t + 1) = Ax(t) + Bv(t),

y(t) = φ(x(t)) + w(t),
(1.17)

with x(0) = x0, v(t) ∼ N (0, Q) is unknown state noise. [Zhong and Sclaroff, 2003] also

propose a robust Kalman filter to iteratively update the state of the ARMA model. If

the current estimated value for a pixel is different from the predicted value then the

pixel is labeled as foreground. A similar approach is proposed by [Monnet et al., 2003].

They use a predictive model to capture the most important variations based on a sub-

space analysis of the image sequence. The components of this model are used in an
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Figure 1.2: Computation of Circular Local Binary Pattern [Heikkilä and Pietikäinen,
2006].

autoregressive form to predict the frame to be observed. Differences in the state space

between the prediction and the observation quantify the amount of change and are

considered to perform detection.

In spatial domain, a 2D texture-based background model is proposed by

[Heikkilä and Pietikäinen, 2006]. The approach is a background model in which only

spatial textures (2D) among different zones of images are considered. In their approach,

they use the Local Binary Pattern (LBP) as a texture operator, which relates to the earlier

work by [Ojala et al., 1996, 2002]. The operator labels the pixels of an image region

by thresholding the neighborhood of each pixel with the center value and considering

the result as a binary number (binary pattern). The basic version of the LBP operator

considers eight neighbors of a pixel. However, [Heikkilä and Pietikäinen, 2006] use a

circular LBP operator, which contains user-settable radius in spatial domain around each

pixel (see Figure 1.2). The LBP histogram h is used as a feature vector in background

modeling. The background model for the pixel consists of a group of K adaptive LBP

histograms per pixel,{m0, · · · , mK−1}, where K is a user settable parameter. Each model

histogram has a weight between 0 and 1 so that the weights of the K model histograms

sum up to one.

The background model is updated by using histogram intersection as a proximity

measure. This measure calculates the common part of two histograms and neglects

features which only occur in one of the histograms. If the incoming histogram h matches

the model histogram then the best matched model histogram is adapted with the new

data updating its bins. Similarly, the weights ω of the model histogram are updated as

follows:
mi = αbh + (1− αb)mi αb ∈ [0, 1]

ωi = αw Mi + (1− αw)ωi αw ∈ [0, 1]
(1.18)

where αb and αw are two learning rates used for model update. Mi is 1 for the best
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matching histogram and 0 for the others. The adaptation speed of the background

model is controlled by the learning rates. The bigger the learning rate, the faster is the

adaptation. Afterwards, they sort the model histograms in decreasing order according

to their weights, and select the first B histograms as the background histograms, such

that:

ω0 + · · ·+ ωB−1 > TB TB ∈ [0, 1]

For object detection, they compare the incoming histogram (computed from the new

frame) with current B background histograms by using the proximity measure. If the

proximity is higher than an empirically set threshold for at least one background his-

togram, then the pixel is classified as background. Otherwise, the pixel is marked as

foreground.

They obtain improved object detection over pixel-based methods. However, they ap-

ply the background model to relatively static backgrounds. Furthermore, the LBP does

not work very robustly on flat image areas, where the gray values of the neighboring

pixels are very close to the value of the center pixel. Similarly, these methods assume

spatial consistency of the textured background. Therefore, in case of dynamic textures

(i.e. water ripples, smoke, fire), the LBP-based methods may not produce good object

detection results.

1.2 Shape based object detection

Object detection in video can benefit from knowledge about object shapes. Different

object types such as persons, vehicles, leaves and flowers etc. may require dedicated

detection algorithms. Methods which use shape features as criteria for object detection

need their appearance information. The information is either known a priori or learned

during the training period. Also, statistical models based on object shape features are

proposed to address the diversity of possible shape appearances. Shape based methods

can be divided further into implicit shape models and active shape model.

1.2.1 Implicit shape model

The methods sometimes use object shapes a priori to detect them in the image sequence.

Typically, an implicit shape is represented with a binary function or a distance func-

tion. For example, [Leibe et al., 2004, 2005] use an Implicit Shape Model in which the

local structure of object shape appearance is learned. In order to learn the appearance

variability of an object category, they build up a codebook of local appearances that are
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characteristic for a particular viewpoint of its member objects. They extract local fea-

tures around interest points and group them with an agglomerative clustering scheme.

Based on the codebook, they learn an Implicit Shape Model that specifies where the

codebook entries may occur on the object. In this way, they define allowed shapes im-

plicitly in terms the local appearances consistency. Implicit Shape Model is formulated

in a probabilistic framework that allows to obtain a category-specific segmentation and

object recognition.

[Jacobs and Pless, 2007] proposed a shape based background model that includes

the expected shape of foreground objects into background model. They attempted to

characterize the benefits of scene-specific shape models for object localization. They

used an offline approach to learn car and pedestrian shapes. They found pixel-wise

likelihood jointly on the background and shape models. They applied their method for

anomaly detection. [García-Martin et al., 2011] used implicit shape model for pedestrian

detection in crowded environment. They proposed to use an implicit motion model

for the pedestrian. They combined an implicit shape model proposed by [Leibe et al.,

2005] with an implicit motion model and claim the superiority of their approach over

[Leibe et al., 2005]. [Cerutti et al., 2011] used a prior leaf shape model for their detection.

Prior shape model improves the detection rate of leaves in natural background. In

[Ferrari et al., 2007, 2010], the authors presented an approach for learning and matching

shapes with explicit shape models formed by continuous connected curves completely

covering the object outlines. [Ferrari et al., 2010], presented a method that can learn

complete shape models directly from images. Moreover, it can automatically match the

learned model to cluttered test images, thereby localizing novel class instances up to

their boundaries. [Caro-Campos et al., 2011] used prior object shape and used it for the

detection of stolen objects from the monitored scene. They suppose a rectangular shaped

object. An active contour technique is applied to check whether the object contour is

present in the current image.

Notice that often it is not possible to use a priori shape information because of chang-

ing point of view or change of appearance.

1.2.2 Active shape model

Conversely, active shape models represent the prior shape with a set of connected land-

mark points. The use of prior shape knowledge is extended to statistical shape models

which are based on the different object appearances. The constraints which may cause

the variability in the shape appearances include brightness changes, view point changes,
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the object-camera distance etc. For this reason, a large number of features are used to

construct such models that represent an object occurrence in videos. An early method

by [Ferryman et al., 1995] present a deformable shape model for vehicle detection in

videos. Similarly, [Kuno et al., 1996] describe a robust and reliable method of human

detection for visual surveillance system. They first take precise silhouette patterns by

detecting and analyzing the change in the brightness between the background image

and the current image. They use shape features of the silhouette patterns of humans as

the detection parameters.

A popular choice in shape based methods is to use Active Shape Models (ASM)

[Cootes et al., 1995]. These are statistical models of objects shapes which iteratively de-

form to fit to an example of the object in a new image. The shapes are constrained by a

statistical shape model to vary only in ways seen in a training set of labeled examples.

Active shape models are applied in different object detection algorithms. For example,

[Siebel and Maybank, 2002] apply it for multiple people tracking. They use a method

which combine object motion with the pedestrian shape model for robust tracking al-

gorithm. In [Jang and Jung, 2008], body-skeleton models are generated for human pose

estimation in videos. Skeleton models are produced by a model of body shape variation.

Images are labeled with landmark points representing the positions of key features. The

coordinates of the skeleton points for each training image are stored. They apply Prin-

cipal Component Analysis (PCA) on the deviation from the mean values of these points

in the training data set. They compare skeleton shape model to the manually obtained

human silhouette in the current image for frontal human pose estimation. [Kim et al.,

2010] propose hierarchical recovery of human walking poses by the active shape model

framework. The information is used with the motion prediction for human gait recog-

nition. Active shape model is also used in face recognition methods. Facial features

extracted from the model [García et al., 2010] are used for driver fatigue detection.

Shape appearance is often unknown in object detection. In such case, to help seg-

mentation, we can use object motion instead.

1.3 Motion based object detection

Based on motion information, different motion models can be proposed to facilitate ob-

ject detection. In some cases, these motion models are built on the a priori object motion

information. In other cases, some techniques lead to estimate object motion. The two

types of methods are presented in the following subsections.
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Original image Learned ground-plane velocity map

Figure 1.3: Original road image with learned velocity map [Magee, 2004].

1.3.1 Methods based on prior motion knowledge

In application where a priori knowledge about the motion of objects is available, one

can use this knowledge to constrain foreground detection. In [Song et al., 2003], for

example, human motion is modeled by a joint probability density function of position

and velocity of a collection of body parts. They use prior knowledge of human walking

in the monitored scene.

In [Magee, 2004], the author used a priori road direction and travel information for

multiple vehicles detection. The vehicle speed information is used to facilitate vehicle

tracking and their position prediction but the information is not used explicitly for the

image segmentation. Figure 1.3 contains original road image and the learned ground-

plane velocity map from [Magee, 2004]. In the velocity map in Figure 1.3, the circles rep-

resent centroids of vehicles and motion directions are marked by lines. The velocity map

is used to calculate initial estimate of normalized velocity and direction. The method

also represents the possibility of learning vehicle motion. Similarly, in [Sappa et al.,

2005], prior knowledge of pedestrian movement was used for 3D model construction

from 2D motion silhouettes. They argue that human displacement involves synchro-

nized motion of each body part which need to be modeled. They select head and leg

movements in the segmented image sequence for learning motion trajectories.

Motion information can also be used on pixel level for object detection. [Nam and Han,

2006], for example, use per pixel motion prior for moving pixel classification into back-
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ground or foreground. In their method, a motion prior distribution is recursively es-

timated by a particle filter model. The motion prior probability serves as a weight in

pixel-wise classification of a pixel into background or foreground.

However, in most of the applications, object motion knowledge is also not available a

priori. Therefore, the methods use motion estimation for object detection. The algorithms

which use motion estimations can further be divided into inter-frame difference and

optical flow methods.

1.3.2 Image difference

The most basic form of motion segmentation relies on the inter-frame difference. It

consists of absolute difference of intensity of two frames pixel by pixel.

∆I(x, t) = |I(x, t)− I(x, t− 1)|

The result is a coarse map of the temporal changes. It is used in the literature due to

the simplicity of computation. In order to distinguish between relevant changes due

to objects motion or brightness changes and irrelevant temporal changes due to noise,

the frame difference is usually compared to a threshold. The reliable decision that a

spatial position x belongs to a moving region is only possible if the frame difference

exceeds this threshold value. However, in case of moving background or moving camera,

image difference may not provide useful information. Therefore, [Bergen et al., 1992,

Kameda and Minoh, 1996] use three video frames for object motion segmentation. They

generate two difference images ∆I(., t) and ∆I(., t + 1) from the successive images at

time t− 1, t and t + 1. They binarize the difference and take the intersection of these two

difference images to compute a resulting double difference image. Thus, they compute

a rough map of the moving pixels and use it for moving object extraction.

Another approach for motion detection is to use Motion History Image (MHI), where

successive layering of image silhouettes is used to represent patterns of motion. When-

ever a new frame arrives, the existing silhouettes are decreased in value subject to some

threshold and the new silhouette (if any) is overlaid at maximal brightness. This layered

motion image is termed a Motion History Image (MHI). The representations have an ad-

vantage that a range of times from frame to frame to several seconds may be encoded in

a single image. It generates a 2D template image for each action in the video. The MHI

approach relies on template matching and detect occurrences of a previously learned

action. [Bradski and Davis, 2002] compute gradients of the MHI by convolution with

separable Sobel filters in the spatial domain. They label motion regions connected to
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the current silhouette using a downward stepping floodfill and identify areas of motion

directly attached to parts of the object of interest. This representation can be used to

determine the object current pose and measure the motions induced by the object in a

video scene.

[Viola et al., 2003] propose a method that uses manually extracted patches of image

differences and learn a cascade of weak classifiers for pedestrian detection.

Some methods apply probabilistic model to image differences. For example, [Li et al.,

2007] partition the image into an array of cells and assume that a cell contains mo-

tion if the differences in that cell are approximately uniformly distributed. They use

edge-based morphological dilation method to achieve the anisotropic expansion of the

detected object regions.

[Verbeke and Vincent, 2007] accumulate n previous frames and use a frame differ-

encing technique to find regions where the motion has occurred. They perform PCA

to map data of image differences in a lower-dimensional space where points containing

coherent motion are close to each other. The technique is better than simple frame differ-

ence techniques, as they accumulate the n previous frames for calculating motion region

in the image. However, the method is sensitive to light intensity changes, shadows and

sensor noise.

1.3.3 Optical flow based methods

The optical flow method, introduced by [Horn and Schunck, 1981], is based on the ap-

parent motion of the brightness patterns in the image. The method is frequently used

to estimate motion in video analysis. Here, we provide an overview of basic terms of

optical flow methods and present some of the object detection methods based on optical

flow.

1.3.3.1 Optical flow basis

Most of the optical flow algorithms assume brightness constancy, i.e. when a pixel flows

from one image to another (successive in time), its intensity or color does not change.

The brightness constancy constraint can be expressed as:

I(x, y, t) = I(x + u, y + v, t + 1) (1.19)
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Applying a first-order Taylor expansion to the right-hand side of Eq. 1.19 yields the

following approximation:

I(x, y, t) = I(x, y, t) + u
∂I
∂x

+ v
∂I
∂y

+ 1
∂I
∂t

(1.20)

which simplifies to the optical flow constraint equation as:

u
∂I
∂x

+ v
∂I
∂y

+
∂I
∂t

= 0 (1.21)

Both the brightness constancy and the optical flow constraint equations provide one

constraint on the two unknowns at each pixel. This is the origin of the aperture problem

and the reason that the optical flow is an ill-posed problem. Therefore, it must be reg-

ularized with a smoothness term. [Horn and Schunck, 1981] optimize a global energy

function based on residuals from the brightness constancy constraint and use a partic-

ular regularization term that expresses the expected smoothness of the flow field. In

comparison, [Lucas and Kanade, 1981] assume that the flow is essentially constant in a

local neighborhood of a given pixel, and solve the basic optical flow equations for all the

pixels in that neighborhood, by the least squares criterion.

Instead of using the intensity or color values in the images, it is also possible to use

features computed from the image sequence. One recently popular choice is to augment

or replace Eq. 1.19 with a similar term based on the image gradient:

∇I(x, y, t) = ∇I(x + u, y + v, t + 1) (1.22)

Empirically the gradient is often more robust to (approximately additive) illumination

changes than the raw intensities. A comprehensive comparison of optical flow methods

is presented in [Baker et al., 2011]. They provide a database and evaluation of most

common used optical flow algorithms.

1.3.3.2 Object detection based on optical flow

We present some object detection algorithms that rely on the optical flow. Several meth-

ods are proposed in the literature in which optical flow estimation are used with back-

ground subtraction for object detection. [Iketani et al., 1998, Wixson, 2000] use the

estimation of the consistency of optical flows over a short duration of time. The motion

trajectories are used for detection and recognition of the objects. Moreover, in some

methods, image texture features are added to the motion features, to form a complete

feature set for motion and appearance-based recognition. In [Peteri and Chetverikov,
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Figure 1.4: Approximate optical flow: (from left to right) 1st frame, 2nd frame and
zoomed head portion to show motion vector field [Wolf and Jolion, 2010].

2005] a method for extracting texture features is based on the normal optical flow and

on the texture regularity though the sequence.

[Mittal and Paragios, 2004] propose an adaptive kernel density estimation scheme

with a joint pixel-wise model of color (for a normalized color space) and optical flow

at each pixel. Similarly, a foreground detection method by [Li et al., 2010] propose an

optical flow and background model (OFBM). It is based on Lucas-Kanade optical flow

and Gaussian background model methods. They use two successive images to compute

LK flow field. The resulting flow field is thresholded to obtain a coarse foreground im-

age. They also apply GMM method to obtain another foreground image and multiply

it with foreground image obtained with the optical flow. They apply their method for

crowd abnormal behavior detections and crowd density estimations. Another method of

similar nature is presented by [Wolf and Jolion, 2010], in which authors propose to take

into account spatiotemporal interactions using a global energy function for background

subtraction. They modify the pixel classification in GMM method and temporal consis-

tency of foreground/background labeling is enforced by the use of an optical flow-based

temporal regularization term (see Figure 1.4).

However, one can notice that the computational complexity of (dense) optical flow

techniques is high. Besides the computational complexity, another disadvantage of op-

tical flow is that the flow is not always correct. It is inaccurate at object edges because of

the smoothing involved in the computation, which ultimately causes inaccurate object

segmentation. Inside objects and in homogeneous regions, the flow tends to be null.

Moreover, brightness constancy and consistent flow assumptions are violated in case of

moving backgrounds.
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1.4 Discussion

In this thesis, we deal with outdoor videos with a particularity: a moving background.

We focus on fixed camera situation and we do not make assumptions concerning shape

or type of objects we want to extract or recognize. Hence, if we consider again the

various criteria we used to classify articles of the literature, we can make the following

remarks and explain our approach as follows.

Firstly, regarding to color and texture, two possibilities are offered to us: considering

object or background. In chapter 2, as the proposition is driven by application (detecting

wood in river), we choose to model the object color. The proposed method intrinsically

differs from methods proposed in the literature as it is application oriented and we

could not find in the literature such object detection. More precisely, we propose in

this chapter a probabilistic image model based on intensity/color information of object.

In chapter 4, we study a background color based model and to be more exact, the

method is inspired from 2D texture segmentation methods we found in the literature.

This is a method that takes into account both temporal and spatial neighbors of a pixel

contrary to background modeling methods of the literature. It exploits the fact that

in moving background situations, color patterns often appear repeatedly during time.

Using coherency of colors leads us to propose a new background model.

Secondly, as we do not make assumptions concerning the appearance of the objects

we want to extract, we cannot use shape-based criteria.

Thirdly, in chapter 3, we suppose that it is possible to know a priori the object motion

in some situations. Thus, we propose an original method to introduce this knowledge

in object detection. We show that this information allows improving results of classical

background subtraction methods we can find in the literature.
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In this chapter, we study wood detection in rivers as an image segmentation problem

and propose methods to achieve it. Floating wood detection in rivers is an example of

object detection within moving background. It constitutes the first part of the DADEC

project, which is briefly presented in the introduction. The method is designed in order

to be applicable according to different weather conditions and be able to detect small

and large wood pieces indifferently.

We present two wood detection methods in this chapter, which are based on wood

characteristics in the river videos. The first approach involves image intensity and its

gradient computed at a pixel level for each frame independently. The information is

combined with inter-frame intensity difference between successive frames. In the second

approach, we refine the method and propose a probabilistic image model based on wood

intensity as well as its temporal variation. Before explaining the methods, we present

the constraints related to wood detection in river videos.

2.1 Floating wood detection in river

We present the scenarios of floating wood detection in river. It is an outdoor application

and there are many constraints with regards to image analysis. We summarize these

constraints to highlight the challenges which are involved in wood detection.

2.1.1 Context

During floods, caused by excessive rains especially in the mountains, the river water

flow varies from the normal flow. It carries a lot of fallen trees, bushes, branches of

fallen trees and other small pieces of wood from mountains. These fallen trees often get

stuck into the pillars of bridges and favor accumulation of small branches, bushes and

debris around them and block the water flow. The amount of destruction threat made by

trees is directly proportional to their sizes, as larger fallen trees are more dangerous than

the smaller parts of fallen trees. Therefore, automatic wood detection using visual mon-

itoring systems can help in the safety of bridges and population living in the vicinity.

The statistics of quantities of fallen trees passing through the river can be obtained with

such automation. The information can further contribute to the preventive measures for

civil infrastructures of bridges and dams. In this context, researchers of the LIRIS Lab

(UMR 5200) collaborate with geographer researchers of the EVS Lab (UMR 5600).
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Figure 2.1: (a),(b) Background images with three points selected, (c) wide intensity vari-
ations of background regions with time: in the first row of graphs points A, B and C
corresponding to image sequence in (a) and, in the second row of graphs points A, B
and C corresponding to image sequence in (b).

2.1.2 Constraints in wood detection in river

We can observe that there are many intensity variations in the background regions in

river videos. The Figure 2.1 shows examples of images extracted from a camera posi-

tioned by the Ain river (France) at tow different moments. We have marked three points

on each image : A, B, C and we have plotted intensity of each of them according to

time. As a matter of fact, the dynamic background contains a wide distribution of inten-

sity at these background regions. Also, it demonstrates a high level of complexity and

challenge involved in our problem.

Wood detection, primarily, depends on the intensity difference between wood and
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(a) (b)

(c) (d)

Figure 2.2: A few original images of, (a) a wood piece under the shadows of surrounding
trees, (b) cast shadows of surrounding infrastructures, (c) a fallen tree in the cloudy
weather and (d) a wood piece having reflection of sun shine from the surface of water.

water. In studied image sequences, wood is darker than water. However, in case of

sunshine, the intensity level of water waves resemble the intensity of wood. Moreover,

moving clouds may cause rapid brightness changes over the surface of river. So, videos

contain sudden uneven brightness, cast shadows from surrounding trees and infrastruc-

tures, reflections from water surfaces and dark cloudy conditions. Some representative

situations are highlighted in Figure 2.2.

An additional difficulty is caused by the similarity between small wood pieces and

waves. In Figure 2.3, a small wood piece and a water wave in the same video frame

are shown, both having similar sizes, shapes and brightness levels. Moreover, wood

pieces may be partially submerged during motion. This causes occlusion, due to which

their apparent size may not remain the same in the image sequence. In these videos,

the presence of bridge (top left corner of images) and moving branches of tree before

camera (right middle portions of images) can be seen. In the bridge area, there are a

lot of turbulences in water waves as shown in Figure 2.2 which makes the background
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Figure 2.3: An image with a highlighted water wave and a wood piece, (b) upper portion
of image is zoomed to show shape and color intensity of wave, (c) lower portion of image
is zoomed to show shape and color intensity of wood piece.

highly dynamic. Naturally, the detection algorithm should be robust to these imaging

conditions and should detect objects indifferently in any part of river in the videos.

Finally, due to the remote location of monitoring system and the limits of transfer

rate of data networks, the frame rate in the video is very low (∼ 4 fps). Consequently,

object displacement is large between consecutive frames. Thus, optical flow techniques

which are based principally on the brightness constancy assumption could not render

meaningful results in river videos. To illustrate the inefficiency of optical flow, we ap-

plied the optical flow estimation algorithm of [Lucas and Kanade, 1981] on river videos

and the results are shown in Figure 2.4. The vector flow field is represented by arrows

in the four example images. The motion vectors follow the intensity gradients between

consecutive frames. The length of the arrows denotes the magnitude of motion vectors

and the flow direction is indicated by arrow heads. As we can notice, the motion vectors

are haphazardly distributed in the river video. This shows the difficulty and complex

nature of the background in the current videos. Moreover, optical flow results are sim-

ilar for water waves and wood. In Figure 2.4 (c) and (d), two wood pieces are shown.

Optical flow vectors for wood pieces and water waves in the background are similar in

size and globally in direction. Therefore, we can argue that the optical flow technique

does not seem to be the most appropriate technique to discriminate object (wood) and

background (waves) motion in this application.

2.2 Naïve approach for wood detection

The approach is based on color, spatial and temporal features of image. The flow chart

of the approach is presented in Figure 2.5. It shows that each frame is treated by two
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(a) (b)

(c) (d)

Figure 2.4: Optical flow method of [Lucas and Kanade, 1981] applied on river videos.
(a),(b) are background only where (c),(d) are images with wood objects, motion vectors
are shown by arrows.

image segmentation processes. The results of these two processes are binary segmented

images. One is called the intensity mask (MI) and the other one the gradient mask (MG).

These are the results of image segmentation based on intensity histogram thresholding

and spatial gradient technique respectively. Furthermore, inter-frame difference (dT) for

each image pair is taken to include temporal changes into wood detection. We explain

each of these elements in this section.

2.2.1 Intensity mask

Water in the river and wood have rather different intensity levels, and wood is darker

than water as shown in Figure 2.2. Histogram thresholding is among the popular tech-

niques for gray-level image segmentation and several strategies have been proposed to

implement it in the literature [Otsu, 1979, Pal and Pal, 1993, Jain et al., 1995, LI et al.,

1997]. In these methods, peaks and valleys of the 1D brightness histograms of gray-level

images can be identified as objects and backgrounds respectively.
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Figure 2.5: Flow chart of naïve approach for wood detection

The Fisher linear discriminant technique is used for automatic histogram threshold-

ing [Otsu, 1979, Wolf and Jolion, 2003]. We calculate an optimal threshold si from the

gray value histogram h by assuming two Gaussian distributions in the current image

(class 0 for "non-wood" and class 1 for "wood" in our case) and maximizing the inter-

class variance. The criterion used in discriminant analysis can be expressed as:

k∗ = si = arg max
k

(ω0ω1(µ1 − µ0)
2) (2.1)

where ω0 = ∑
k
i=1

h(i)
N is the normalized mass of the first class, ω1 = ∑

L
i=k+1

h(i)
N is the

normalized mass of the second class, µ0 and µ1 are the mean gray levels of respective

classes and can be expressed as: µ0 = ∑
k
i=1ih(i)

∑
k
i=1h(i)

, µ1 = ∑
L
i=k+1ih(i)

∑
L
i=k+1h(i)

, where N is the number

of pixels and L the number of bins of the histogram.

Each incoming video frame is processed likewise and an intensity mask (MI) is com-

puted (see Figure 2.5), as follows:

MI(x, t) =







1 if I(x, t) ≤ si

0 otherwise
(2.2)

The method segregates pixels with dark color from the rest of scene. The technique

produces good image segmentation in the absence of sunshine. Intensity masks for the

corresponding images are highlighted in blue color in Figure 2.6(b). The left image is

an example of intensity mask in the absence of sunshine. It shows that the technique

of automatic histogram works well in the absence of sunlight. The right image is the

intensity mask obtained in the presence of sunlight and the intensity of water waves

and wood resemble one another. It indicates that the method is not adequate alone and

produces wrong image segmentation. Therefore, we propose to use spatial feature to

overcome the shortcomings of the intensity based segmentation method.
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2.2.2 Gradient mask

In the presence of sunlight, cast shadows of surrounding trees and buildings cause the

previous method based on the intensity histogram thresholding alone to produce erro-

neous image segmentation. We propose to use the intensity gradient magnitude. This

approach has been extensively investigated for gray-level images [Fu and Mui, 1981,

Rosenfeld and Kak, 1982, Pal and Pal, 1993]. Algorithms have also been proposed for

the detection of discontinuities within color images [Zhao, 2008]. Each incoming frame

is treated by using the Sobel operator. A threshold sg is empirically set to obtain a binary

gradient mask. The method can be expressed as:

MG(x, t) =







1 if ‖∇I(x, t)‖ ≥ sg

0 otherwise
(2.3)

This feature has the advantage, contrary to intensity histogram thresholding, that it

operates well in the shadowed region. The gradient masks for the corresponding images

are highlighted in green color in Figure 2.6(c). It can be noted that both water waves and

moving wood have strong gradients, and therefore, the resulting gradient mask (MG)

contains both of them.

2.2.3 Temporal difference

Frame differencing is used for change detection in video sequences in many research

works [Elhabian et al., 2008]. Therefore, in order to remove spatially static regions and

small water waves, the temporal difference between two consecutive frames is taken into

account. Majority of water waves dispersed in two consecutive frames are automatically

suppressed by taking such inter-frame normalized differences, as:

∆t I(x, t) =
I(x, t)− I(x, t− 1)

255
(2.4)

We experimentally set a threshold st, and create a temporal binary mask that can be

expressed as follows:

dT(x, t) =







1 if |∆t I(x, t)| ≥ st

0 otherwise
(2.5)
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(b)

(c)

(d)

(a)

Figure 2.6: The representation of various steps involved in the segmentation, (a) original
images, (b) intensity masks (MI) marked in blue color, (c) gradient masks (MG) in green
color and (d) resulting combinations i.e. foreground (F ) for the corresponding images.
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2.2.4 The resulting combination

In Figure 2.5, we show the histogram thresholding based intensity mask (MI), the edge

based gradient mask (MG) and temporal inter-frame difference (dT) are combined to

give a resulting image. We take the pixel wise intersection of three binary mask images

to compute the final foreground image F . We can write it as:

F (x, t) = MI(x, t)MG(x, t)dT(x, t) (2.6)

The image F represents the detected wood objects along with some water waves. Two

examples of foreground images are shown in Figure 2.6(d). The results obtained with

this method are rather good if we keep in mind the dynamic background context. The

method is presented in [Ali and Tougne, 2009]. For comparison, Figure 2.17 and 2.18

show the results obtained on the same scene with several background modeling tech-

niques. However, the method have some shortcomings. These are in the form of mis-

detection within big woods and also false detected water waves. One of the possible

reasons of such misdetection may be due to thresholds which are difficult to adjust for

changing weather conditions. Secondly, the edge based intensity gradient works well on

objects with stick-like apparency (i.e. small pieces, long trees), but for pieces with many

leaves, the intensity gradient is not the discriminative feature. Thus, it is probable to

miss some of inner regions of big wood objects. To overcome these shortcomings, we

introduce a more general probabilistic object detection method in the next section, that

relies on color and motion features of objects. The approach is not limited to wood detec-

tion application, however, for consistency with wood detection, we present the method

here.

2.3 Probabilistic approach for object detection

As described in chapter 1, in fixed camera situations, background subtraction techniques

are usually applied for object detection in many applications. In this kind of approach,

a color based pixel-wise probabilistic representation of the scene is computed and each

input frame is compared to this representation. The pixel-wise mismatch is computed

between the current image and the background representation, which is thresholded

afterwards, and the object pixels in the input image are extracted.

However, it must be noted that our approach has an advantage over existing back-

ground subtraction techniques to include the object color distribution. This property

allows us to obtain better wood detection. Unlike the previous approach which uses bi-
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nary masks, we introduce probability maps (with values ranging from 0 to 1) then can be

combined by multiplication. This allows the thresholding step to be pushed back at the

end of the process, which is theoretically most robust than applying several thresholds.

In the following paragraphs, we present object detection method as Bayesian estimation

problem.

Formally, the goal of video segmentation is to create a foreground image F (t) for

each image I(t) at time t. Current image is denoted by I(t), where I(x, t) denotes the

color of a single spatiotemporal pixel (x, t). A pixel x in F (t) is labeled either 0 or

1 according to its belonging to background or to foreground respectively. Notice that

at time t, in addition to the current image I(t), the sets of previous images I(t− 1) =

{I(i)}1≤i≤t−1 and segmentations F(t− 1) = {F (i)}1≤i≤t−1 are available. General pixel-

wise foreground image segmentation at time t can be formulated by thresholding the

following a posteriori probability at each pixel x [Li et al., 2004]:

P(F (x, t)|I(x, t), I(t− 1), F(t− 1)) > s′ (2.7)

This probability accounts for the temporal consistency of image and segmentation. In

a very general setting, the a posteriori probability is conditioned on the entire previous

images and segmentations. Using Bayes’ rule, we can thus write

P(F (x, t)|I(x, t), I(t− 1), F(t− 1))

=
P(I(x, t)|I(t− 1),F (x, t), F(t− 1))P(F (x, t)|I(t− 1), F(t− 1))

P(I(x, t)|I(t− 1), F(t− 1))

We can ignore denominator as it is independent of F (t), so the segmentation process

can be written as follows:

P(I(x, t)|F (x, t), I(t− 1), F(t− 1))
︸ ︷︷ ︸

Image term

P(F (x, t)|I(t− 1), F(t− 1))
︸ ︷︷ ︸

Prior term

> s (2.8)

The image term (or image model) is the likelihood that the pixel x has intensity value in

image I conditioned on the fact that it belongs to foreground. This is related to intensity

or color distribution inside the objects or background. The prior term in Eq. 2.8 is

the probability of a pixel x to belong to an object, knowing the previous images and

segmentations, independently of the current image.

In the following, the image term will be denoted by Pimage(x, t) and the prior term
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by Pmov(x, t). The combination will be denoted by Pobj(x, t), it can be expressed as:

Pobj(x, t) = Pimage(x, t) · Pmov(x, t)

The general term Pimage(x, t) can be a probabilistic representation of foreground or

background. In this chapter, we suppose a probabilistic representation of foreground

whereas in chapter 3, we explain a modified GMM method as an image model and in-

tegrate it with motion model for object detection. We do not consider Pmov(x, t), it will

be studied in chapter 3.

2.4 Image model for wood

In section 2.2, we have proposed a naïve approach for wood detection [Ali and Tougne,

2009]. It gives satisfactory segmentation results, however, final segmented images con-

tain some false detected water waves. Therefore, to reduce false detections and to im-

prove wood segmentation, we develop a probability based method [Ali et al., 2011].

We refer to Eq. 2.8 in which the image model is expressed as:

Pimage(x, t) = P(I(x, t)|F (x, t), I(t− 1), F(t− 1)) (2.9)

This is a general expression for the image model. This represents the likelihood that

the pixel x has intensity or color value in current image I conditioned on the fact that

it belongs to the foreground. This is related to intensity or color distribution inside the

objects or background.

In wood detection application, image model uses wood (i.e. foreground) intensity

distribution. Thus, image model for wood is a pixel-based probabilistic approach based

on intensity and its temporal variation, which can be expressed as:

Pimage(x, t) = Pi(x, t).Pt(x, t) (2.10)

The intensity probability map Pi(x, t) is the likelihood of the pixel to be wood with

respect to its brightness, whereas the temporal probability map Pt(x, t) contains this

information with respect to the brightness temporal variations at each pixel level. Basi-

cally, we rely on two observations: wood is darker than water and undergoes permanent

motion. We explain the assumptions based on our observations on river videos for im-

age model in the following paragraphs.
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Figure 2.7: Floating wood piece; (a) Zoomed portion of wood pixels and corresponding
intensity histogram highlighted by red, (b) green and (c) blue rectangle.

2.4.1 Intensity probability map

In section 2.1.2, we summarized constraints involved in the application. We observe in

the videos that the brightness of floating wood pieces is lower than water, even under

the shadows of surrounding trees. Moreover, it does not change significantly in the

presence of sunlight. Figure 2.7 shows intensity histograms of wood pieces as an exam-

ple. It seems relevant to approximate the intensity distribution of wood by a Gaussian

distribution with a fixed mean and variance (i.e. µwood, σ2
wood). The probability of the

current pixel to belong to wood with respect to its intensity is:

Pi(x, t) = N (I(x, t), µwood, σ2
wood)

N (I(x, t), µwood, σ2
wood) =

1
√

2πσ2
wood

exp

(

− (I(x, t)− µwood)
2

2σ2
wood

)

(2.11)

where N is a Gaussian probability density function. To find µwood and σ2
wood, we led

experiments on different wood pieces under various lighting conditions, which is dis-

cussed in section 2.4.4. Figure 2.8 shows a few examples of intensity probability maps

where the [0, 1] range is represented with a color map. In the presence of cast shadows

of surrounding trees, the intensity probability map Pi has high values in wood regions

but also in undesirable shadowed regions.
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Figure 2.8: (a) Few wood images from river videos with different lighting conditions
with corresponding: (b) Intensity probability map Pi, (c) zoomed wood regions, (d)
Intensity probability map Pi of zoomed wood regions.

2.4.2 Temporal probability map

Wood cannot be extracted relying solely on intensity considerations. Indeed, some ob-

jects like bridge pillars or cast shadows of surrounding trees have the same intensity

as wood. To remove these static objects, we rely on pixel-wise temporal variations of

intensity.

Inter-frame difference was already used in our previous naïve approach discussed

in section 2.2. The temporal probability map is an improvement of the difference mask

(dT). It is partially based on the normalized inter-frame difference ∆t I expressed in

Eq.2.4, which takes its values within range [−1, 1]. Hard thresholding the absolute

inter-frame difference |∆t I| has been extensively tested for object detection. By nature,

this technique only detects new object pixels and inevitably removes object areas that

overlap in time. This was the case with naïve approach with big wood pieces. Our tem-

poral probability Pt is defined in order to avoid this drawback. We design it according

to the observation that, when wood passes through a given pixel, ∆t I dips to a negative
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Figure 2.9: Representation of updating function H(∆t I).

value and then to a positive value afterwards. Moreover, Pt should naturally remain

constant if ∆t I = 0. This is achieved using a recursive definition in time:

Pt(x, t) = Pt(x, t− 1) + H(∆t I(x, t)) (2.12)

where H ∈ [−1, 1] is an updating function, mapping the inter-frame difference to the

amount of changes in the temporal probability. We express it in accordance with the

considerations previously addressed. To handle noise and ignore insignificant inten-

sity variations due to the non-uniformity of wood or water, H(∆t I) should be null

for relatively small values of |∆t I|. It allows to handle slow illumination variations

as well. Beyond certain threshold value, H should increase or decrease as ∆t I gets sig-

nificantly negative or positive, respectively. Instead of using hard thresholding which

would cause H to jump suddenly from 0 to 1 or −1, we use a soft approach less critical

with respect to the choice of threshold parameters leading to the following piecewise

linear definition:

H(∆t I) =







1 if ∆t I ∈ [−1,−τ − B
2 ]

α∆t I + β if ∆t I ∈ [−τ − B
2 ,−τ + B

2 ]

0 if ∆t I ∈ [−τ + B
2 , τ − B

2 ]

α∆t I − β if ∆t I ∈ [τ − B
2 , τ + B

2 ]

−1 if ∆t I ∈ [τ + B
2 , 1]

(2.13)

where α = −1
B and β = 1

2 − τ
B . Definition of H in turns requires a threshold τ and

transition length B which are illustrated in the plot of Figure 2.9. The choice of τ and

B is discussed in section 2.4.4. It should be noted that Pt(x, t) in Eq. 2.12 is truncated

between 0 and 1 afterwards to remain a probability. In the first frame, we set Pt(x, 1)

equals to 0 everywhere, as it is very unlikely that wood pieces appear at initial time.

Temporal probability Pt is non-null only if temporal brightness variation is negative

enough, i.e. if a pixel gets significantly darker or has the same brightness as it had in the
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Figure 2.10: (a) Few wood images from river videos with different climatic conditions
with corresponding: (b) Temporal probability map Pt, (c) zoomed wood regions, (d)
Temporal probability map Pt of zoomed wood regions.

previous frame. It helps in removing stationary objects in the scene (e.g. pillars of bridge)

but preserves big objects. Figure 2.10 shows few examples of temporal probability maps.

It highlights the fact that Pt has higher values for the wood pieces than for water or static

areas. Hence, it enables to detect moving wood objects and to eliminate many water

waves and cast shadows effects.

2.4.3 Combination of intensity and temporal probability maps

Since we expect wood to be simultaneously dark and under motion, wood pixels should

have both high intensity and temporal probabilities, hence it is relevant to multiply the

two probability maps. According to Eq. 2.10, we ignore prior term here and the equation

becomes

Pobj(x, t) = Pimage(x, t) = Pi(x, t) · Pt(x, t)
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Figure 2.11: An example of wood piece under cast shadows in sunlight with corre-
sponding, intensity probability map Pi(t), temporal probability map Pt(t), (c) image
model Pimage(t) and resulting foreground image F (t).

and the foreground image F is obtained by simple thresholding the joint probability

map:

F (x, t) =







1 if Pimage(x, t) ≥ GTh

0 otherwise
(2.14)

which is illustrated in Figure 2.11. The image probability Pimage is high for wood pixels

but also unfortunately for some pixels located on dark waves. Hence, global thresh-

old GTh should be chosen in order to limit the number of false detections without re-

moving significant parts of real wood pieces (choice of GTh is discussed in section 2.4.4).

This example of final foreground image, clearly indicates that the algorithm can detect

moving wood pieces even under difficult weather conditions (with a lots of shadows for
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example).

2.4.4 Selection of parameters

The computation of the two probability maps (i.e. Pi and Pt) involves some parameters

and a final threshold value for final foreground extraction. These parameters are se-

lected in a way to obtain best wood segmentation in different weather conditions and at

different day time.

First, we explain the parameters for computing intensity probability map Pi. For this

purpose, we extract small and large wood pieces under different weather conditions.

An example of floating wood divided in three portions highlighted in different colors

is shown in Figure 2.7. We experimentally fix µwood = 55 and σ2
wood = 225 which are

optimal values for wood detection.

The computation of the temporal probability involves a threshold τ and the transi-

tion length B, and extraction of final foreground image requires a global threshold GTh.

Parameter tuning is performed through a brute-force approach, by maximizing the over-

lap between the foreground image generated with current parameter values on one

hand and ground truth segmentations on the other hand, on a training dataset (de-

scribed in section 2.5.1). The overlap is measured using the Dice similarity measure

S, which is a commonly used to evaluate image segmentation quality (see for exam-

ple [Cardenes et al., 2008, Babalola et al., 2008]). It is expressed as

S =
2 | X ∩Y |
| X | + | Y | (2.15)

where X is the result of image segmentation and Y is the corresponding ground truth

image. S is equal to 1 when the segmented region and the ground truth region perfectly

overlap, and 0 when they are disjoint.

In the first step, for each parameter, the range of values giving satisfactory results is

coarsely located by successive attempts. We vary the parameters (τ, B, GTh) and com-

pute final foreground image F for each parameter vector value. We determine that

the triplet (τ, B, GTh) leading to the best segmentation is located in range [0.1, 0.4] ×
[0.1, 0.4]× [0.001, 0.02]. Afterwards, all parameter values within these ranges are tested,

with respective steps 0.05, 0.05 and 0.001. The optimal values for these parameters are

τ = 0.3, B = 0.3 and GTh = 0.002. The values are computed for small and big wood

pieces extracted from original river video. Also, we make synthetic videos for parameter

tuning, these videos are explained in the following section. The average Dice value (sum

of individual dice coefficient per image divided by number of images) from entrance to
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exit for both small and big wood pieces is maximal. The segmented image based on in-

tensity and temporal features contains floating wood pieces and also a few undesirable

remaining waves.

2.5 Results and comparison with other methods

We present image segmentation results which are obtained by applying the image model

to synthetic and real videos. In order to show that the image model works equally well

under different weather conditions, different wood objects sizes and either on synthetic

or real videos. Real videos are extracted from MPEG4 compressed stream and from a

monitoring system that is installed on river Ain, France. Video frame size is 640× 480

with frame rate of less than 4 frames per second. The algorithm is tested on an Intel

Core2 Duo 2.66GHz with 4GB RAM running C code.

Existing background modeling methods are also taken into consideration, for com-

parison. We apply three background modeling techniques: Mixture of Gaussians (GMM)

[Stauffer and Grimson, 2000], the Codebook method [Kim et al., 2005] and the VuMeter

method [Goyat et al., 2006].The results of these algorithms are discussed one by one. The

final segmentation results of these background models are compared with the results of

our image model.

2.5.1 Generation of synthetic videos

The image model is tested on synthetic videos before applying on real videos. The

reason for this experimentation is to find out optimal values for the model parameters

and final threshold GTh. We choose two wood pieces of small and large sizes extracted

from original video. These objects are moved synthetically over real background images.

Similarly, the background images for these videos represent two types of scenarios.

In the first type, small and large wood are synthetically moved in an image sequence

without sunlight. In the second type of scenario, these wood objects are moved in

the image sequence with sunlight. Objects are rotated and translated in a way to best

approximate the motion encountered in real videos.

Figure 2.12 and 2.13 show scenarios of big and small wood pieces, respectively, in a

synthetic video. For each scenario, translation alone and translation plus rotation were

considered. So, there are 8 synthetic videos on which we perform our experiments.
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Big wood piece without sunlight Zoomed wood region

Input

Ground truth

Our results
Big wood piece in sunlight Zoomed wood region

Input

Ground truth

Our results

Figure 2.12: Synthetic video images of a big floating wood Top subfigure: without sun-
light, Bottom subfigure: with sunlight, corresponding ground truth images and results of
image model. Third column: wood regions are zoomed to show wood segmentation.
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Small wood piece without sunlight Zoomed wood region

Input

Ground truth

Our results
Small wood piece in sunlight Zoomed wood region

Input

Ground truth

Our results

Figure 2.13: Synthetic video images of a small floating wood Top subfigure: without
sunlight, Bottom subfigure: with sunlight, corresponding ground truth images and results
of image model. Third column: wood region is zoomed to show wood segmentation.
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We show here two images from the 15 images in total per object (i.e. from entrance

to exit of wood object from the scene). We show the results of our image model and

corresponding ground truth images. We can notice that the image model is equally ap-

plicable for small and big wood objects with different background conditions. Moreover,

the wood regions are zoomed in the Figure to highlight the image segmentation results

for the corresponding wood objects.

The ground truth images are available for synthetic moving objects. Therefore, these

are used to evaluate the image segmentation results. The Dice similarity measure is

computed for each image. The parameters are so selected that produce high similarity

values.

2.5.2 Comparison with the GMM method

River videos are subjected to classical background modeling techniques for comparison

with our image model. The first background model we apply on the river videos is the

Gaussian Mixture Models (GMM) algorithm of [Stauffer and Grimson, 2000] presented

section 1.1.2. The model parameters are selected in order to obtain less number of water

waves in the output images. To achieve this, we select a relatively high learning rate

α = 0.05 and K = 5 which refers to the number of Gaussians per pixel (as explained in

section 1.1.2.1). For visual comparison, the resulting foreground images obtained with

GMM for few wood objects are shown in the Figures 2.17(b) and 2.18(b).

2.5.3 Comparison with the Codebook method

We also compare with the codebook algorithm developed by [Kim et al., 2005]. The

method is explained in section 1.1.2.2. For the learning period, we use the first 100

video frames with no wood objects. Minimum and maximum brightness assigned to the

codewords are Imin = 10 and Imax = 50 respectively. Maximum negative run length λ =

τ/2, with τ = 500 for river video experiments. These parameters are tuned heuristically

in order to minimize false detection.

A few examples of the foreground images obtained with this method are presented

in Figures 2.17(c) and 2.18(c).

2.5.4 Comparison with the VuMeter method

Third background model that we experiment on river videos is the VuMeter (VM) back-

ground model proposed by [Goyat et al., 2006] and described in section 1.1.2.2. Fore-

ground images are shown in Figures 2.17(d) and 2.18(d). The parameters are tuned here
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as well to minimize the false detection. The learning rate in the Vumeter algorithm is

set to α = 0.005 and the threshold is T = 0.1 for river videos. However, the method also

fails to suppress false detection.

2.5.5 Qualitative evaluation

Final foreground results obtained with our image model (IM) are shown in the last rows

of Figures 2.17 and 2.18. The image model generates much less false detection than all

background models. One of the reasons of good wood segmentation with image model

is that we use a fixed wood intensity distribution in the wood image model. This is a

strong prior information which is not used in the GMM, the codebook and the VuMeter.

Therefore, these background models detect a lot of water waves.

2.5.6 Quantitative evaluation

We have tested the various algorithms both on synthetic and real videos.

Synthetic video: We compare the wood segmentation results of our method with GMM

method on synthetic videos. In the synthetic videos, there are two wood pieces, shown

in Figure 2.12 and 2.13. We plot the Dice coefficient values for whole image sequences

of big and small wood pieces of Figure 2.14 and 2.15, as a function of time.

As can be seen in Figure 2.14 and 2.15, the GMM leads to less accurate segmentation

than our method.

GMM big object

in sunlight

GMM big object

without sunlight

IM big object

in sunlight

IM big object

without sunlight

Figure 2.14: Comparison of Dice similarity coefficient per frame for image segmentation
results of Mixture of Gaussian (GMM) and our Image Model (IM) for synthetic video of
big object shown in Figure 2.12.
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GMM small object

in sunlight

GMM small object

without sunlight

IM small object

in sunlight

IM small object

without sunlight

Figure 2.15: Comparison of Dice similarity coefficient per frame for image segmentation
results of Mixture of Gaussian (GMM) and our Image Model (IM) for synthetic video of
small object shown in Figure 2.13.

On the other hand, the Dice similarity values for our image model (IM) results are

high. Average Dices value for big object in all image sequences is 0.87 and for small ob-

ject, it is 0.83. The results clearly indicate the utility of image model in wood detection.

Real videos: The quantitative comparison of results between different existing back-

ground methods and our image model is performed by using the Dice similarity mea-

sure. We manually generated ground truth images for the image sequence containing

the wood objects which are shown in Figure 2.16. The wood object was marked by hand

in each of these frames. We show six wood pieces which appear in different number of

frames during their passage in videos. Dice coefficient values per frame are also plotted.

We also give the minimum, maximum and average Dice values for each the correspond-

ing methods. Higher values of Dice coefficient signify the good segmentation results.

We can see that with image model both small and large wood pieces we obtain good

segmentation which is reflected in high Dice values. Our image model significantly im-

proves segmentation accuracy over other existing approaches. In the last wood example,

image model results are lower than GMM and VueMeter in few frames. It is due to wa-

ter waves detection with similar intensity values. These results are improved with the

use of motion model which is explained in chapter 3 (see Figure 3.11).

In most of the circumstances, wood objects are submerged in water due to their

weight. Therefore, most of wood pieces are partially occluded in these videos. Therefore,

the proposed method must also detect small wood pieces equally well. Small wood

pieces are more prone to be confused with waves. The separation between the two is
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necessary for successful wood tracking and counting (see appendix A). In this way, our

image model produces promising results. Even though the results of our Image Model

are better than existing background modeling techniques, there are a few mis-detected

pixels and a few water waves present in the final foreground image. The water waves

appear randomly. This is the reason why we decide to use wood motion information to

segregate water and wood movements and improve wood detection.

2.6 Conclusion

In this chapter, we have presented an image segmentation model dedicated to wood

detection. Wood pieces are often submerged into water and the wood above the water

surface usually owns small apparent area. These small apparent wood pieces along with

large pieces should be detected correctly. We proposed two methods for this purpose,

based on the observations that wood is darker than water and in continuous motion. In

the first approach, we used two image segmentation techniques applied on each incom-

ing frame and combined them to extract foreground objects. In the second method, we

proposed a probabilistic image model for wood segmentation. The results of classical

background models are compared with our method. We showed that three background

models namely, the Gaussian Mixture Models (GMM), the Codebook method (CB) and

the VuMeter method (VM) were not able to produce good object detection rates. The re-

sults are evaluated both qualitatively and quantitatively using Dice similarity measure.

Despite of better results, there are few mis-detected pixels with image model. Also, few

water waves are still present in the results. So, to overcome these difficulties we explore

the possibility of incorporating an object motion model based on prior object motion

knowledge for their detection.
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Figure 2.16: Comparison of Dice coefficient per frame for image segmentation results
obtained with Mixture of Gaussian (GMM), CodeBook (CB), VuMeter (VM) and our
Image model (IM) for the corresponding wood objects.



62 Chapter 2. Color based object detection

(a) Input

(b) GMM

(c) CB

(d) VM

(e) NM

(f) IM

Figure 2.17: (a) Original images with corresponding results of, (b) Mixture of Gaussian
(GMM), (c) Codebook (CB), (d) VuMeter (VM), (e) Naïve Method (NM) and (f) our Image
Model (IM).
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(a) Input

(b) GMM

(c) CB

(d) VM

(e) NM

(f) IM

Figure 2.18: (a) Original images with corresponding results of, (b) Mixture of Gaussian
(GMM), (c) Codebook (CB), (d) VuMeter (VM), (e) Naïve Method (NM) and (f) our Image
Model (IM).
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As presented in section 1.3, there are many object detection algorithms in the literature

that use motion characteristics. Statistical motion models were proposed relying on the

motion information. Motion of objects can be either estimated, e.g. relying on the optical

flow, or constrained, in order to help detection. In some applications, prior knowledge

about the expected motion of objects is available. We propose a model that uses such

knowledge that can be combined with the image-based object detection algorithm. We

use it as an additional information along with color information for object detection.

The inclusion of a motion model in the object detection process aims to improve the

distinction between moving objects and backgrounds.

3.1 Prior knowledge about object motion

Object motion knowledge is an application-dependent entity. It is related to the way

objects move in the monitored scene. More precisely, in a monitoring system where the

position of the camera is known and the usual trajectories in the actual 3D space are

known as well, one may have a strong prior knowledge about the apparent trajectories

of expected objects in the image plane. For example, when one wants to detect luggages

moving on conveyor belts in airports, luggages move with speed and towards a direction

that may be known. Similarly, during normal traffic flow on the road, vehicles motion

can be known a priori. Floating objects in the river water is another example of object

motion where object motion knowledge can be obtained. In Figure 3.1, we show a

representative image of each of these situations. It can be noticed that in the floating

objects in rivers, there is a global motion in the scene (for example floating objects and

water move with same speed and in the same direction, here from the right to the left).

We are interested in global object motion, rather than pixel-wise motions. In section

2.3, we have introduced the general probabilistic object detection method, which is com-

posed of two terms (i.e. image and prior terms). The current chapter is devoted to an im-

Figure 3.1: Luggage on conveyor belt, a moving car on road and a floating bottle in river
are few examples in which prior object motion can be obtained.
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(a) (b)

Input images Noisy foreground image

(c) (d)

Figure 3.2: (a) An image of floating bottle in river, (b) the GMM [Stauffer and Grimson,
2000], (c) a wood object in river, (d) result of wood image model without motion model.

plementation of the prior term. We choose object motion knowledge to be modeled and

used as prior term. Along with color features, motion features of objects can also be used

for their detection in the videos. In aquatic environment, for example, the perturbation

in the background is very large. Due to these perturbations, foreground/background

scene segmentation is very difficult. Therefore, in order to improve background subtrac-

tion and to decrease the number of false positives due to misclassified pixels, the use of

prior knowledge about motion when available, seems relevant. We propose a method to

model the prior object motion knowledge. We suppose that motion information is avail-

able or can be learned during a training period. The prior motion model is designed so

that it can be integrated into various background subtraction methods. In Figure 3.2(b)

and (d), we present results of classic color-based subtraction methods, which contain

noise. We will explain that the results can be improved using prior motion knowledge

in the following sections. The detailed implementation of motion model integration into

these two image models is explained in the sections 3.4 and 3.5.

Object displacement in the image sequence depends on object speed in real world,

but also on video frame rate. Frame rate in standard videos is 25 frames per second (fps),

in such videos, object displacement is of a few pixels between two consecutive frames,

as reported in many articles, for example in [Elgammal and Davis, 2001]. However, in
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low frame rate videos, (≤ 4 fps), object displacements are large.

Learning object motion in training period is one of the methods by which one can ac-

quire object motion knowledge. The variations should be taken into consideration by the

motion model that come from the object sizes, speed and video frame rate. We assume

that between two consecutive frames, object motion can be approximately considered as

rigid motion.

3.2 Prior motion knowledge and motion estimation

We explain the difference between prior motion knowledge and motion estimation in

video analysis. To elaborate the difference, we refer to section 2.3, where we have in-

troduced the general point of view of video segmentation. There are two probability

terms expressed in Eq. 2.8 (i.e. image and prior) for each pixel. On one hand, the image

term (or image model) is the likelihood that pixel x has intensity/color value in image I

conditioned on the fact that it belongs to foreground. On the other hand, the prior

term Pmov(x, t) is the probability of pixel x to belong to an object, knowing the previous

images and segmentations, independently of the current image.

Some of previous work, namely optical flow based methods [Wolf and Jolion, 2010,

Hosaka et al., 2011], use object motion estimation based on the color gradients of moving

objects. The estimation is strictly based on object colors. In this way, motion estimation

depends on the current image and does not use explicitly object motion knowledge.

Conversely, in our method, we treat the color based image model and object motion

separately. In the next section, we define and explain our motion model.

3.3 Rigid motion model

We assume that the objects move continuously and possess a rigid motion. As we

consider object motion between two frames which are successive in time, therefore, the

rigid motion assumption holds. In the following paragraphs we explain our motion

model in detail.

We recall the probabilistic object detection from section 2.3 as:

Pobj(x, t) = Pimage(x, t).Pmov(x, t) (3.1)

where Pimage(x, t) is the image model and Pmov(x, t) is the prior term. It is expressed in
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Eq. 2.8 as:

Pmov(x, t) = P(F (x, t)|I(t− 1), F(t− 1))

which is the general expression for the prior term. It indicates that the current pixel

state in foreground F (x, t) is conditioned on the previous history of images I(t− 1) and

previous foreground segmentations F(t− 1). We can notice that in Eq. 3.1, if the prior

term is equal for all pixels of the current image then final image segmentation would

be based only on the local data term (i.e. image term). Otherwise, the prior term will

influence the final pixel classification.

We propose a model for the prior term, which is based on the available knowledge

about possible object displacements, regardless of previous image history. It may be

regarded as first-order in time, as we keep the foreground data from the previous frame

only. Instead of reasoning at a pixel level, we consider a higher level approach where

the state of the current pixel x is conditioned on the entire previous foreground image

F (t− 1). It enables us to model global motion of entire objects rather than local motion

of pixels considered independently. Thus, in our case, the prior term becomes:

Pmov(x, t) = P(F (x, t)|F (t− 1)) (3.2)

It is important to mention that each application possesses its own object motion data

sets. These data sets may be obtained from the objects motion characteristics in context.

We consider a probabilistic motion model, assuming that the probability function of

object transformation (i.e. both rotational and translational motion) is known a priori.

3.3.1 Definition of motion model

In our case, an object is a connected component of foreground pixels (using 4−connexity).

Let C(t− 1) be the set of connected components in the foreground image at time t− 1.

Every pixel x in one of this connected components verifies F (x, t− 1) = 1. Every con-

nected component ψ from the set has a mass center (or center of gravity), cψ, which can

be expressed as:

cψ =
1
|ψ| ∑

x∈ψ

x

Object ψ undergoes a rigid transformation made up of translation d and rotation of an

angle θ. Let Tθ,c,d be the rigid transformation of a pixel, with translation vector d and
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rotation defined by center c and angle θ:

Tθ,c,d(x) = Rθ(x− c) + c + d (3.3)

where Rθ is the rotation matrix,

Rθ =




cos θ − sin θ

sin θ cos θ





The center of gravity is chosen as the center of rotation, hence the object transformation

is:

Tθ,d(ψ) =
{

Tθ,cψ ,d(x)|x ∈ ψ
}

(3.4)

Now, we suppose that the object transformation Tθ,d follows a probability density func-

tion Ptrans(θ, d) which is learned from a training data set (during the learning period).

The probability density function adds flexibility to the object detection method.

The objects extracted at time t − 1 help in foreground object extraction at time t.

By this we mean that if an object is at some location in the scene at previous time

t − 1 then this object will transform/move spatially to a new location in the forward

direction of motion with time. The set of objects are transformed according to Eq. 3.4.

The probability that current pixel belongs to a moving object depends on the object

transformation probability Ptrans(θ, d) (i.e. object speed and angle of rotation with respect

to its previous location in the foreground image at time t − 1). In other terms, for a

given pixel x there exist many pixels (x′, t− 1) that may be transformed into (x, t) with

a given probability. Therefore, the definition of our prior object motion knowledge can

be expressed by the following equation:

Pmov(x, t) = ∑
ψ∈C(t−1)

∑
x′∈ψ

∑
{(θ,d)|Tθ,c,d(x′)=x}

Ptrans(θ, d) (3.5)

This can be applied to moving objects with arbitrary probability function Ptrans(θ, d).

3.3.2 Implementation of motion model

Moving object probability for the current pixel x is given by Eq. 3.5. As explained earlier,

object motion can have an arbitrary probability function Ptrans(θ, d). In the current im-

plementation, we assume object rotation and translation to be statistically independent.

Therefore, the object transformation probability can be simplified to:
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Algorithm 1 Computation of prior motion probability Pmov

Input: F (t− 1), µθ , σθ , µd, Σd
Output: Pmov(t)

Extract set of connected components C(t− 1)
for all x ∈ image domain I do

Pmov(x, t)← 0
end for

for all ψ ∈ C(t− 1) do

Compute mass center cψ

for all x ∈ ψ do

for all µθ − 3σθ ≤ θ ≤ µθ + 3σθ do

for all d such that
√

(d− µd)
T

Σ−1
d (d− µd) ≤ 3 do

x′ ← Rθ(x− cψ) + cψ + d

Pmov(x′, t)← Pmov(x′, t) + Ptrans(θ, d)
end for

end for

end for

end for

Ptrans(θ, d) = Protation(θ).Ptranslation(d) (3.6)

Ptranslation(d) is the probability of object translation learned from objects motion and we

choose to model it with 2D Gaussian N (µd, Σd).

Protation(θ) is the object rotational probability with prevision of object rotation in

both the directions (i.e. clock-wise and counter clock-wise). We also model the rotation

probability with a Gaussian N (µθ , σθ).

Algorithm 1 outlines the process of computing the probability Pmov(x, t) for all pixels

at time t. The algorithm shows that we take the foreground image F at time t − 1

as an input and compute the probability Pmov(x, t) at every pixel using object motion

1.0

0.8

0.6

0.4

0.2

F (t− 1) Pmov(t)

Figure 3.3: Example of Pmov(t) computation with µθ = π/32, σθ = π/16,
µd = [48.37 ; 5.6] and Σd = [511.71 , − 58.21 ; − 58.21 , 35.43].
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knowledge Ptrans(θ, d). The probabilities are actually accumulated into Pmov(x, t). The

contributions of objects are summed up. In Figure 3.3, we show an example of prior

motion probability map, resulting from four objects including a triangle, an ellipse, a

horizontal line and a slanted thick line, which represent the foreground image F (t− 1).

We can see that Pmov(x, t) has higher values for the expected object locations in the

image. It must be noted that at time t = 0, we initialize Pmov(x, t) = 0.5 for all pixels.

Object motion learning is an off-line process and is done once for a given applica-

tion. Details of the process of learning object motion and all the parameters (i.e. µd,

Σd, µθ , σθ) involved in the process are discussed for the corresponding applications in

section 3.5.

3.3.3 Combination of motion model and image model

In section 2.3, we have presented object detection methodology. We have discussed

that we combine motion model and image model for object detection. Eq. 3.1 states that

Pmov(x, t) is combined with image term Pimage(x, t). A pixel of current image is classified

as the foreground pixel if its probability is above a threshold s, and we can write:

F (x, t) =







1 if Pobj(x, t) ≥ s

0 otherwise
(3.7)

The idea is to reduce the number of missclassified pixels considering only Pimage(x, t).

Thus, if an isolated pixel is misclassified in the previous foreground image F (t − 1),

then its contribution at time t will not be correlated with its neighboring pixels and will

generate a small probability Pobj(x, t) at time t. Consequently, with low probability, the

corresponding pixel would not be considered as an object pixel.

For background subtraction, we can integrate our motion model with different im-

age models. We employ two image models in our work to assess the efficiency of the

motion model. First, we use a modified GMM model as an image model. In the second

application, we use an image model specialized to wood detection and integrate it with

motion model. In following sections, we present the combination of these two image

models with motion model and show the contribution of our motion model.
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3.4 Modified GMM as image model

The GMM-based background modeling method represents the background likelihood.

In order to integrate such model into our framework, the image term Pimage(x, t) of

Eq. 2.8 can be expressed as:

Pimage(x, t) = 1− PBG(x, t) (3.8)

where PBG(x, t) is the background likelihood. This corresponds to the probability that

pixel x belongs to background given its color, with respect to the current local back-

ground model at x. Basically, this background reference is represented by a Gaussian

Mixture Model (GMM). In image processing and computer vision literature, the so-

called GMM often refers to the background subtraction algorithm proposed by

[Stauffer and Grimson, 2000]. Strictly speaking, the GMM is a parametric statistical

model to represent multimodal probability density functions. Stauffer and Grimson’s

algorithm is actually based on this representation but also holds the on-line update of

background model as well as the detection process.

Our use of the GMM differs from [Stauffer and Grimson, 2000] for several reasons. It

is important to note that the pixel classification in our object detection method is based

not only on an image model but also on the aforementioned motion model. The detec-

tion step is performed through the implementation of Eq. 2.8. Secondly, experiments are

led on image sequences that do not lend themselves to background on-line updating.

Instead, we separate the learning and detection phases. In the latter, the background

model is kept fixed. Finally, the computation of background likelihood is more general

than in [Stauffer and Grimson, 2000], as we do not assume color components to be mu-

tually independent. The consequences of this generalization will be clarified after the

definition of the background likelihood in next paragraphs.

In a very general setting, each spatio-temporal pixel (x, t) holds a set of K(x, t)

weighted Gaussian functions:

{(ωi(x, t), µi(x, t), Σi(x, t))}1≤i≤K(x,t)

Each Gaussian is assumed to represent one significant color belonging to the background

representation of current pixel. The weight parameters ωi represent the time proportion

that those colors stay in the scene. µi(x, t) and Σi(x, t) are the mean value and covariance

matrix of the ith Gaussian in the mixture.

The Gaussian mixture model algorithm of [Stauffer and Grimson, 2000] is a simpli-
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fication of the above general pixel-wise GMM. We have explained in section 1.1.2 that

they assume independence between red, green and blue color components. Similarly,

the variances of the three color components are assumed to possess the same value (σ2
i )

for a given pixel. Therefore, the color covariance matrix is essentially transformed to

(σ2
i I, I is identity matrix), in their approach (refer to Eq. 1.6). Therefore, the background

likelihood in their case becomes:

Pbackground(I(x, t), µ, Σ) =
K(x,t)

∑
i=1



ωi(x, t)
D

∏
d=1

1
√

2πσ2
i

e
− 1

2σ2
i
(Id(x,t)−µid(x,t))





Assuming independence between color components allows not to invert the covariance

matrix to compute the probability. Conversely, we do not assume the three color chan-

nels to be independent. Similarly, we do not assume same variance values for each color

channel per pixel. Notice that, in case of non-updated background, covariance matrices

need to be inverted only once. The background likelihood of color I(x, t) is obtained by

summation of Gaussian probabilities:

PBG(x, t) =
K(x,t)

∑
i=1

ωi(x, t)N (I(x, t), µi(x, t), Σi(x, t))

In our framework, this general model is simplified to some extent. We keep the same

number of Gaussians per pixel, so that K is no longer a function of (x, t). Moreover,

the background mixture model is learned offline and is not updated with time. Hence,

unlike in [Stauffer and Grimson, 2000], Gaussians functions and associated weights do

not vary with respect to time, which gives the following GMM:

{(ωi(x), µi(x), Σi(x))}1≤i≤K

The adequation between a tested pixel value and the model is measured for the best

matching Gaussian. Thus, the likelihood is actually computed as follows:

PBG(x, t) = max
1≤i≤K

ωi(x)N (I(x, t), µi(x), Σi(x)) (3.9)

Using Eq. 3.9, the image term is computed according to Eq. 3.8 and multiplied by

Pmov(x, t), so that the modified GMM is integrated with our motion model.
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Computation of Pimage:

We perform background learning and detection in two steps. We summarize back-

ground learning step modifications in view of [Stauffer and Grimson, 2000] method as

follows:

• We take the current history of the values of red, green and blue channels of each

pixel for n consecutive frames containing only background. We consider p × p

neighborhoods for each pixel, where p is a small number. In the neighborhoods, we

compute the parameters µ and Σ of K gaussian distributions per pixel by running

the Expectation-Maximization algorithm.

• When background learning is completed, we perform object detection. During

detection phase, every new pixel value is checked against existing model com-

ponents. For a given pixel, the best matching gaussian is determined and the

background likelihood is computed using Eq. 3.9. Then, we compute Pimage by

using Eq. 3.8.

3.5 Results of motion model combined with image models

For each application, we obtain object motion knowledge from a training data set, in

which motion model parameters are estimated. We combine the motion model based

on object knowledge a priori with two image models. In the first subsection, we present

the combination with the modified GMM method as an image model. In the second

subsection, we use the image model specialized to wood, described in section 2.4. We

integrate the image model with corresponding motion model for wood detection. Image

segmentation results are evaluated both qualitatively and quantitatively.

3.5.1 Combination with modified GMM

We apply modified GMM as an image model to illustrate the integration of our motion

model into a background subtraction technique. We apply our method to detect object

in color videos.

Application to synthetic data:

A synthetic video is made to illustrate the method of incorporation of motion model into

background subtraction algorithm. In this video, a yellow square block moves from left

to right in the image plane as shown in Figure 3.4(a). The background image is divided
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Figure 3.4: (a) Synthetic test images with a moving yellow square from left to right,
background colors change with time in three areas with corresponding: (b) results of
Stuaffer and Grimson’s algorithm, (c) probability Pimage(t) and (d) F (t) with (modified
GMM + motion model).

into four regions. Three parts of these regions undergo progressive change of color with

time. The sizes of these subregions are equal to the size of the moving block. Moreover,

the square block moves over the regions of changing background in the upper part of

the image sequence. The number of Gaussians is set to K = 1 and p = 1 in the modified

GMM. Object motion information Ptrans(θ, d) a priori is available.

As we explained above Pimage(x, t) is the probability of a pixel x to be a foreground

pixel with respect to color. In the case of modified GMM, it is an increasing function

of the dissimilarity between I(x, t) and the background colors µi(x, t). For the moving

block, it has a high value. The probability Pimage has also a high value for background

regions as shown in Figure 3.4(c). Therefore, if we only consider Pimage(t) for object de-

tection, we may also detect the changing background regions as foreground objects. This

happens with background subtraction techniques, based on color only, such as Stauffer

and Grimson’s GMM. In Figure 3.4(b), we show the results obtained with Stauffer and

Grimson’s GMM algorithm also classify changing background regions as foreground.
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Figure 3.5: Dice coefficient per frame of image segmentation results with GMM
[Stauffer and Grimson, 2000] and with (modified GMM + motion model).

In our approach, we compute Pmov(t) and Pimage(t) for each frame. We compute fore-

ground image F (t) by using Eq. 3.7. The segmentation results in Figure 3.4(d) show that

we remove the false detections arising with non-constrained background subtraction. To

give the quantitative analysis for the entire image sequence, we evaluate the image seg-

mentation results by using the Dice similarity measure1, using available ground truth.

The Dice coefficient is computed for GMM segmentation results and our segmentation

results per frame. The comparison is shown in Figure 3.5. The two curves meet at the

point when the moving object exactly overlap the changing background region in the

blue region of synthetic image sequence. The segmentation results computed with in-

corporation of Pmov(t) have higher Dice coefficient measures. We can notice that the

Dice coefficient is below 0.9, which means that we miss a few object pixels, which may

be due to the fact that likelihood values Pobj(x, t) at the edges of the square block are

low, and therefore, truncated when we apply a threshold. The comparison shows that

the incorporation of motion model into background subtraction improves the object seg-

mentation.

1For definition, see section 2.4.4.



3.5. Results of motion model combined with image models 79

Frame t1 Frame t1 − 1 Frame t2 Frame t2 − 1

(a)

(b)

(c)

(d)

Figure 3.6: (a) Two floating objects in river with two consecutive images at different time
instances, (b) foreground images F with p = 1, (c) F with p = 5 pixels, (d) F obtained
with Pmov.

Application to real data:

We perform experiments on river videos which contain floating objects. The background

contains moving vegetation and water ripples. There are also sunlight reflections from

the surface of water which cause uneven brightness. We take 100 consecutive images of

the background only with no floating object in the training period to build background

model.

Learning object motion:

Object motion knowledge is obtained in the application as explained in section 3.1. It is

an off-line process in which, we compute mass centers of moving objects from manually

segmented sequences. Object motion from entrance to exit from the scene is noted in

the training period. In river videos, water flow is from right to left of the image plane.

The objects move in the different areas of the scene. The frame rate in these videos is 25

f ps and therefore object displacement between two frames is relatively small. During

learning the motion model parameters are computed. The parameter values for this

application are: µθ = 0, σθ = 0.150, µd = [−2.37 ; 0.05] and Σd = [1.37 , 0.14 ; 0.14 , 1.43].

We compute Pmov(t) for current image by the method as explained in section 3.3. Then,

Pimage(t) and Pmov(t) for current image are multiplied by using Eq. 3.1. In this way we

get the joint probability Pobj(t), which is higher for moving object pixels. To get a final

foreground image F (t) the joint probability Pobj(t) is thresholded as given by Eq. 3.7.

Pimage for floating objects:

The results obtained from Stauffer and Grimson’s method, which is pixel-based, contain
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a lot of noise. To overcome this problem, our modified GMM model considers a spa-

tial neighborhood around pixels to compute color distribution, rather than pixel alone

(recall that the size of this neighborhood is controlled by parameter p). The number

of Gaussians is set to K = 4 to model background color probability density. In this

neighborhood, the probable colors are the ones which stay longer and more static. This

means that static single colored objects in the scene form tight clusters, whereas moving

ones form wide clusters, due to different reflecting surfaces during motions. We make

p vary from 1 to 9. The results are evaluated by visual inspection. We kept (p = 5) in

our experiments, which leads to the best results. For comparison we show the results

in Figure 3.6. The second row of images in Figure 3.6(b) shows the foreground images

obtained when no spatial neighborhood is taken into account (p = 1). We can notice

the number of false positives due to the dynamic nature of background is high if no

spatial neighborhood is considered. The third row of images in Figure 3.6(c) shows the

foreground images obtained with a spatial neighborhood (p = 5). The number of false

positives is reduced when we take into consideration the neighborhood of each pixel.

We further use this approach with motion model for background subtraction.

Pmov(t) and Pimage(t) are computed for each incoming video frame. In Figure 3.6(d)

we show the final foreground images F (t). The incorporation of Pmov in the object detec-

tion improves significantly the foreground detection. In the process, we do not use any

morphological operations (e.g. dilation or erosion) to minimize noise. The foreground

segmentation is evaluated by visual inspection. In the next section, we show motion

model applied to wood detection.

3.5.2 Combination of motion model with image model for wood

For wood detection, we have presented the image model in section 2.4. We recall the

image model for wood detection:

Pimage(x, t) = Pi(x, t).Pt(x, t)

It consists of intensity and temporal information of moving pixels in the current image

in terms of probabilities. Pi contains likeliness of pixels to be wood with respect to their

brightness. Pt contains likeliness to be wood with respect to brightness variations at

each pixel level.
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Figure 3.7: Two floating wood objects, I(t− 1) and I(t) two consecutive images of wood
objects, corresponding previous foreground images F (t− 1), Pmov(t) have higher values
for corresponding wood pieces with respect to water waves.
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Learning wood motion:

To model the motion of wood pieces, we manually label the mass centers for every

wood piece in each frame in the learning period of river videos. Wood displacements

in successive video frames are noted for every wood piece in the learning period. The

wood objects do not come one by one in the scene and most of the time an image

contains more than one wood piece. We take worst case scenarios of multiple wood

pieces in motion simultaneously.

Wood pieces and water move at the same speed and water flow is largely turbulent

during floods, due to which wood pieces often rotate with water waves. Smaller wood

pieces rotate and translate more in comparison to larger trees. However, the motion

model should be equally applicable in all circumstances. To compute the parameters of

the motion model, we take the image sequences of 200 wood objects with an average of

18 images per wood object (i.e. from entrance to exit of a wood piece). Image sequences

of 3600 frames in total that contain manually labeled wood objects are used for learning

wood motion. These wood objects are from multiple videos and during different times

of the day. After learning, we obtain the parameter values that are µθ = 0, σθ = 0.196,

µd = [48.37 ; 2.95] and Σd = [511.71 , 23.79 ; 23.79 , 14.96]. Learning data suggests that

wood objects have strong translational motion but also have rotational motion. Another

reason for strong translational motion is the low frame rate of river videos, which is

≤ 4fps.

As explained in section 3.3, Pmov(t) is the probability of moving objects in the current

image based on previous foreground F (t − 1) and wood motion knowledge a priori.

Therefore, the expected object pixels must have higher probability values. In the first

example in Figure 3.7, there are two small moving wood objects and water waves that

are present at F (t− 1). The second example in Figure 3.7 shows a small floating wood

piece under the cast shadows of surrounding trees. The probability values Pmov(t) for

all wood objects are higher than the water waves. These examples indicate the fact that

prior wood motion data can help in the distinction of wood objects from water waves

due to their motion characteristics.



3.5. Results of motion model combined with image models 83

Experimental results:

Figure 3.8 and Figure 3.9 show the comparison of results which are computed with-

out and with incorporation of Pmov with the image model. Two consecutive images of

wood objects are shown with a portion of image zoomed near the wood object. The sec-

ond row contains probability Pobj obtained without prior motion model Pmov, for each

object. The third row of images represents the resulting probability Pobj computed with

incorporation of motion model Pmov for each wood object. It is important to mention that

our method works at a low computational cost. Video frames have size 640× 480 and

are extracted from MPEG4-compressed streams tested on an Intel Core2 Duo 2.66GHz

with 4GB RAM running C code. Average execution time for computing all probabilities

in a single frame is 0.35 second.

Results of our method show two major advantages of prior motion knowledge. First,

the probability Pmov has higher values for wood object regions in comparison to water

waves regions, which is clear from the results shown in Figure 3.8 and Figure 3.9. Top

portions of the second row of each wood example show that, when motion prior is

not used, water waves are as prominent as wood objects, in terms of probability. This

increases the difficulty of computation of a global threshold value that should work

in all cases. The drawback is removed with the integration of Pmov which helps in

minimizing false detection of water waves as objects. The second advantage is that our

method improves the foreground object segmentation. Miss rate of wood pixels inside

wood objects is high without Pmov. The wood object regions are zoomed to show this

advantage for all wood objects.

The method improves distinction between water waves and wood objects. The accu-

racy of wood counting, which is based on the image segmentation results, is improved

in this way.
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Figure 3.8: Two floating wood objects, I(t− 1) and I(t) two consecutive images of wood
objects with zoomed wood region, Pobj without Pmov and Pobj with Pmov for correspond-
ing wood pieces.
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Figure 3.9: Two floating wood objects, I(t− 1) and I(t) two consecutive images of wood
objects with zoomed wood region, Pobj without Pmov and Pobj with Pmov for correspond-
ing wood pieces.
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Figure 3.10: Two floating wood objects; object 1 a big trunk of tree and object 2 a small
wood piece. (a) original images with corresponding (b) foreground images F without
Pmov, (c) foreground images F with Pmov and (d) ground truth images.

To evaluate our object segmentation results, we use the Dice coefficient. Further-

more, to make comparative evaluations, we decide to evaluate our final segmentation

results with and without prior motion Pmov in order to show the improvements made

by the incorporation of Pmov. In Figure 3.10, we show two wood pieces with the results

of final segmentation obtained without Pmov and with Pmov. The ground truth images

are obtained manually for each of the wood pieces. Object 1 is made up of two large

wood pieces and object 2 is a small wood piece. Object 2 is rotated with water flow.

We show two instances of images which are 10 frames apart from each other so that

object rotation is clearly visible. Pixel-wise comparison is carried out between ground

truth images and our segmentation results. The Dice coefficient value is computed for

each frame. Figure 3.11 shows Dice coefficient values per frame for object 1 and object

2. Average Dice coefficient values for both objects are high with Pmov in all cases which

shows the superiority of the method.

We have successfully tested our method on several river videos. After wood detection,

we track them in the consecutive frames and count them, which is detailed in appendix
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Figure 3.11: Dice coefficient per frame (a) for object 1 and (b) for object 2 of Figure 3.10.

A).

3.6 Conclusion

In this chapter, we presented object motion based on prior motion knowledge. The

object motion parameters are learned by an off-line process. A parametric motion model

is proposed, which can be integrated with any background subtraction techniques. We

proposed to use motion model jointly with color based image model for object detection.

We used two different image models in this chapter. The first one is a modified GMM

method. The fusion of modified GMM with motion model produces very good object

detection rate in moving background. Similarly, another image model specialized to
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wood is used with motion model combinedly to extract wood in the river videos. The

results are compared before and after the integration of motion model. We evaluate

the segmentation results by using Dice similarity measure. The results indicate the

improvements in the object segmentation are twofolds i.e. not only false detection of

background pixels is reduced but also mis-detection rate within the object is minimized.
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Moving backgrounds can be composed of time repetitive textures, for example, wa-

ter ripples, moving vegetation in the wind, fire, moving escalators etc. In such con-

ditions, individual pixel-based background models are not able to represent these re-

gional changes. As a matter of fact, pixel based background models consider each

pixel independently. These methods neither take into account spatial neighborhoods of

pixels for background modeling nor the frequency of colors. For example, the GMM

[Stauffer and Grimson, 2000] use model update to include per pixel temporal evolution

of background. However, the temporal variation is not considered. New colors are

added into the pixel-wise background representation thanks to the updating step, but

the temporal organization of these colors is ignored. Thus, these algorithms produce a

lot of false detections when they are applied in repetitively moving backgrounds.

In section 1.1.2.2, we presented texture-based background models. In these ap-

proaches, spatial texture (2D) are considered and a background model proposed by

[Heikkilä and Pietikäinen, 2006], uses local binary pattern as texture operator. This ap-

proach gives better background representation compared to pixel-based approaches.

However, it does not work very robustly on flat image areas where the gray values of

the neighboring pixels are very close to the value of the center pixel. Similarly, LBP is

strictly in spatial domain and does not take into account temporal evolution of back-

ground region which may change local texture temporally, therefore, may produce poor

object detection results in case of spatially varying and time repetitive moving back-

grounds.

In this chapter, we present a frequency-based approach, which is a novel method

for background representation. To our knowledge, spatiotemporal frequency analysis

has not been explored for background modeling in the literature. In the next section,

we present spatiotemporal and spectral methods applied by several authors in dynamic

textured backgrounds. These methods motivate us to explore frequency based approach

for unknown object detection in moving textured backgrounds.

4.1 Spatiotemporal and spectral methods

For spatial textures with time extent, one of the methods is to consider their patterns as

time series, which is referred to as dynamic texture [Doretto et al., 2003] in the literature.

However, working with videos that contain textures of unknown spatiotemporal extents

is different from working with static textured images.

Spatiotemporal approaches are applied to address the problem of dynamic textures.

An earlier work by Szummer et al. [Szummer and Rosalind, 1996] focused on temporal
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texture modeling. They proposed a spatiotemporal auto regressive model (STAR) for

temporal textures recognition, which is a (2D+T) extension of 2D autoregressive mod-

els. The method has been modified by incorporating spatial correlation for modeling

temporal textures by [Doretto et al., 2003, Doretto and Soatto, 2006].

Similarly, to detect foreground objects in a dynamic textured background, an ap-

proach was developed by [Zhong and Sclaroff, 2003], that uses an auto regressive mov-

ing average (ARMA) model. They proposed a robust Kalman filter to iteratively update

the state of the dynamic texture ARMA model. If the estimated value for a pixel is

different from the predicted value, then the pixel is labeled as foreground.

The main idea of our approach is to model the spatiotemporal color patterns of

background for object detection. In moving backgrounds, these color patterns often

appear repeatedly with time. So, a background model can be built on the frequency

analysis of such patterns. The use of frequency analysis for texture segmentation is

common in image processing. For example, the Gabor transform was used for texture

segmentation [Bovik et al., 1990]. It is essentially a Fourier transform windowed by a

Gaussian envelope. To select appropriate Gabor filters, the power spectrum analysis of

the Fourier transform of the textured image was performed [Manjunath and Ma, 1996,

Puzicha et al., 1997, Wang et al., 2006]. Local Fourier transform in spatial domain was

applied by [Zhou et al., 2001] for texture classification and content based image retrieval.

In [Abraham et al., 2005], dynamic texture synthesis was carried out by using Fourier

descriptors. They apply 2D Fourier transform on the whole image and the most signif-

icant frequencies contributed by all pixels are retained. In their approach, they assume

temporal stationarity of spatial 2D textures and do not consider temporal evolution of

spatial textures.

Our method is inspired from frequency based 2D texture segmentation approaches.

Variations in the background are both spatial and temporal in case of moving back-

ground. Therefore, the background model should be constructed by using spatiotem-

poral data in the region around each pixel by applying frequency analysis. We propose

to use local Fourier transform on the neighborhood of each pixel (both spatial and tem-

poral). We perform local spectral analysis, that captures the frequency components of

the spatiotemporal region around each pixel. We then construct a background model

based on the observations of the background process during a training period. Once the

background model is constructed, new frames are subjected to object detection phase.

The following section describes our proposed background model.
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4.2 Multidimensional Fourier transform

Multidimensional Fourier transform is used in data retrieval, multi spectral analysis etc.

We use tri-dimensional Fourier transform in our analysis. The Fourier transform for a

signal f (x, y, t) can be written as:

FT { f (x, y, t)} = F(u, v, w) (4.1)

which is defined by:

F(u, v, w) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (x, y, t)e−i2π(xu+yv+tw)dxdydt (4.2)

Similarly, the discrete Fourier transform of a signal sampled on a Nx × Ny × Nt grid is:

F(u, v, w) =
Nx−1

∑
x=0

Ny−1

∑
y=0

Nt−1

∑
t=0

f (x, y, t)e
−i2π( xu

Nx
+ yv

Ny
+ tw

Nt
) (4.3)

Due to the separability property of Fourier transform, the tri-dimensional discrete Fourier

transform (3D-DFT) can be computed in three steps. This can be achieved by computing

mono-dimensional Fourier transform operation on f (x, y, t) with respect to x, y and t

successively.

x

y

y +Ny/2
x+Nx/2

t

t+Nt/2

t−Nt/2

y −Ny/2

x−Nx/2

Ω(t−Nt/2)

Ω(t+Nt/2)

Ω(t)

x(x, y, t)

t

Figure 4.1: Spatiotemporal region Ω around a pixel x(x, y, t) with size Nx × Ny × Nt.
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4.3 Space-time local Fourier transform

First, we describe some notations used for a pixel representation in space-time and

frequency domain. Let a pixel in space-time be represented by p = (x, t) and u =

(u, v, w) be a space-time frequency vector. A spatiotemporal cuboid centered at a pixel

(see Figure 4.1) is denoted as:

Ω(p) = Ω(x, y, t) =
[

x− Nx

2
, ··, x +

Nx

2

]

×
[

y− Ny

2
, ··, y +

Ny

2

]

×
[

t− Nt

2
, ··, t +

Nt

2

]

It is important to note that Nx, Ny and Nt should be chosen according to the maximal

period (spatial and temporal respectively) which is expected in the data. Let us consider

a gray scale image sequence as a real-valued function f (p) defined for each pixel p. Let

us introduce a complex-valued function F̂(u, p), corresponding to the space-time local

Fourier transform for a pixel p given frequency u. It is expressed as:

F̂(u, p) = ∑
p′∈Ω(p)

f (p′)ω(p− p′)e−i2π((p−p′)·u) (4.4)

where · denotes the dot product such that p · u = ux + vy + wt

ω(x, y, t) =
1

√

2πσ2
x σ2

y σ2
t

e
(− x2

2σ2
x
− y2

2σ2
y
− t2

2σ2
t
)

ω is the gaussian window function which is truncated beyond 3 times the standard

deviation in each dimension. We chose σx = Nx
6 , such that ω is negligible when x = ±Nx

2

and similarly for σy and σt. In our method, we take the magnitude of Fourier coefficients

which have information of the quantity of each frequency component present inside

spatiotemporal cuboid Ω around the pixel p. We denote it as a spectrum S(u, p). This

can be expressed as the complex modulus of the Fourier coefficient:

S(u, p) = |F̂(u, p)| (4.5)

The space-time local Fourier transform produces Nx × Ny × Nt frequency components.

A spectrum feature vector is constructed for the pixel p, by concatenating the Fourier

coefficient values in a 1D vector as:

v(p) = [S(u1, p), S(u2, p) · · · S(uM, p)] (4.6)
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Figure 4.2: An example of sequence containing τ images for learning background. Three
spectrum feature vectors n = 3 are learned at time instants t1, t2 and t3 during the
training period (i.e. t = 1 · · · τ). The location of pixel is represented by red dots in
spatiotemporal window Ω of size Nx × Ny × Nt.

where

M = Nx × Ny × Nt

For color images, we compute the local Fourier transform independently on each chan-

nel values. For a given pixel, the three spectra are concatenated in v(p) (in this case,

M = 3Nx × Ny × Nt).

4.4 Scene modeling based on space-time local Fourier transform

The background learning process is as follows. We take the spatiotemporal input data

from τ learning images to compute local Fourier transform. We learn n spectra per pixel

during training period. The ith learned spectrum vector is:

vi
background(x) = v(x, ti) ∀ i = 1 · · · n

The frequency background model at a given spatial location x can be expressed as the

set of learned spectrum vectors:

M(x) =
{

vi
background(x)

}

i=1···n

Figure 4.2 shows the space-time neighborhoods over which training spectra are com-

puted (in this example, n = 3).

To learn the dynamic temporal texture in the background, the parameter Nt is crucial.
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If we have small period of temporal texture repetition (i.e. fast background motion) in an

application then we can limit ourselves to use a small value for Nt. Otherwise, repetitive

motions with large periods (i.e. slow background motion) need a high value of Nt. The

remarks are also valid for Nx and Ny (i.e. slow and fast varying background in space can

be modeled with large and small values of these parameters respectively).

4.5 Object detection

For object detection, we buffer a set of Nt incoming frames in the memory. We take

spatiotemporal data around each pixel of this set of incoming frames as explained in

section 4.4. We compute a spectrum vector for each pixel, by applying Eq. 4.5 and

Eq. 4.6, on current image data of Nt frames.

For each pixel p, the current spectrum feature vector v(x, t) is compared with the set

of n background learned spectrum feature vectors. Let d be the dissimilarity function

between v(x, t) and the model associated to pixel x, namely M(x). We can write it

mathematically as:

d((x, t),M(x)) = min
i=1···n

D(v(x, t), vi
background(x)) (4.7)

where D is a distance function between two spectrum feature vectors. We choose to use

the frequency-wise squared Euclidean distance:

D(v, vbackground) =
∥
∥v− vbackground

∥
∥2

High value of the distance measure d leads to the following interpretation: the current

spectrum vector v(x) is not close to any of the n learned spectrum vectors of training

sequence, and may corresponds to an object pixel in the scene. In other words, cur-

rent spectrum vector is composed of frequencies which do not exist in the background.

We can consider a pixel x as a moving object pixel if d is greater than a threshold ǫ.

Therefore, a foreground image F (x, t) is produced by using the following equation:

F (x, t) =







1 if d((x, t),M(x)) ≥ ǫ

0 otherwise
(4.8)

In this way the perturbations in the scene, apart from the spatially varying and time

repetitive textures, are identified and used for object detection.

In the next section, we analyze the proposed frequency based model and show the
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relevance of the model in the particular case of rivers.

4.6 Background spectral analysis and object detection results

The background representation using frequency analysis requires some further explana-

tion and needs to be clarified with examples. We use a video containing a floating object

in a river to illustrate our method. We show that using frequency analysis, the discrimi-

nation between different background regions and moving objects can be obtained. Two

background pixels x1 and x2 are marked in an image from the video (see Figure 4.4). An

object passes through the pixel x2 in the water region. We take spatiotemporal region

Nx × Ny × Nt = 5× 5× 3 and n = 8 for respective points in the video.

4.6.1 Background spectral analysis

We expect the spectra v(x1, .) and v(x2, .) to be different enough (high interclass vari-

ance) and spectra generated around a given pixel to be similar (low intraclass variance).

Moreover, we expect spectra generated during the passage of object at x2 to be different

than the one without object. We represent the spectra for visual comparison in Fig-

ure 4.3(a). The magnitude values of local Fourier transform of the two pixel locations

(x1 and x2 in Figure 4.4) are shown in the frequency domain.

For this data, we found that the spectra of the three RGB components were similar

(color saturation is relatively low, causing colors to be located near the black-to-white

axis as shown in the histogram of Figure 4.8).

Therefore, we show only one spectrum at multiple time instances. For p1t = (x1, t)

and p2t = (x2, t), we show the three spectra at time t = t1, t2 and t3. We use logarith-

mic transformation on the Fourier coefficient values and then normalize them so they

remain in the range from 0 to 255. In Figure 4.3(a), the first three columns represent

spectra S(., p1t) and last three columns represent spectra S(., p2t). It must be noted

that the time instances (i.e. t1, t2 and t3) are not consecutive. Two prominent proper-

ties are highlighted here. The first one is that local Fourier coefficient values of the

corresponding frequencies within a spatiotemporal region are rather similar at different

time instances. This can be seen observing the values of S(., p11), S(., p12) and S(., p13).

Therefore, it implies that the values of local Fourier transform can be used as a feature

for background modeling. The second property is that the values of local Fourier trans-

form are dissimilar for two different regions. This fact can be seen by observing, for

example, the values of the corresponding frequencies of S(., p11) and S(., p21).
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Figure 4.3: Graphical representation of values of local Fourier transform coefficients: (a)
S(., p1t) and S(., p2t) represent spectra for the B channel at spatiotemporal locations
(x1, t) and (x2, t) at time t = t1, t2, t3, (b) Two spectra S(., (x2, tback)) and S(., (x2, tobj))
for Blue (B), Green (G) and Red (R) color channels of pixel x2 background only and
object passage times respectively.
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Figure 4.4: An image of background with two points x1 marked in red and x2 marked
in green color. A subspace linear discriminant analysis (LDA) for the two background
pixels x1, x2 and an object pixel with spatiotemporal region Nx × Ny × Nt = 5× 5× 3
with n = 8, data is projected onto first 3 eigenvectors.
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We also present the analysis of spatiotemporal frequency components in case of

object motion. In the river video, a floating object passes through the pixel x2. To

illustrate the effects of object passage on the spatiotemporal frequencies, we show 3

spectra S(., (x, .)) for RGB color channels at x2 (Figure 4.3(b)). Let tback and tobj be

respectively the times when x2 is a background pixel and when x2 is an object pixel. The

first three columns in Figure 4.3(b) represent the spectrum at x2 with only background.

The last three columns in Figure 4.3(b) show the spectra at the same spatial position

during the object passage through the point. For these spatiotemporal positions, the

coefficient values of the two respective spectra are different. We can observe an increase

of the corresponding spatiotemporal frequencies values. This difference is used for

object detection.

4.6.2 Projection into discriminative subspace

Since the magnitudes of neighboring frequencies are highly related, we expect to have

high correlation between several components of the feature vectors. This leads us to

study the relevance of our feature space using dimensionality reduction technique. We

use Fisher linear discriminant analysis (LDA), in order to project the feature points onto

a subspace that maximizes interclass variance while minimizing intraclass variance.

We present the results of discriminant analysis applied to the set of spectrum feature

vectors of x1 and x2. For x2, both background and object spectra are generated, which

makes a total of three groups of spectra. We took n = 8 spectra per group. We apply

LDA on the data matrix and projected the resulting data onto the first three eigenvectors

(ev1, ev2 and ev3) as seen in Figure 4.4. We can observe that the projected data is

clustered into distinct areas. This Figure shows that it will be possible, using these

features, to distinguish the different color patterns of the respective pixels.

4.6.3 Object detection results

We present our experiments on both synthetic and real natural videos. We use three

videos from DynTex database [Péteri et al., 2010], which contains multiple videos with

dynamic textures. We also test our algorithm on two other videos. One video containing

floating objects and one a speedboat, which we have made.

We compare our results with the GMM [Stauffer and Grimson, 2000] and modified

GMM (explained in section 3.4). For the GMM, we use three components (RGB) mixture

model, K = 5 number of Gaussians per pixel and a relatively high learning rate of

0.05. Similarly, for modified GMM we use RGB mixture model with K = 5 and τ



4.6. Background spectral analysis and object detection results 101

Figure 4.5: A synthetic square of 30× 30 pixel moving from left to right with downward
moving escalator in the background.

images during learning period. In modified GMM method, recall that pixel-wise color

distributions are extracted on a p× p spatial neighborhood around each pixel. The value

of p is mentioned for each application.

In the following paragraphs, we explain the result of our method on synthetically

moved and real objects. As explained in section 4.4 and 4.5, our method is composed of

two steps, the background learning and object detection. Thus, we use τ images from

the videos for the background learning.

Before giving the results of various experiments, let us explain the effects of changing

various model parameters on the escalator video from the Dyntex database [Péteri et al.,

2010] in detail. An escalator moves downwards in the video. The motion is an example

of dynamic texture with large temporal extent. In this experiment, we change both spa-

tial and temporal sizes of neighborhoods per pixel in order to show the effects of these

parameters.

Synthetic moving block in the escalator video:

The original video does not contain any object to detect. Therefore, we synthetically

move a square portion of escalator as an object.

Motion of this square block is from left to right in the image plane. Few images

from the sequence are shown in Figure 4.5. The block is simultaneously translated and

rotated with an angle of 5 degrees clockwise per image in 100 consecutive images. It is

important to note that we use different sets of images for training and detection.

We show the final foreground image, that is obtained by using Eq. 4.8, with the

corresponding parameters in Figure 4.6. We show one foreground image of the image

sequence. The effects of changing size of the spatiotemporal neighborhood can be ob-

served. We use odd values from 1× 1 to 9× 9 for Nx × Ny. When Nx × Ny = 1× 1,

no spatial neighborhood per pixel is considered, which boils down to extracting purely

temporal patterns.

The results obtained with these different parameter settings are shown in the first
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Nx Ny Nt = 1 Nt = 3 Nt = 5 Nt = 7 Nt = 9 Nt = 11

1 1
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Figure 4.6: Foreground image results with different model parameters of spatiotemporal
region Nx × Ny × Nt per pixel for a moving square block with moving escalator in the
background.

row of Figure 4.6. Similarly, we vary the value of Nt per pixel from 1 to 13. We show

the results of our method when only spatial neighborhoods are used (i.e. Nt = 1)

in the first column of Figure 4.6. The escalator motion in the background is slow and

increasing the value of Nt enables the background model to capture the periodicity of

moving escalator.

We made vary the spatiotemporal region Nx × Ny × Nt per pixel from 1× 1× 1 to

9× 9× 13. We can notice that the object detection results is not improved much above

7× 7× 11. Therefore we take the small value, with the point of view of computation time

taken during learning and detection. The computation time in training and detection

for the video are given in Table 4.2.

We show a few examples of the foreground image from the sequence in Figure 4.7.

We show that the frequency-based background model can be used to detect an object

even if it has similar colors as the background. For comparison, we also show the results

of the GMM and modified GMM. As these two are pixel based approaches, they cannot

detect the moving square. Conversely, our method is designed to address the repetitive

color structures, therefore, it gives good detection rate.
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Figure 4.7: A synthetic square of 30 × 30 pixels moving from left to right with
downward moving escalator in the background with corresponding results of: the
GMM [Stauffer and Grimson, 2000], modified GMM (p = 5) and our method with
Nx × Ny × Nt = 7× 7× 11.
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Figure 4.8: (a) An image from river videos with aquatic environment and reflections
from water surface with color histogram of histogram 100 successive frames of 4× 4
pixels (b) of green leaves and (c) in water region.

Floating bottle video:

We apply our algorithm to a river video, in which water ripples form local temporal

textures (see Figure 4.8). The color histograms show 100 consecutive color values of

two regions of 4× 4 pixels size that are highlighted by squares in Figure 4.8(a). The

green leaves in the surroundings of river contain repetitive textures from green to light

green Figure 4.8(b). The pixels in the water region contain almost all intermediate val-

ues between black and white Figure 4.8(c). We can see that pixel values have a wide

distributions especially in the water region. The color histograms reveal the fact that

pixel-based background models such as the GMM [Stauffer and Grimson, 2000] will not

be able to build a relevant background representation in such conditions. The distribu-

tions tell us about the color diversity, however, the temporal variations of pixel values in

successive frames are not evident from the histograms.

In section 4.4, we introduced n, which is a user-defined parameter. This denotes the

number of spectra considered per pixel in the learning period. When there are limited

repetitive motions in the background, we expect that a small number of learning spectra

would be sufficient. Therefore, we test different values of n on the river video, so that

we can observe its effects on the object detection. In the video, a bottle floats from right

to left with water flow. In Figure 4.9, we show one foreground image and the effects of

different values of n on the object detection results. We show an image from the floating

bottle video and the corresponding output results with value of n varying from 1 to 10.

We can see that object detection is not improved above n = 8. Therefore, we select n = 8

in our experimentation.

The quasi-periodic changes which occur in background regions are learned during
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Original image

Figure 4.9: Results with variable n, number of spectra per pixel, for floating object
sequence and Nx × Ny × Nt = 5× 5× 5.

the first τ frames. In this application the spatiotemporal region Nx × Ny × Nt = 5×
5 × 5 per pixel gives optimal results. Also, we show the GMM and modified GMM

results for the video for comparison in Figure 4.10. We can notice that the GMM results

contain many false detected background pixels. Therefore, we apply our modified GMM

algorithm on the video to see its effects. In the modified GMM, for each pixel, we use

spatial neighborhood of width p = 5. By applying the modified GMM, we can see

that false detections are reduced. However, there are still false detected pixels in the

foreground images.

Similarly, we show object detection results obtained by using frequency based back-

ground model. The results also indicate that dynamic changes in the aquatic region,

waving grass and leaves in the background are well handled by our method.
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Figure 4.10: Images from a river video with corresponding results of: the GMM
[Stauffer and Grimson, 2000], modified GMM (p = 5) and our frequency-based back-
ground model with Nx × Ny × Nt = 5× 5× 5.
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Synthetic moving block in the wheat field:

We show that the frequency-based background model can be used to detect an ob-

ject in dynamic textured natural background. The video is from the DynTex database

[Péteri et al., 2010], containing a continuously moving wheat field. Some images from

the sequence are shown in Figure 4.11. We can notice the spatially varying and time

repetitive textures in the images. The original video does not contain any object to de-

tect. Therefore, we move synthetically a square block as an object. Motion of the square

block is from left to right in the image plane (similar to the previous experiment on the

escalator video).

We show some resulting images obtained with the GMM, modified GMM and our

model for the video. The results with the GMM method are very noisy and are improved

to some extent by using the modified GMM. One possible reason is that in the modified

GMM method, we take spatial neighborhoods into account to estimate the color distri-

bution, so that pixel-wise statistics are more confident. However, the results of modified

GMM have many mis-detected pixels in the square block. The results obtained with the

frequency based model contain less mis-detected pixels in square block and few false

detections. The optimal dimension of spatiotemporal cuboid is 5× 5× 5 for the video.

We can see in the results that our method produces equally good detection in such ex-

ample.

A duck video:

We use a video containing a moving duck in water from the Dyntex database [Péteri et al.,

2010]. The background contains water ripples and dark cast shadows of surroundings

as seen in Figure 4.12. A duck enters in the scene from the top-right corner and moves

across the scene to the middle of the image plane. When the duck moves under the cast

shadows, it shares many colors with the background. Figure 4.12 shows results of the

GMM, modified GMM and our frequency based background models.

The results obtained with GMM contain a lot of false detection, as the GMM cannot

model strong background oscillations. Therefore, many parts of the foreground object

(duck in this case) are mis-classified.

Similarly, we apply modified GMM to the video and use p = 5 per pixel. The results

obtained with the modified GMM are less noisy but still contain many false detections.

Whereas the results of our frequency based background model show that not only we

have minimum false background pixels but also the foreground object has a few mis-

detected pixels. There is a slight over segmentation in some results. However, the error

is negligible.
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A speedboat video:

Finally, we test our method to a video containing a moving speedboat in a river. The

image sequence is gray scale. A few images from the sequence are shown in Figure 4.13.

It contains original image sequence with corresponding results of GMM background

model, modified GMM and our frequency based background model. The results ob-

tained with GMM contain a lot of false detection of water ripples. We can notice that

neither GMM nor modified GMM could model this dynamic background well. There-

fore, many false detected pixels are present in these results. For this video, we use p = 3

for each pixel in the modified GMM method.

However, the results of our frequency based background model show that not only

we have minimum false detections but also good foreground object rate. During speed-

boat motion, waves are generated around it and these water waves could not be sepa-

rated from moving boat regions. These waves are detected by the GMM, modified GMM

and our method. The waves produced due to motion do not appear during the learning.

They produce high frequency coefficient values in the respective pixels, therefore, they

are detected as well. However, keeping in view the camera object distance, the error

can be neglected. Let us remember that we do not use any morphological (erosion or

dilation) operations in any of our results.

Quantitative comparison:

Results of image segmentation of the three background models are evaluated with the

Dice similarity measure. Ground truth images are available for the synthetic object mo-

tion in the escalator and wheat videos. For the rest of the videos, we manually obtained

ground truth images. For this purpose, we randomly selected (∼ 15%) images per video.

Quantitative comparison of image segmentation for the applications are summarized in

Table 4.1. We present average Dice value which is computed by summing all the Dice

values per image divided by the number of images. Average Dice coefficient values for

all videos are very low in case of the GMM and modified GMM, where high values

Table 4.1: Quantitative comparison of Dice similarity measure of GMM, modified GMM
and our proposed background model

Escalator Duck Bottle Boat Wheat
GMM 0.03 0.11 0.14 0.10 0.15

modified GMM 0.08 0.30 0.28 0.18 0.43
Frequency based method 0.87 0.81 0.80 0.78 0.96
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Table 4.2: Computation time by our method during training period and object detection

Video Nx × Ny × Nt
Total Detection time

training time (s) per frame (s)
Speedboat 3× 3× 3 35.50 6.12

Bottle
5× 5× 5 46.82 6.55

Wheat
Duck 5× 5× 11 76.35 8.78

Escalator 7× 7× 11 197.70 15.40

are obtained with our frequency based background model. We can remark that in the

bottle video, the average Dice value is smaller than in other cases due to the reflection

in the water that creates some false detections. Image segmentation results indicate the

superiority of frequency based background model for object detection over the GMM in

dynamic textured and moving background.

Finally, we give the computation time taken by our method during the training pe-

riods and object detection. The image size is 256× 256 and n = 8 in all videos. The

method is tested on an Intel Core2 Duo 2.66GHz with 4GB RAM, running a C code.

We summarize the computation time in the Table 4.2. We provide the two computation

times for each video with the corresponding spatiotemporal window sizes considered

in the respective videos. As expected, the computation time increases with the size of

spatiotemporal neighborhoods per pixel. With a view to compare, one may note that

time taken by the GMM is in the order of 100 ms per frame.

Limitations of our method:

Our proposed method has several advantages over classic background models. Object

detection rate is satisfactory in difficult spatially varying and time repetitive textured

backgrounds. However, some limitations of the proposed method may appear. First,

in our method, we separate learning and detection phases. The background learning is

carried out first and object detection is applied afterwards. Time interval between the

training period and the detection phase should not be too long (i.e. global brightness

conditions should remain similar). Secondly, due to lack of model parameters update

with time, the effects local brightness change, e.g. due to self shadows, in some situations

may results in false detections and reduce the fine object boundary details.
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Figure 4.11: A synthetic block in the moving wheat field in the background with cor-
responding results of: the GMM [Stauffer and Grimson, 2000], modified GMM (p = 5)
and frequency-based method with Nx × Ny × Nt = 5× 5× 5.
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Figure 4.12: A moving duck in rippling water in the background with corresponding re-
sults of: the GMM [Stauffer and Grimson, 2000], modified GMM (p = 5) and frequency
based method with Nx × Ny × Nt = 5× 5× 11.
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Figure 4.13: Images from a river video with moving boat with corresponding results of:
the GMM [Stauffer and Grimson, 2000], modified GMM (p = 3) and frequency-based
method with Ω = 3× 3× 3.
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4.7 Conclusion

In this chapter, we presented a novel frequency-based model dedicated to moving back-

grounds. Spatially varying and time repetitive textures in the background regions are

very efficiently modeled by our frequency based method which relies on spectral feature

vectors. For example, we demonstrated the effects of changing spatiotemporal neigh-

borhoods around each pixel which change the extent of the spatiotemporal textures

that can be properly captured. Also, we apply our method of object detection to both

synthetic moving objects and the real ones in the videos. We obtain high accuracy in

foreground/background segmentation and outperform a commonly used background

model, namely GMM. In outdoor scenarios, our background model leads to better detec-

tion and segmentation than the GMM method which fails to capture the time repetitive

background motions. As future work, we plan to include an update mechanism in the

background model. Among other image phenomena, this could handle global bright-

ness change through the image sequence.
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Conclusion and future work

In our thesis, we focused on the videos obtained using fixed cameras with dynamic back-

ground. Specifically, we studied videos containing continuous motion of backgrounds

and objects. We addressed the fundamental issue of object segmentation in moving

backgrounds. The chosen approach consists in background subtraction.

In chapter 1, we presented the existing object detection methods. We explained that

color, texture, shape and motion are criteria which the existing methods use for objects

detection. Each image pixel in a video frame is classified either as a foreground pixel

or a background pixel based on a combination of such criteria. An important part of

the literature in this field is related to background modeling that consists in building a

representation per pixel of the monitored scene. In some cases, we may acquire a priori

information on these features, which can be used to improve object segmentation.

In our work, we aimed to detect objects with a priori information on their motion

and appearance. We may know a priori the color information of foreground object or

background.

As a matter of fact, in some applications we may have a priori information on objects

color when we know the type of searched objects. It can be beneficial to use this infor-

mation in object detection (a famous example of using a priori foreground object color

is skin-color model). We developed a similar approach where we use wood intensity

distribution for its extraction in chapter 2. We have modeled wood intensity distribution

with a Gaussian. The obtained model is used jointly with temporal information partially

based on inter-frame differences. The model has been tested for wood but we believe

that it may be applied on other kind of applications where color of searched objects is

known. We compared the results obtained with our image model with the results given

by existing background models of the literature.

It is worth noting that the image model we developed has been applied for wood de-

tection, which is a restricted application. It is dependent on wood intensity distribution

115
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in the studied environment. As future work, a non-parametric estimation of probability

could be considered in order to deal with larger classes of objects. Another extension

could be to consider texture distribution instead of only color one.

Furthermore, foreground objects may be detected using their motion characteristics.

Object motion information can be estimated from the data or available a priori.

In the former case, optical flow techniques are commonly used to estimate object

motion in image sequence. These methods mostly rely on the brightness constancy in

the image sequence for object motion detection. Each pixel contributes to motion field

computation and the classification of moving and non-moving pixels is obtained thanks

to the likelihood of the motion characteristics. However, we studied videos in which ob-

jects displacements similar to background motion. Therefore the motion fields obtained

by optical flow techniques would not allow discriminating objects from background.

When motion information is available a priori, we can use it to improve background

subtraction. With a view to studying permanently moving backgrounds, we proposed a

rigid motion model. We used prior motion knowledge learned from an image sequence

by an offline method.

Our proposed motion model, based on Bayesian framework, can be combined object

level motion information with pixel level color information. Moreover, it is designed

so that it can be used with any background subtraction method. In this context, we

proposed a modified GMM method and combined it with our motion model. We also

applied it to wood detection and compared the results obtained with to the ones without

motion model.

We have shown that object detection is improved using prior motion knowledge. In

such way, false detections in the foreground are reduced.

One can remark that our approach is based on a really simple type of motion (only

translation and rotation). As a future work, we could consider more general type of

displacements in which object could deform for example. Another extension could be to

constrained object detection on its 3D prior motion. It would be more general and allow

the object to undergo displacements of any motion in any direction while constraining

object detection.

Some moving backgrounds are composed of locally and periodically moving regions.

Moving color patterns forming dynamic textures vary spatially and appear repeatedly

with time. Thus, they may not be modeled by the existing individual pixel-based or

region-based background modeling methods. We have presented a spectral background

analysis in moving background context. We have explained that using frequency anal-
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ysis we could achieve discrimination in background regions and also between back-

ground and moving objects. Our method draws its inspiration from 2D texture seg-

mentation. The main idea behind our approach is to model the spatiotemporal color

patterns of the scene and use the model for object detection. We proposed a frequency-

based background model founded on the spatiotemporal region around each pixel. In

this method, a spectrum is associated to each pixel. A pixel is classified as foreground

pixel if its spectrum is different enough to the background spectra, which are extracted

during the learning phase.

We have applied the frequency-based model to several videos from DynTex database.

Our object detection method has produced good object segmentation in the presence of

repetitive color motion in the background. We have compared our results with the GMM

method and modified GMM method. The comparative analysis indicates that with the

frequency-based background model we can obtain better object detection in apparently

complex and moving backgrounds.

However, our frequency-based background model has some limitations. The time

interval between the training and detection phases should not be too long. As a matter

of fact, if brightness conditions or color patterns are not similar to the learned ones,

the detection may fail. Consequently, as future work, an adaptive model could be de-

veloped to overcome these problems. Moreover, the spatio-temporal textures may be

modeled by an adaptive mechanism with respect to slow and fast moving areas in the

background. A method can be based on the temporal extent of texture per region. This

can be coupled with small and large number of spectra for slow and fast moving areas

in the background.
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In the introduction of our thesis, we briefly presented the DADEC project, which is

constituted of two major parts. The first one is wood detection and the second one

is wood tracking and counting in river videos. We addressed the problem of wood

detection in chapter 2 and 3 in detail. We notice that wood counting primarily depends

on good wood segmentation algorithm in place.

In this appendix, we present the second part of the DADEC project, which consists in

counting the wood objects passage through a point of the river at different times of day.

The aim is to quantify wood transport within river systems in order to understand the

relevant processes and develop wood budgets. For this purpose, a monitoring system

was installed at a gauging station on the Ain River, a 3500 km2 piedmont river (France),

in early 2007. Videos are obtained during 12 floods, the duration of which is two to three

consecutive days. We study the flood videos of April, 2008 for which manual counting

data was available from the geographers. In the manual counting, operators need to

watch the videos frame per frame and note the location and time of wood passage. The

manual method is time-consuming and limits the amount of data that can be processed.

Automatic wood detection and counting by computer vision techniques would allow to

accelerate counting and to increase the number of processed datasets. The proposed

wood detection and counting software has been delivered to geographers. They have

been using it for wood counting purposes since July, 2010.

It must be noted that the number of wood objects in any video frame is variable

i.e. they do not come one by one in the video and may appear in any part of the scene

randomly (for example see Figure A.2). However, these objects move with water, there-

fore, their direction of motion is known a priori. Similarly, there is continuous global

motion in the scene. The difficulties which we face in terms of wood tracking and

counting are summarized in the following section.

A.1 Problems and constraints in wood tracking and counting

Wood tracking in the globally moving background is difficult for several reasons. The

constraints related to wood tracking are complemented to wood detection problems

which we discussed in chapter 2. These can be summarized as follows:

• A major difficulty arises due to the turbulences in water during floods. Water

waves are stronger and more persistent in floods than in normal river flow. More-

over, during day light, water waves resemble small wood objects. Therefore, it

is difficult to distinguishing water waves from wood in such conditions. So, the
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(a) (b)

(c) (d)

Figure A.1: Some examples of different wood shapes, (a) a small wood object, (b) a tree
trunk, (c) a tree with multiple branches and (d) a complex wood shape.

proposed method is composed of two steps: In the first one, the object detection

method developed in chapter 3 (image model combined with motion model) to

extract objects. In the second step, the remaining false detected water waves are

eliminated by a tracking algorithm, so that they may not affect wood counting.

• For wood tracking, wood objects should be visible during their passage in videos

as a single entity. However, this is not true in most of the cases, as wood objects are

partially submerged in the water (see Figure A.4). In addition, some small objects

are submerged totally during some frames and reappear afterwards.

• Another problem related to partial occlusion is that these wood objects split into

multiple parts and appear as separate wood objects (see for example Figure A.1(d)).

• Floating wood may appear in a variety of shapes. These include small parts of

trees, large branches of trees with leaves, wood debris and roots of trees etc. There-
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Figure A.2: An example image of multiple small wood objects in a single video frame.

fore, apparent sizes of wood objects vary from few pixels for small objects to hun-

dreds of pixels for large objects. Some representative wood objects are shown in

Figure A.1.

• Small wood objects rotate and translate more than large wood objects, which

should be taken into account when learning the parameters of the motion model.

We show a small wood piece rotating during motion in Figure A.3.

• The number of frames in which a wood object appears is variable in the videos

we studied. The number of frames is from one to a maximum of 13 consecutive

frames.

• Similarly, wood motion trajectories vary with the water speed and wood sizes.

During floods, the water speed is high and turbulent from normal flow. An image

exhibiting multiple wood passage trajectories in a small video are shown in Figure

A.5.

• Finally, due to the remote location of the monitoring system, the frame rate has

been adjusted very low by the geographers. They use Internet connections for

transferring videos from the monitoring location to the database center. There-

fore, the choice is justified from the point of view of geographers, however, it has

consequences for our developments and in particular on objects displacements.

Figure A.3: An example of small rotating wood object.
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The proposed algorithm should cope with the above-mentioned difficulties with

minimum counting errors. A "good" wood counting algorithm should have the fol-

lowing properties:

• False counting of water waves as wood objects should be minimum.

• Wood objects do not come one by one and may appear randomly in any part of the

river. Therefore, the counting method should be able to count them with minimal

scene related assumptions. The only assumption we will do here is that water

flows from left to right.

• A wood object should be counted once even if it is split into many parts during its

passage in the video.

We present our wood tracking and counting method in the following sections.

A.2 Wood tracking in video

In object tracking methods, the trajectory of an object over time is basically generated

by locating its position in every frame of the video [Yilmaz et al., 2006]. The tasks of

detecting the object and establishing correspondence between the object instances across

frames can either be performed separately or jointly. In the first case, possible object

regions in every frame are obtained by means of an object detection algorithm, and then

the tracker makes correspondence of objects across frames. In the latter case, the object

region and correspondence is jointly estimated by iteratively updating object location

and region information obtained from previous frames. In our wood detection method

described in section 3.5.2, a joint intensity and motion based approach was proposed.

In this way, it is related to the two conventional tracking methods, as segmentation

result at time t is used to extract foreground objects at time t + 1. We use a method

in which the corresponding extracted foreground objects are related within successive

frames. Therefore, the tracking method we use for wood counting can be regarded as a

temporal linking method.

The methodology of wood tracking can be subdivided into temporal linking and

counting. Before explaining the two parts, we present the extraction of the representative

points of objects in the foreground image.
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A.2.1 Extraction of representative points

The foreground image F (., t) is composed of several connected components. Due to

the partial occlusions of wood objects, a given piece of wood may appear in several

small pieces. Therefore even if the two frames contain the same number of objects,

they may contain a different number of connected components. An example of which

is shown in Figure A.4. In order to group several connected components that may

correspond to the same object, we first rely on centroids. Such approach was already

used in object tracking, see for example [Veenman et al., 2001]. The centroid cψi of a

given component ψi is taken as the representative of ψi. Note that it is the centroid of

region pixels:

cψi =
1
|ψi| ∑

x∈ψi

x

To evaluate the closeness between two connected components ψ1 and ψ2, we choose to

consider the euclidean distance between cψ1 and cψ2 . This distance allows us to label

the connected components of the same object even if their size vary from one frame to

another due to occlusion. We perform hierarchical grouping of connected components

as long as the distance between their centroids is below a threshold λ. At each step,

the two closest connected components ψa and ψb are merged in a new region whose

representative center is assigned to the average (cψa + cψb)/2, until
∥
∥cψa − cψb

∥
∥ < λ. Let

ψ = {ψi}i=1...n be a set of gathered connected components. Its representative center cψ

is the average of centroids cψi , and the following relation is verified:

ψ = {ψ1, · · · , ψi, · · ·ψn} ⇒ cψ =
1
n

n

∑
i=1

cψi and
∥
∥cψi − cψ

∥
∥ < λ ∀i ∈ 1...n

This method is robust to partial occlusion of wood in water. Hence, every object in the

frame is localized by a representative point, which is linked to its corresponding point

in the next frame.

A.2.2 Temporal linking of floating wood

We build a list of barycenters of all objects that are linked temporally in consecutive

frames.

As we mentioned earlier, wood objects can appear in any part of river, therefore,

each object is considered as a potential piece of wood, regardless of its location in the

image plane.
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Figure A.4: Four consecutive frames of a moving wood object, zoomed resulting seg-
mented object regions show the appearance of floating wood in the images.

Let cψ(t) and cψ(t + 1) be the representative points of object ψ matched in two con-

secutive frames. This is actually verified if their distance is below δ:

∥
∥cψ(t)− cψ(t + 1)

∥
∥ ≤ δ (A.1)

where δ = 100 pixels, which is the maximal displacement of wood pieces we learned

after experimentally testing on different videos. Incidentally, it allows us to give a lower

bound of threshold λ. If λ is lower than δ, objects may be mismatched in consecutive

frames. A component of an object may be mistakenly matched with another component

of the same object, which does not happen if λ > δ. Conversely, two objects moving

simultaneously can be counted separately.

The positions of the representative point of an object in consecutive frames can be linked

by line segments, which yields a trace in the summary image. Such an image is a graphical

representation of trajectories during a given duration, as shown in Fig. A.5. It represents

wood and water waves trajectories in a small portion of a video. We can notice from the

summary image that wood objects make longer traces than waves. The summary image

also exhibits that water waves disappear after some frames. This property is used in the

following section, to distinguish wood pieces from waves.

A.2.3 Counting wood pieces

We assume that wood objects are more persistent than water waves. Therefore, wood

objects are present in more consecutive frames compared to water waves. We attribute

an object as a wood object when it is present in sufficiently high number of frames. Let

K be this minimal number of frames. Hence, we can easily eliminate water waves by

using this method. Thus, it provides wood counting results with less number of false

detected water waves.

The method of counting is devised in a manner that if a wood object undergoes total
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Figure A.5: A summary of a small video representing wood (in different colors) and
water waves (black color) trajectories.

submergence and reappear after few frames, it is counted only once.

For each object ψ, we determine the number of consecutive frames in which it ap-

pears. We obtain a sequence of n representative points {cψ(t), cψ(t+ 1), ..., cψ(t+ n− 1)}
in which each couple (cψ(t + i), cψ(t + i + 1)) verifies Eq. A.1. Wood pieces and water

waves are separated from one another according to their persistence in the consecutive

frames. Hence, the chosen criterion to consider ψ as a wood piece is n ≥ K. If a wood

piece is not totally submerged, its representative point at different times should all be

linked two by two. Unlike wood pieces, waves generally disappear after three or four

frames. Hence, floating wood is counted on this basis. The relevancy of this limit is

evaluated in section A.3.

A.3 Experimental test

In chapter 2, we explained the two wood detection methods, namely, naive and prob-

abilistic model. We use the wood counting method on the segmentations provided by

these two methods. As explained earlier, no assumption is made about the location of

wood pieces in the water or according to static parts such as bridges. Consequently,

our method could be used with another camera in a likewise scene. We test our wood

counting algorithm on five videos of 1500 frames each, for which we have ground truth
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Table A.1: Quantitative evaluation of wood counting with naive and probabilistic meth-
ods

Naive method Probabilistic method
Video Nt Nd Npd Nw Nd Npd Nw

1 45 40 5 13 41 4 1
2 87 75 12 10 80 7 3
3 52 43 9 7 47 5 0
4 41 38 3 6 37 4 0
5 85 76 9 19 79 6 4

Total 310 272 38 55 284 26 8

87.7% 12.3% 91.6% 8.4%

counting data for validation. Frames have size 640× 480 and are extracted from MPEG4-

compressed streams. Tests are executed on an Intel Core2 Duo 2.66GHz with 4GB RAM

running C code.

In section A.2.3, we introduced the minimal number of consecutive frames K dur-

ing which objects should appear to be counted as wood. This number is evaluated in

Figure A.6. Qualitative evaluation is given by Precision and Recall measures, defined as:

Precision =
Nd

Nd + Nw
; Recall =

Nd

Nt

where Nd is the number of detected wood pieces, Nw is the number of waves detected

as wood, Nt is the total number of wood objects and Npd is the number of non detected

wood pieces i.e. (Nt = Nd + Npd) .

We plot the values of Nt, Nd and Nw in Figure A.6(a) against values of K. We

also show the precision and recall curves obtained with the probabilistic model, for one

video (Video 1) in Figure A.6(b). We can see that the best trade-off between true and

false wood counting is obtained with K = 4. Successful wood counting is validated

manually by visual inspection frame per frame.

Table A.1 shows the quantitative evaluation in terms of wood pieces actually present

and counted as wood, the number of wood pieces that are not counted by our algo-

rithm and the number of waves that are detected as wood pieces. The number of wood

detected is clearly higher percentage than the number of non detected wood. In some

situations, the brightness of waves are very close to wood pieces and they may rest for

more than four frames in some cases. If the water waves are continuously present in

four frames false detection occurs but the percentage of such false detection is not very

important. Moreover, wood pieces sometimes appear in one or two frames, such type
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Figure A.6: (a) Quantitative comparison, for probabilistic wood detection method, of
selection of the number of consecutive frames for wood attribution for video 1, (b) pre-
cision and recall for the video evaluated for K = 3, 4, 5 and 6 consecutive frames.

of wood pieces cannot be detected. Wood detection rate is nearly 98% while successful

counting rate above 90%. Wood detection rate by naive and probabilistic methods are

similar. But, the difference lies between the two results is the number of detected wa-

ter waves as wood. We can clearly see this in Table that number of water waves with

the probablistic image model is reduced drastically, which indicates that wood counting

results depends on good wood segmentation results.

After visual inspection, it turns out that undetected wood pieces correspond to very

small parts, which are not critical with respect to the application. These small pieces are

often totally submerged in some frames.
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