
Data-Peeler:

Constraint-Based Closed Pattern Mining in n-ary Relations

Löıc Cerf∗ Jérémy Besson† Céline Robardet‡ Jean-François Boulicaut§

Abstract

Set pattern discovery from binary relations has been exten-

sively studied during the last decade. In particular, many

complete and efficient algorithms which extract frequent

closed sets are now available. Generalizing such a task to

n-ary relations (n ≥ 2) appears as a timely challenge. It

may be important for many applications, e.g., when adding

the time dimension to the popular objects × features bi-

nary case. The generality of the task — no assumption be-

ing made on the relation arity or on the size of its attribute

domains — makes it computationally challenging. We in-

troduce an algorithm called Data-Peeler. From a n-ary

relation, it extracts all closed n-sets satisfying given piece-

wise (anti)-monotonic constraints. This new class of con-

straints generalizes both monotonic and anti-monotonic con-

straints. Considering the special case of ternary relations,

Data-Peeler outperforms the state-of-the-art algorithms

CubeMiner and Trias by orders of magnitude. These good

performances must be granted to a new clever enumeration

strategy allowing an efficient closeness checking. An original

application on a real-life 4-ary relation is used to assess the

relevancy of closed n-sets constraint-based mining.

1 Introduction

Constraint-based mining has become a popular frame-
work for supporting pattern discovery tasks. First, it
enables to provide more interesting patterns when the
analyst can specify a priori relevancy by means of con-
straints. Next, this has been identified as a key issue
to achieve the tractability of many data mining tasks:
useful constraints can be deeply pushed into the extrac-
tion process such that it is possible to get complete (ev-
ery pattern which satisfies the user-defined constraint is
computed) though efficient algorithms.

In this paper, we focus on patterns that hold in
0/1 data sets. In a popular setting, such data sets gen-
erally correspond to relations between two attributes
only, e.g., transactions× items or objects× features.

∗INSA-Lyon, LIRIS UMR5205, F-69621 Villeurbanne, France.
†INSA-Lyon, LIRIS UMR5205, F-69621 Villeurbanne, France.
‡INSA-Lyon, LIRIS UMR5205, F-69621 Villeurbanne, France.
§INSA-Lyon, LIRIS UMR5205, F-69621 Villeurbanne, France.

Frequent itemset mining or formal concept mining are
typical data mining tasks in such binary relations. Fre-
quent itemset mining has been introduced by Agrawal
et al. [2, 3]. To tackle difficult cases, one major break-
through has been the study of (frequent) closed set min-
ing, formal concepts being the mapping between closed
sets of items (or features) and their supporting sets of
transactions (or objects) [4, 7, 9, 17, 18, 19].

We address here the more general problem of closed
pattern mining in n-ary discrete-valued relations. Here-
after, such patterns are called closed n-sets. When
n = 2, this task turns to be the classical closed set min-
ing from a binary relation. Mining n-ary relations with
n > 2 is clearly useful across multiple application do-
mains. For example, in the context of sale data analysis,
we can easily have relations crossing items, customers,
dates, and regions. We may want to extract maximal as-
sociations between such attributes for business decision
making. Another typical (generic) application domain
concerns the numerous situations where object proper-
ties can be recorded as features for a collection of objects
over time. This typically provides ternary relations.

A formal concept associates a closed set of transac-
tions with a closed set of items. This mapping is bijec-
tive. In this perspective, a formal concept is a maximal
pattern w.r.t. the two sets. This definition, used in
FCA (Formal Concept Analysis), is ”generalizable” to
n-ary relations. However, the bijection is not between
two sets anymore. Each (n − 1)-sets can be associated
with the remaining one.

Ideas aiming at directly reusing FCA on prepro-
cessed n-ary relations do not seem to work. The issue
is to find a bijection between n-ary relations and binary
ones on which the extraction of formal concepts pro-
vides the closed n-sets of the original relation. Such a
transformation would certainly lead to a combinatorial
explosion of the number of attributes. Indeed the at-
tributes of the binary relation should combine several
elements of the different sets to encompass the n-ary
relation.

The main challenge of constraint-based closed n-set
mining in n-ary relations relies on the ability to push
constraints during the extraction and to handle an im-

37

portant amount of data. This is especially difficult when
no assumption is made on the arity of the relation and
their attribute domain sizes. The pattern enumeration
strategy becomes even more important than for item-
set and/or formal concept extraction. Indeed, one can-
not enumerate anymore one attribute domain (usually
items) and compute the rest of the pattern thanks to a
Galois connection. In the general case, n− 1 attributes
are needed to determine the remaining attribute.

Furthermore, the enumeration strategy has a ma-
jor impact on the class of constraints which can be ef-
ficiently pushed. To achieve tractability, this is espe-
cially crucial to perform an efficient closeness constraint
checking. Algorithms Trias [11] and CubeMiner [12]
have been recently proposed to compute closed 3-sets
in ternary relations. They have different enumeration
strategies. Trias basically relies on formal concept min-
ing (i.e., closed 2-set mining) from two different binary
relations that are projections of the original ternary re-
lation. It works well if we assume that at least one
attribute has a small domain size. CubeMiner uses a
ternary enumeration that recursively splits the data set
into smaller pieces. Unfortunately, several additional
checks must be performed to ensure the unicity of the
extracted patterns.

We propose a new algorithm called Data-Peeler.
It is inspired by D-Miner [4] which computes complete
collections of closed 2-sets that satisfy minimal size
constraints in binary relations. Data-Peeler extracts
closed n-sets in n-ary relations when n ≥ 2. It
is based on an original enumeration process which
considers any attribute domain on a same basis (i.e.,
no selection of a particular one is done a priori). It
enables to push a large class of constraints called
piecewise (anti)-monotonic constraints. In particular,
this class includes the classes of monotonic and anti-
monotonic constraints. Furthermore, Data-Peeler

efficiently checks the closeness constraint in such a way
that there is no need to store previously computed
patterns. Data-Peeler can exploit new constraints
like the promising isolated constraint : it enables to
compute only patterns containing elements which are
“significantly different from the elements “outside” it”.

The rest of the paper is organized as follows. We
formalize the mining task in Section 2 and we discuss
the type of constraints our algorithm handles. In
Section 3, we present the Data-Peeler algorithm
which extracts closed n-sets under constraints in n-
ary relations. Implementation issues are discussed
in Section 4. Section 5 studies space complexity.
Experimental results are provided in Section 6. Finally,
related work is discussed in Section 7 and Section 8
briefly concludes.

A B C A B C A B C
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1
4 1 1 1 1 1 1

α β γ

Figure 1: Boolean representation of the relation RE ⊆
{A,B,C} × {1, 2, 3, 4} × {α, β, γ}

2 Problem Setting

Let A1, · · · , An be n discrete-valued attributes whose
domains are respectively D1, · · · , Dn. R is a n-ary
relation on these attributes, i.e., R ⊆ D1 × · · · × Dn.
n-sets are elements of 2D1

× · · · × 2Dn

. We now provide
the formal definitions of closed n-sets and the new class
of piecewise (anti)-monotonic constraints. We use the ♯
operator to denote set cardinality.

2.1 Closed n-sets Closed n-sets are a generalization
of formal concepts or closed itemsets to n-ary relations.
Intuitively, a n-set H = 〈X1, · · · , Xn〉 s.t. Xi ⊆ Di is
a closed n-set iff (a) all elements of each set Xi are in
relation with all the other elements of the other sets in
R, and (b) Xi sets cannot be enlarged without violating
(a). Formally, H is a closed n-set iff it satisfies both the
constraints Cconnected and Cclosed:

Definition 1. (Cconnected) Pattern H satisfies
Cconnected iff ∀U = (x1, · · · , xn) ∈ X1 × · · · × Xn,
U ∈ R.

Definition 2. (Cclosed) A pattern H that satisfies
Cconnected is closed iff ∀j = 1 · · ·n, ∀xj ∈ Dj \
Xj , 〈X1, · · · , Xj ∪ {xj}, · · · , Xn〉 does not satisfy
Cconnected.

In binary relations, bi-sets 〈X1, X2〉 satisfying
Cconnected∧Cclosed are formal concepts (i.e., X1 and X2

are closed sets).

Example 1. Figure 1 provides a ternary relation RE.
〈(A,B), (1, 2), (α, γ)〉 and 〈(C), (4), (α, β, γ)〉 are exam-
ples of 3-sets in RE. The 3-set 〈(A,B), (1, 2, 3), (α, γ)〉
violates Cconnected because (A, 3, α) 6∈ RE or (B, 3, γ) 6∈
RE. 〈(C), (3, 4), (β)〉 satisfies Cconnected but not Cclosed

because (C, 1, β) ∈ RE or (C, 3, γ) ∈ RE ∧ (C, 4, γ) ∈
RE.

2.2 Piecewise (anti)-monotonic constraints En-
abling user-defined constraints is extremely useful to
support subjective interestingness and thus the rele-
vancy of the extracted collections. It is also well-known

38

that the active use of constraints (i.e., “pushing” them
into the extraction phase) is a key issue to achieve ex-
traction tractability (i.e., working on large domain sizes
and/or a high density of related elements). For exam-
ple, we may ask for patterns with a minimal number of
elements in some domains (i.e., a counterpart of the clas-
sical minimal frequency constraint on itemsets) and/or
patterns covering at least a given number of elements
of R (i.e., some kind of minimal area or volume con-
straint). We now define the monotonicity property of
constraints in the context of n-set mining.

Definition 3. (Monotonicity) Let us consider a con-
straint C taking m sets P1, · · · , Pm as arguments. Each
argument is a subset of an attribute domain. C is mono-
tonic on its ith argument iff ∀P1, · · · , Pm and ∀E1, E2

s.t. E1 ⊂ E2, C(P1, · · · , Pi−1, E2, Pi+1, · · · , Pm) ⇒
C(P1, · · · , Pi−1, E1, Pi+1, · · · , Pm).

When we have C(P1, · · · , Pi−1, E1, Pi+1, · · · , Pm)⇒
C(P1, · · · , Pi−1, E2, Pi+1, · · · , Pm), constraint C is said
anti-monotonic.

This definition is a straightforward extension of the
monotonicity as defined on binary relations. If a con-
straint is (anti)-monotonic on each of its arguments,
then it is (anti)-monotonic following the classical ter-
minology in the itemset mining framework.

It is however possible to define a new and larger
class of constraints which can be efficiently exploited.
These constraints may have an argument occurring
several times in their definitions. For instance, assume
we want to compute each n-set having a mean above a
threshold α on a criterion V al+ : Di → R

+:

C1(X
i) ≡

∑

x∈Xi V al+(x)

♯Xi
≥ α

The argument Xi appears twice in the expression of
C1. To introduce the notion of piecewise monotonic
constraint, we have to rewrite such a constraint by using
a different argument for each occurrence of the same
argument. Our example constraint can be rewritten as
the new constraint PC1

:

PC1
(P1, P2) ≡

∑

x∈P1
V al+(x)

♯P2
≥ α

A second example would be a constraint which
specifies that each n-set has to contain a proportion of
a given 2-set 〈E,F 〉 larger than a threshold α:

C2(X
i, Xj) ≡

♯(Xi ∩ E)× ♯(Xj ∩ F)

♯Xi × ♯Xj
≥ α

Such a constraint can be rewritten as:

PC2
(P i

1, P
i
2, P

j
1 , P j

2) ≡
♯(P i

1 ∩ E)× ♯(P j
1 ∩ F)

♯P i
2 × ♯P j

2

≥ α

We can now define the class of piecewise (anti)-
monotonic constraints.

Definition 4. (Piecewise (anti)-monotonic con-
straint) A constraint C is piecewise (anti)-monotonic
if its associated constraint PC is either monotonic or
anti-monotonic on each of its arguments.

Both Cconnected and Cclosed constraints are piecewise
(anti)-monotonic. Some other examples of piecewise
(anti)-monotonic constraints are:

• Cµ−size(X) ≡ ♯X ≥ µ

• Cν−volume(X
1, · · · , Xm) ≡

∏m
i=1 ♯Xi ≥ ν

• Cǫ−almost square(X
k, X l) ≡ ♯Xk

♯Xl −
♯Xl

♯Xk ≤ ǫ ∧ ♯Xl

♯Xk −
♯Xk

♯Xl ≤ ǫ

• Cdiffval(X) ≡
∑

x∈X V al+1 (x) −
∑

x∈X V al+2 (x) ≥

0, where V al+1 and V al+2 are positive functions.

Among the piecewise (anti)-monotonic constraints,
let us discuss a promising one when considering pattern
relevancy. For a given closed n-set, nothing enforces the
outside elements to be different enough from the inside
elements. In other terms, an element outside of the n-
set may be in relation with almost all the elements of
the n-set. To avoid the extraction of such n-sets, we
propose a new constraint, namely Cδ−isolated, defined as
follows:

Definition 5. (Cδ−isolated) A n-set H =
〈X1, · · · , Xn〉 is isolated w.r.t. the attribute Xi,
denoted by Cδ−isolated(H, i), iff ∀x ∈ Di \Xi,

♯(K \ R) > δ × ♯K

where K = X1 × · · · × {x} × · · ·Xn and δ ∈ [0, 1] is a
user-defined parameter.

In other words, if this Cδ−isolated constraint is
satisfied, each x ∈ Di that is outside the n-set must have
a density (in terms of relative number of elements in R)
on the elements inside the n-set lower than 1−δ. When
δ = 1, any element of Di outside the n-set must not be
in relation with elements from the (Dj)j 6=i contained
in the n-set. When δ = 0, the C0−isolated constraint is
equivalent to the Cclosed constraint on dimension i.

Example 2. In our running example RE, for H =
〈(A,B,C), (1), (α, β)〉, C0.4−isolated(H, 2) is true but
C0.5−isolated(H, 2) is not because of the element 2 or the
element 4.

To summarize, the data mining task considered
in this paper is the extraction of closed n-sets that
satisfy piecewise (anti)-monotonic constraints and, in
particular, the Cδ−isolated constraint.

39

3 The Data-Peeler Algorithm

3.1 Enumeration strategy The enumeration of all
the patterns by materializing and traversing all possible
n-sets is in practice not feasible. Therefore, we look for
a decomposition of the original search space into smaller
pieces such that each portion can be independently
studied in main memory and such that the union of the
closed n-sets extracted from each portion is the whole
collection of closed n-sets. Thus, n-sets are explored in
a depth-first search manner.

Data-Peeler uses a binary enumeration. Each
node N in the enumeration tree is a pair (U, V) where
U and V are two n-sets. N represents all the n-
sets containing all the elements of U and a subset
of the elements of V . In other words, this is the
search space of n-sets 〈X1, · · · , Xn〉 s.t. ∀i = 1 · · ·n,
U i ⊆ Xi ⊆ U i ∪ V i. Notice that the root node
(〈∅, · · · , ∅〉, 〈D1, · · · , Dn〉) represents all possible n-sets.
In the contrary, nodes such that ∀i ∈ 1 . . . n, V i = ∅
represent a single n-set 〈U1, . . . , Un〉.

Example 3. The node E = (U, V) = (〈(B),-
(1, 2), (α)〉, 〈(A), (3), ∅〉) represents the 3-sets 〈(B),-
(1, 2), (α)〉, 〈(A,B), (1, 2), (α)〉, 〈(B), (1, 2, 3), (α)〉 and
〈(A,B), (1, 2, 3), (α)〉.

At a node N = (U, V), Data-Peeler recursively
selects an element p from V (see below for the se-
lection criterion) and generates two new nodes NL =
(UL, VL) = (U ∪ {p}, V \ {p}) and NR = (UR, VR〉 =
〈U, V \ {p}). NL (respectively NR) represents the n-
sets of N which contain (resp. do not contain) p.

Example 4. Considering the node E from Example 3,
the selection of element 3 of V leads to the two
nodes EL = (〈(B), (1, 2, 3), (α)〉, 〈(A), ∅, ∅〉) and ER =
(〈(B), (1, 2), (α)〉, 〈(A), ∅, ∅〉).

3.2 Checking Cconnected It is possible to exploit con-
straint Cconnected to reduce the size of VL and then cut
down the number of candidates to be considered. In-
deed elements of V that cannot be added to UL without
violating Cconnected can be safely removed from VL.

More formally, let U = 〈U1, · · · , Un〉, V =
〈V 1, · · · , V n〉 and N = (U, V). If the selected element
is pj ∈ V j , then NL = (UL, VL) and NR = (UR, VR), re-
turned by Children(N, pj) = (NL, NR), are such that:

• UL = 〈U1, · · · , U j ∪ {pj}, · · · , Un〉

• VL = 〈V ′1, · · · , V ′n〉 such that V ′i = V i \ {v ∈
V i | ¬ Cconnected(〈U

1, · · · , {pj}, · · · , {v}, · · · , Un〉}
when i 6= j and V ′j = V j .

• UR = U

• VR = 〈V 1, · · · , V j \ {pj}, · · · , V n〉

UL now contains pj meaning that pj belongs to
all the n-sets represented by NL. All the elements of
V \ {pj} that, once added to UL, lead to unconnected
n-sets, have been removed from VL. For NR, pj is simply
removed from VR and then NR does not contain n-sets
with pj anymore. Thanks to this enumeration strategy,
all the Cconnected n-sets are extracted once and only
once.

Example 5. In our running example, when en-
forcing Cconnected, we eventually obtain EL =
(〈(B), (1, 2, 3), (α)〉, 〈∅, ∅, ∅〉). Indeed, element A cannot
be added to UL = 〈(B), (1, 2, 3), (α)〉 to form a n-set
satisfying Cconnected because (A, 3, α) 6∈ R. Thus A is
absent from VL.

Until now, we discussed how to extract all n-sets
satisfying Cconnected in n-ary relations. We now need to
enforce the closeness property.

3.3 Checking Cclosed We want to exploit the close-
ness constraint during the enumeration process (i.e.,
giving rise to safe pruning) rather than in a post-
processing phase. Basically, if there exists an element
pj such that pj ∈ Dj \ (U j ∪ V j) and Cconnected(〈U

1 ∪
V 1, · · · , {pj}, · · · , Un ∪ V n〉) is satisfied, then all the n-
sets represented by N can be extended with pj to form
a larger n-set satisfying Cconnected. In other terms, they
are not closed. In that case, the n-sets are closed in the
data set formed by elements of U and V but not in the
whole data set. Therefore, such a node can be safely
pruned.

Thanks to our enumeration strategy, we do not have
to check every element of D1 × · · · × Dn \ (U ∪ V).
Indeed, elements which have been removed from V when
applying Cconnected do not need to be checked. By
definition, they have been removed because they cannot
be used to form any connected n-set with the elements
of U . Only the elements selected and removed during
the enumeration, that is to say when NR is built, have
to be checked. We use a stack denoted S in which we
store such elements.

More formally, the closeness constraint is defined
in the node space as follows: Cclosed((U, V),S) ≡ ∀e ∈
S,¬Cconnected(〈U

1 ∪ V 1, · · · , {e}, · · · , Un ∪ V n〉).

Example 6. Referring to the running example, assum-
ing that γ ∈ S at the node E, then EL satisfies Cclosed,
whereas ER does not (3 can extend it).

3.4 Piecewise (anti)-monotonic constraints Let
us now study how Data-Peeler can take advantage

40

of piecewise (anti)-monotonic constraints, i.e., how it
can prune a node as early as possible without missing
any closed n-set. The idea is to define a new constraint
ModC in the node space such that, for all H repre-
sented by N, ¬ModC(N) ⇒ ¬C(H). In other words,
if a node does not satisfy ModC then no n-set it rep-
resents satisfies C. When V i = ∅, for all i, we have
¬ModC(N)⇔ ¬C(H)

Definition 6. Let C a piecewise (anti)-monotonic con-
straint. Let us denote by M(PC) (respectively A(PC))
the set of parameters of PC (see Definition 3) which
are monotonic (resp. anti-monotonic). By definition,
A(PC) ∪M(PC) contains all the parameters of PC.

We can now defineMod(C):

ModC((U, V)) ≡ PC(P1, · · · , Pm)

where ∀j = 1 . . . m, Pj = U i if parameter Pj belongs
to M(PC) and is related to attribute domain i or
Pj = U i ∪ V i if parameter Pj belongs to A(PC) and
is related to attribute domain i.

Example 7. Let C1(〈X
1, X2〉) ≡ ♯X1 × ♯X2 ≥ 10

and C2(〈X
1, X2, X3〉) ≡ ♯X1/♯X2 ≥ 8 ∧ a 6∈ X3 be

two piecewise (anti)-monotonic constraints. The related
constraints in the node space are:

• ModC1
((U, V)) ≡ C1(U

1 ∪ V 1, U2 ∪ V 2)

• ModC2
((U, V)) ≡ C2(U

1 ∪ V 1, U2, U3)

In Example 3, ModC1
((〈(A,B), (1, 2)〉, 〈(C), (4)〉)) ≡

♯{A,B,C} × ♯{1, 2, 4} ≥ 10 is false. This node can be
safely pruned.

Figure 2 depicts a part of the enumeration tree of
Data-Peeler on RE . It illustrates Examples 4 to 6.
Every closed 3-set 〈X1, X2, X3〉 satisfying C5−volume is
to be extracted. The bold circled leaf is a closed n-set.
The crossed nodes are pruned.

4 Implementation

4.1 Algorithm Data-Peeler is a depth-first search
algorithm. It takes two arguments: the current node N
and its related stack S. It starts with the root node
N0 = (〈∅, · · · , ∅〉, 〈D1, · · · , Dn〉) and an empty stack
S = ∅. Its major steps are presented in Algorithm 1.
First of all, the closeness property is checked (see
Section 3.3) as well as a user-defined piecewise (anti)-
monotonic constraint C (see Section 3.4). If they are
both satisfied, either the n-set U is output if there is no
element to be enumerated anymore, or the enumeration
process keeps going by splitting the current node N

into two new nodes. In that case, an element p of V
to be enumerated is selected (see below Section 4.2).
Then, the two new nodes are built with the function
Children(N, p) described in Section 3.2. Finally, Data-

Peeler(NL,S) and Data-Peeler(NR,S ∪ {p}) are
recursively called. Notice here that the stack S of
NR now contains p. Indeed, p has been removed from
NR by the enumeration and not by the enforcement of
Cconnected.

Algorithm 1 Data-Peeler

Input: A node N = (U, V) and a stack S
Output: Closed n-sets satisfying C
if Cclosed(N,S) ∧ModC(N) then

if Is empty(V) then
output U = 〈U1, · · · , Un〉

else
p← Select(V)
(NL, NR)← Children(N, p)
Data-Peeler(NL,S)
Data-Peeler(NR,S ∪ p)

end if
end if

4.2 Selecting the element to be enumerated As
we saw in Section 3.1, an element p of V is selected
to proceed with the enumeration, i.e., to generate two
new nodes partitioning the original one. Our selection
strategy is to select p to maximize the number of
elements that Cconnected enforcement can potentially
remove from V . First, Data-Peeler sorts elements of
every attribute domain in increasing order w.r.t. their
density in R. We use the fact that the less elements
are connected in R, the more likely Cconnected will help
to remove elements from the current node during the
enumeration phase.

So far, the choice of the attribute domain, on
which the element is to be enumerated, remains open.
Elements of an attribute may be removed only when
(a) they are in V and (b) elements from the n− 1 other
attributes are in U . The following formula gives the
maximum number of elements of R which are browsed
when enforcing Cconnected after an element from V d is
enumerated:

∑

k 6=d

(

♯V k ×
∏

l 6∈{d,k}

♯U l
)

We choose to enumerate an element on the attribute
domain d maximizing this formula. The experiment
in Section 6.2 empirically shows that the proposed
selection criteria outperforms other sensible criteria.

41

A

(〈(B), (1, 2), (α)〉〈(A), ∅, ∅〉)

(〈(B), (1, 2), (α)〉〈(A), (3), ∅〉)(〈(B), (1, 2), (α, γ)〉〈(A), ∅, ∅〉)

(〈∅, ∅, ∅〉〈(A,B,C), (1, 2, 3, 4), (α, β, γ)〉)

(〈(B), (1, 2), (α)〉〈(A), (3), (γ)〉)

(〈(B), (1, 2), (α, γ)〉〈∅, ∅, ∅〉)

γ γ

3A 3

(〈(A,B), (1, 2), (α, γ)〉〈∅, ∅, ∅〉)

3 removed thanks to Cconnected

Cclosed C5−volume Cclosed

(〈(B), (1, 2, 3), (α)〉〈∅, ∅, ∅〉)

Figure 2: Part of the enumeration tree on RE

5 Space Complexity

The size (in bits) of an element ID is denoted a and the
size (in bits) of a pointer is denoted b.

5.1 Storing the data set Unlike for binary relation
mining algorithms, it is not possible to speed up the ex-
traction by storing for each element e of D1, . . . , Dn the
projection of the input data set R on e (usually called
“tidset”). The use of sophisticated data structures like
FP-Trees [10] remains an open problem because of the
multiple attributes to be considered and the need to use
each one during the enumeration.

The whole data set must be stored in main memory
to check both Cconnected and Cclosed. Two classes of
data structures were investigated, namely a bitset-based
structure, and a list-based structure.

In both cases, the data set is stored in a complete
prefix tree of height n−1 corresponding to the n−1 first
attributes. The nodes at depth i ∈ 0 . . . n − 2 always
have ♯Di+1 children, one for every element of Dn+1.
From depth 0 to n− 2, the edges binding a node to its
children are pointers. Each leaf stands for a prefix of
size n − 1 of every element of D1 × · · · × Dn−1. The
difference between the two studied structures resides in
how the last attribute elements are stored.

5.1.1 The bitset-based structure In such a struc-
ture, every leaf of the prefix tree points to a bitset repre-
senting the last attribute elements. A “0” (respectively
“1”) in the bitset stands for the absence (respectively
the presence) of the related element of R. The presence
of such an element is tested in constant time. The space
occupied by the data set is:

b

n−1∑

i=0

i∏

j=1

♯Di

︸ ︷︷ ︸

the depths from 0 to n−1

+

n∏

j=1

♯Dj

︸ ︷︷ ︸

the bitsets

5.1.2 List-based structure Here, every leaf points
to a list of IDs of elements of Dn. Each of them
represents an element of R.

The presence of such an element is tested in
O(log ♯Dn). Choosing Dn as the smaller attribute do-
main minimizes the access time.

If d = ♯R
Q

n
i=1

♯Di denotes the density of the data set,

the space requirement is:

b

n−1∑

i=0

i∏

j=1

♯Dj

︸ ︷︷ ︸

the depths from 0 to n−1

+ a× d

n∏

j=1

♯Dj

︸ ︷︷ ︸

the lists

Compared to the bitset-based structure, a space
gain occurs if and only if d < 1

a
. Taking a = 64

(size of an integer on modern hardware), the density
of the data set must be under 1.56% for the list-based
structure to present a space advantage over the bitset-
based structure. Thus, the bitset-based structure is
always better in data access time and, in most cases,
in space requirement too. Therefore, we choose this
structure for our implementation.

Notice that other sparser structures were theoreti-
cally investigated. They consist in using an incomplete
prefix tree. Of course, the time access cost increases
(O(

∑n
i=1 log ♯Di) for a totally sparse tree). Further-

more, the space requirement can be greater since we
need to add an element ID to each node. Indeed the
child node addressed by a pointer cannot be identified
from the position of the child in the list of children (some
are “missing”). It can be shown that a space gain oc-
curs only when, in average, a node at depth i has less
than b

a+b
♯Di+1 children. Unless the data set is very

sparse and/or non-homogeneous, even depth n− 2 does
not satisfy such a property. This justifies the fact that
we focused on the list-based structure where only the
deepest level is sparse.

42

5.2 Storing the nodes of the enumeration tree
Both U and S can be statically stored. At every
recursive call, one single element is pushed in either U
(when constructing NL) or S (when constructing NR)
and popped once this recursive call is completed.

Any element of V can be removed when Cconnected

is enforced. As a result, V cannot be statically stored.
The construction of the enumeration tree being depth-
first, the worst case is bound to reaching the deepest
node. At worst, the depth of the enumeration tree is
∑n

i=1 ♯Di where each recursive call removes only one
element from V . In this case, the required space to
store V is:

a

Pn
j=1

♯Dj

∑

i=1

i =
a

2

n∑

j=1

♯Dj × (

n∑

j=1

♯Dj − 1)

5.3 Space complexity Combining the results from
Section 5.1 and Section 5.2, the space complexity of
Data-Peeler is:

• O((♯D1 + ♯D2)2) if n = 2 (the space requirement
for the V set predominates)

• O(
∏n

i=1 ♯Di) if n > 2 (the space requirement for
the data set predominates)

6 Experimental Results

Every experiment described here has been performed
on a GNU/Linux system equipped with a AMD 2600+
processor and 512 Mo of RAM. Data-Peeler is imple-
mented in C++ and compiled with GCC 4.1.2. Every
plotted curve uses a logarithmic scale for its time axis.

6.1 Presentation of the data sets

6.1.1 Synthetic data sets To study the behavior
of Data-Peeler and to compare it to competitors in
different situations, we have used the IBM Quest data
generator [3]. Various “basket data”-like data sets with
predefined attributes and densities have been generated.
Three attributes are considered, namely the customers,
the bought items, and the time periods (in months).

6.1.2 Real data sets To assess the added-value
of Data-Peeler both in terms of the relevancy of
the extracted n-sets and its performance w.r.t. com-
petitors, we have been working on logs from the
DistroWatch.com website. This popular website gath-
ers comprehensive information about GNU/Linux and
BSD distributions. Every distribution being described
on a separate page, a visitor loading such a page is con-
sidered “interested” in the distribution. Every IP ad-
dress is analyzed to identify the country it comes from.

Timestamps allow to study the evolution of the interest
granted to the different distributions along time. The
whole data set gathers 36 months, 243 countries and
538 distributions. Two different data sets have been de-
rived from it. In both cases, data have been normalized
so that every country and every time period has the
same importance. They have been transformed in 0/1
data in the following way: for each distribution, we kept
the elements of R containing this distribution and such
that its normalized interest exceeds a threshold equals
to one quarter of the maximal normalized interest for
this distribution in R.

6.2 Impact of the enumeration strategy Let us
first empirically compare the enumeration strategy pre-
sented in Section 4.2 with two other sensible strategies.
For each node (U, V),

• the enumerated attribute j is chosen such that
it has the smallest non-empty ♯V j . Among all
the elements of V j , the element with the smallest
density in R is selected.

• the enumerated element pj ∈ ∪n
i=1V

i is chosen such
that (D1 ×D2 × . . .×{pj}× . . .×Dn) \R has the
largest cardinality.

The first strategy enumerates every element of the
n − 2 attributes with the smallest cardinalities. Then,
when enumerating elements from the two remaining
attributes, Cconnected may finally succeed in reducing
the V set.

The second strategy globally sorts the elements of
the attributes altogether. If every attribute domain
has the same cardinality, this order follows a growing
density. Otherwise, an element pj from a small attribute
domain size is usually preferred since D1× . . .×{pj}×
. . .×Dn is larger.

Tests have been performed on the data sets gener-
ated by the Quest data generator. Whereas the cho-
sen enumeration strategy of Data-Peeler scales very
well, the other strategies force us to choose small size
attributes to be able to plot results: 36 customers buy-
ing in average 6 items out of 18 (density of about 33%)
per month. The number of months has been varying
from 6 to 36 and we enforced the constraint that every
closed 3-set had to contain at least 3 customers, 2 items
and 3 months.

Results are represented in Figure 3. The enumera-
tion strategy of Data-Peeler largely outperforms the
two other strategies. The performances of Enumera-
tion 1 mainly depend on the size of the smallest at-
tribute domain (above 18 months, the smallest attribute
domain becomes the set of items which is constant).

43

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

tim
e

(s
)

number of months

Basket Analysis Problem Along Time

Data−Peeler enumeration
Enumeration 1
Enumeration 2

Figure 3: Comparing Data-Peeler enumeration with
two other sensible strategies

This behavior, as mentioned earlier, is due to the com-
plete enumeration of the smallest domain. The per-
formance of Enumeration 2 emphasizes the need, when
selecting the element to be enumerated, to take into
account the characteristics of the current node.

6.3 Comparisons with competitors Data-

Peeler is compared with both CubeMiner [12] and
Trias [11] on 3-ary relations. We have been using the
implementations provided by their respective authors.

6.3.1 Mining synthetic data sets Comparisons
with CubeMiner and Trias are achieved on synthetic
data sets provided by the Quest data generator. 144
customers buying in average 6 items out of 72 (density
of about 8.3%) per month have been generated. We
make the number of months vary from 6 to 66 and
we constrain every closed 3-set to involve at least 2
customers, 2 items and 2 months.

The results are represented in Figure 4. Data-

Peeler outperforms its competitors by several orders
of magnitude. The growing number of months (the
smallest domain) significantly alters the performance of
Trias, whereas it has less effect on CubeMiner.

For example, considering data along 48 months, to
extract all the 5801 closed n-sets, CubeMiner takes 1
hour and 50 minutes, Trias 3 hours and 14 minutes,
whereas Data-Peeler only needs 2.5 seconds. Unlike
its competitors, even with 600 months, Data-Peeler

is still able to extract all closed n-sets in a reasonable
time, i.e., 1 minute and 21 seconds for 431892 closed
n-sets.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

tim
e

(s
)

number of month

Basket Analysis Problem Along Time

Data−Peeler
CubeMiner

Trias

Figure 4: Comparison w.r.t. CubeMiner and Trias

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35

tim
e

(s
)

minimal number of months

DistroWatch.com Log Analysis

Data−Peeler
CubeMiner

Trias

Figure 5: Comparison w.r.t. CubeMiner and Trias

(real data)

6.3.2 Empirical evaluation on a real data set
A ternary relation has been derived from the logs of
DistroWatch.com. It indicates, month after month,
whether visitors from a country look interested in
a distribution. All data (36 months, 243 countries
and 538 distributions) have been kept. Compared to
the synthetic data sets considered above, this one is
relatively large even if it has one small attribute domain.
It is also much sparser since its density is 0.55%. We
have constrained every closed 3-set to involve at least
2 countries and 2 distributions. The minimal number
of months a closed 3-set must contain has been varying
from 0 to 36.

Results are represented in Figure 5. Data-Peeler

outperforms its competitors by several orders of magni-
tude. Thanks to the small number of months in the data
set, Trias succeeds in extracting the closed 3-sets even

44

without any constraint on the time attribute. CubeM-

iner suffers a lot from the global size of the data set.
It is unable to perform the extraction under a size con-
straint of 33/36 months.

With a requirement of at least 6 months out of
36, Data-Peeler needs 2.6 seconds and Trias 69.3
seconds to extract all the 87 patterns.

Without any minimal size constraint on the number
of months, 10658 closed n-sets are computed in 4.4
seconds by Data-Peeler and in 1531 seconds by
Trias. In both cases, CubeMiner can not perform
the task.

6.4 A qualitative feedback

6.4.1 Data and problem setting We have de-
rived an interesting 4-ary relation from the logs of
DistroWatch.com. It takes in consideration visitors
(identified with their IP addresses) who have loaded
at least two different distribution pages the same day.
It is assumed that this is a sign of a common inter-
est in the visited distributions. The less relevant coun-
tries and distributions have been removed. The days
have been aggregated in semesters (the release period
of many distributions). In the end, we have a 4-ary re-
lation RDW (D1, D2, S, C) indicating that people from
country C (among 39) show a common interest in dis-
tributions D1 and D2 (among 323) during the semester
S (among 6). This relation covers 1.7% of the pos-
sible associations between attributes. We aim at ex-
tracting all the maximal sets of distributions which
are simultaneously interesting for people from a max-
imal set countries during a maximal set of semesters.
To obtain them, we need to extract the closed 4-sets
〈X1, X2, X3, X4〉 ∈ 2D1 × 2D2 × 2S × 2C of RDW such
that X1 = X2. This constraint is anti-monotonic. How-
ever, handling it by a modification of the enumeration
strategy is much more efficient: whenever a distribution
is chosen to be enumerated (either moved from V to U
or from V to S), the same distribution in the other do-
main is moved in the same manner. In the following, all
the extracted n-sets will satisfy this constraint.

6.4.2 Minimal size and volume constraints
Data-Peeler extracts every closed 4-set from the data
set in 229 seconds. Since it is impossible to inspect all
the 602290 closed 4-sets, minimal sizes are enforced on
every set: we constrain every closed 4-set to involve at
least 2 semesters, 2 countries and 3 distributions. After
20 seconds, Data-Peeler provides 17196 closed 4-sets.
Again, it prevents from a systematic interpretation of
each closed 4-set.

Therefore, we have enforced a volume constraint

to keep only the largest patterns. We considered the
new constraint Cv−weighted volume ≡

∑n
d=1(♯X

d)α(d) ≥ v

where α(d) =
n

Pn
i=1

♯Xi

♯Xd . It is a generalization of
a minimal volume constraint where every attribute is
weighted w.r.t. its cardinality. The function α is such
that elements from an attribute domain which is twice
smaller will “count” twice more in the weighted volume.
Cv−Weighted V olume is anti-monotonic. It reduces the
computation to 14 seconds and the number of extracted
closed 4-sets to 352.

Given such a collection of 352 patterns, it has
been possible to manually inspect them and assess their
relevancy.

• 94 closed 4-sets have on the distribution domains
a subset of {Fedora, FreeBSD, Debian, Ubuntu,
Gentoo, MEPIS, Slackware, Yellow Dog, Man-
driva, openSUSE}. Considering all of them, every
semester is mentioned. All these distributions are
mainstream general-purpose distributions. These
closed 4-sets involve many countries all over the
world. However Great Britain shows off by being
present in all these n-sets but one.

• 64 closed 4-sets have on the distribution do-
mains a subset of {Astaro, ClarkConnect, IPCop,
m0n0wall, Devil, SmoothWall, CensorNet}. Ev-
ery semester is involved. These seven distributions
are meant to serve a common interest: they are
all specifically designed to act as a firewall. These
closed 4-sets involve countries from every continent.
Australia (closely followed by Belgium) is the most
present country.

• 80 closed 4-sets have on the distribution domains a
subset of {dyne:bolic, ArtistX, AGNULA, MoviX,
GeeXboX}. Every semester is involved. These five
distributions are meant to serve a common interest:
they are all specifically designed to manipulate
movies and music. These 4-sets mainly contain
occidental countries but India is very present too.
Switzerland belongs to all these 4-sets. GNU/Linux
is obviously a popular choice among Swiss artists.

• 83 closed 4-sets have on the distribution domains a
subset of {dyne:bolic, ArtistX, AGNULA, MoviX,
GeeXboX} ∪ {Ubuntu, Damn Small, KNOPPIX,
MEPIS, PCLinuxOS, Xandros}. It could be seen
as a “collision” between two separate interests.
Nevertheless, the distributions from the second set
being primarily designed for desktop use, they are
also suited to play movies and music. Furthermore,
every distribution from these two sets uses the APT
package management system (if any).

45

The few remaining closed 4-sets are interesting
too. Among the distributions which appear once in
the returned closed 4-sets, Gentoox and GentooTH
form with Gentoo a closed 4-set running along the last
four semesters (GentooTH did not exist before) in 11
countries. Their common point is obvious from their
names: they are all based on Gentoo.

In the same way, Knopperdisk and Feather are men-
tioned in one single closed 4-set where they are asso-
ciated with Damn Small along the last five semesters
(Knopperdisk did not exist before). These distributions
have a strong common point: all of them are KNOPPIX
light derivatives aimed at being installed on a USB pen
drive.

6.4.3 δ-isolated constraint Instead of searching for
large closed patterns, we now focus on extracting closed
4-sets which are isolated in the country domain by
enforcing the Cδ−isolated constraint.

We first set δ = 0.75 on the country attribute.
Keeping the size constraints from the previous section,
Data-Peeler returns one single closed 4-set. It in-
volves, during two semesters, the distributions B2D,
Linpus and PUD for Taiwan and Hong Kong. These
three distributions are Taiwanese and insist on the di-
rect support of traditional Chinese. Traditional Chi-
nese characters are almost exclusively used in Taiwan,
Hong Kong and Macao (which was not kept among the
39 countries in the data set). Indeed, the impact of
this particularity is revealed thanks to the C0.75−isolated

constraint.
When lowering δ to 0.7, Data-Peeler returns two

additional closed 4-sets. Both of them refer to Russia
and Ukraine during 2006 and involve ALT, ASP and one
mainstream distribution (either Ubuntu or Mandriva).
Both ALT and ASP are Russian distributions. Again,
the particularity of the Russian alphabet as the default
character encoding is captured thanks to the Cδ−isolated

constraint.

7 Related Work

We do not consider that pattern discovery in binary
relations (e.g., mining closed 2-sets) has to be studied
in details here. Instead, we focus on n-ary relation data
mining where n ≥ 3. A couple of analysis techniques for
real valued matrices with n dimensions are mentioned
too.

7.1 Real-valued matrices Considering kinetic mi-
croarray data, Jiang et al. [14] have proposed an ad-
hoc multi steps algorithm to compute maximal sets of
genes which are coherent on a subset of samples dur-
ing the whole time series. For each gene and each pair

of samples, it computes the Pearson’s correlation coef-
ficient between these two time series. A user defined
threshold is then used to capture strong correlations.
Then a samples × samples matrix is constructed for
each gene from which maximal cliques are computed.
They correspond to maximal sets of samples coherent
for the corresponding gene. Finally, for each sample set,
the corresponding maximal gene set is computed, i.e., a
gene g is associated with a sample set S if there exists
a maximal coherent sample set Sg (a clique associated
with g) such that S ⊆ Sg. Such a processing is more
efficiently achieved with Data-Peeler. Furthermore,
the time dimension is considered at a global scale. Thus
the method is unable to find temporal trends applicable
to only a subset of the time points.

Considering the same targeted application, [20] pro-
poses to mine different types of clusters in ternary rela-
tions (genes×samples×timepoints). It first computes a
range multigraph for each time slice. Vertices stand for
biological samples and there is an edge for each gene set
having a similar expression ratio. On this graph, maxi-
mal cliques are computed and post-processed to produce
bi-clusters: the set of samples associated with the ver-
tices and the set of genes obtained by intersecting the
sets associated with the edges. Finally, a new multi-
graph is computed where each time point is a vertex
and each pair of highly overlapping bi-clusters (gene-
set, samples) forms an edge between two time steps.
Tri-clusters are obtained by computing maximal cliques
on such a graph. By constructing a ternary relation
genes×samples× timepoints, Data-Peeler can com-
pute similar patterns in a single step.

Sun et al. [16] propose to extend Principal Compo-
nent Analysis to sequences of tensors (data cubes with
M ≥ 3 attribute domains). Each tensor gathers the
measurements for a time step. The so called tensor
analysis consists in computing M orthogonal matrices
such that the reconstruction error is minimized. Each
projection matrix crosses one attribute domain of the
data with syntactical variables summarizing it. Like
PCA, the results of tensor analysis may be difficult to
interpret since all the data coordinates participate in
the linear combination that may mix both positive and
negative weights, which might partly cancel each other
and turn the result to be difficult to understand.

7.2 Logic minimization Data-Peeler extracts
patterns from a n-ary relation between finite sets. Con-
sidering these sets as the domains of multiple-valued
variables, the relation can be seen as the truth table of
a multiple-valued logic function with a range {’0’, ’1’}.
Boolean functions are a specialization of this framework
where every set gathers two elements (usually bound to

46

the semantics ”true” and ”false”).
The Karnaugh map [13] is a tool to minimize such

Boolean functions. This method is to be applied by
hand (”by eye” would be more correct since it exploits
the human capability to discern geometrical patterns).
For this reason, it works well for up to four variables,
and it becomes unpractical for more than six variables.
It relies on organizing the truth table in such a way that
every maximal rectangle of ’1’ gives a ”prime implicant”
(a disjunction of conjunctions) minimizing the part of
the Boolean function responsible for the ’1’s of the
rectangle. Once every ’1’ is ”covered” by at least one
prime implicant, the disjunction of the prime implicants
is a minimization of the original Boolean function.
Later, the QuineMcCluskey algorithm [15] was designed
to deal with more variables. The procedure basically
remains the same. However, the organization of the
truth table, used in the Karnaugh map, is substituted
by a tabular form which better suits computers’ way
of processing data. This algorithm always returns the
minimal form of the Boolean function to the cost of
finding all prime implicants.

The Espresso algorithm [6] uses a different ap-
proach. The returned function is not always the min-
imal form (but close to it) and the computation is re-
duced (in both memory and time) by orders of magni-
tude. It is still heavily used, in particular in the design
of logic circuits. Espresso was adapted to deal with
multiple-valued logic functions too.

In this perspective, Data-Peeler is a prime impli-
cant extractor for multiple-valued logic functions. How-
ever, it has been designed for the extraction of patterns
under constraints, whereas Espresso (or its predeces-
sors) outputs a tiling of the data set. Furthermore
Data-Peeler can handle huge data sets without the
time explosion occurring with Espresso.

7.3 Mining multi-relational data Multi-relational
data mining leads to further extensions of pattern
mining in binary relations. New problems arise as how
to preserve the monotonic properties of the new patterns
and how to check pattern closeness defined w.r.t. the
relations. Afrati et al. [1] have proposed different
algorithms and conditions under which the Apriori

framework can be used to preserve the monotonicity
properties. Garriga et al [8] have proposed, within an
inductive logic programming framework, a clever way to
unify several pattern mining problems, e.g., itemset and
graph mining. Intuitively, patterns are sets of elements
connected from sets of relations and closed w.r.t. these
connections. Using two popular subsumptions and two
interpretations, they propose different algorithms to
deal with multi-relational data sets.

7.4 3-set mining Let us now consider the two di-
rect competitors w.r.t. our proposal, namely Cube-

Miner [12] and Trias [11]. We already illustrated in
Section 6.3 that our algorithm significantly outperforms
these state-of-the-art algorithms.

First, in [12], Ji et al. have proposed two algorithms
to compute closed 3-sets for 3-ary relations. The
first one, called Representative slice mining consists in
computing all subsets of the smallest attribute domain,
and for each subset constructing the corresponding 2D
Boolean matrix using the bitwise and operator between
elements of this attribute. Then, a frequent pattern
algorithm is used on each Boolean matrix and a post-
processing phase removes 3-sets which are not closed.

The second one, called CubeMiner, directly oper-
ates on the ternary relation. It consists in using cubes
X×Y ×Z called cutters such that none of their elements
are in relation with each others, i.e., generalizing the
cutters introduced for constraint-based mining of formal
concepts in [4]. These cutters are recursively applied to
generate candidates containing less 0 values than their
parents: for each cutter, 3 candidates are constructed,
one without elements from X, a second one without el-
ements from Y and a third one without elements of Z.
Several checks must be performed on each candidate to
ensure their closeness and their unicity. The unicity is
obtained by making sure that removed elements are not
included in a previously applied cutters on this branch.
It requires to intersect the current cutter with all those
which were previously used. The closeness is evaluated
by making sure that there is no previously used cutters
such that their elements could be added to the current
candidates. Consequently, each candidate must be com-
pared two times to the elements of the cutter list. The
enumeration process of Data-Peeler does not require
to check the unicity of each candidate.

In [11] , Jaschke et al. have proposed the Trias

that also computes closed 3-sets in a ternary relation.
It basically relies on formal concept computation on two
different binary relations. To compute all closed n-sets
on a relation R ⊆ D1×D2×D3, Trias first constructs
a new relation R1 ⊆ (D1, D2 × D3) whose columns
correspond to couples of elements from D2 and D3.
Formal concepts are extracted in this relation. Each
formal concept 〈A,B〉 is such that B contains couples
from D2 × D3 in relation with each of the elements
of A ⊆ D1. The set B stands for a relation which is
not fully connected (i.e., there are false values in its
Boolean representation). Thus, in a second step, Trias

computes formal concepts in the relation generated by
B and checks if the obtained formal concepts are closed
w.r.t. D1. This step is easily carried out by checking if
its closure is equal to A.

47

8 Conclusion

We have proposed a new correct and complete algorithm
called Data-Peeler and we have defined the class
of constraints it can efficiently exploit. From a n-ary
relation, Data-Peeler computes every closed n-set
satisfying given piecewise (anti-)monotonic constraints.

Previous works mainly deal with the binary relation
case (i.e., the popular 0/1 matrix case) and numerous
algorithms have been proposed to compute collections
of closed 2-sets, possibly constrained by user-defined
properties. Recently, two algorithms were designed
for the ternary relation case, namely CubeMiner and
Trias. Although Data-Peeler is designed to handle
relations of any arity, our empirical study has illustrated
that, in various settings, Data-Peeler outperforms
both CubeMiner and Trias by orders of magnitude.

A real-life 4-ary relation has been mined to assess
the qualitative added-value of closed n-set mining. In
this application, we have interpreted the relevancy of
the extracted patterns under various piecewise (anti)-
monotonic constraints. In particular, the introduced
Cδ−isolated constraint has been proved useful.

We look forward to experimenting Data-Peeler in
different fields. So far, we have considered Basket Data
Analysis and Web Usage Mining scenarios but we might
investigate very soon its application for kinetic gene
expression data analysis and dynamic graph mining. We
also plan to tackle the abundance of very similar closed
n-sets by clustering them, a simple idea that has been
recently proved useful in the 2-dimensional case [5].
Acknowledgments We want to thank the authors of
CubeMiner and Trias algorithms for providing their
implementations and Ladislav Bodnar for sharing with
us the DistroWatch.com logs. This work is partly
funded by EU contract IST-FET IQ FP6-516169, INRA
and ANR Bingo2 (MDCO 2007).

References

[1] F. Afrati, G. Das, A. Gionis, H. Mannila, T.
Mielikainen and P. Tsaparas, Mining Chains of Rela-

tions, IEEE ICDM’05, pp. 553–556.
[2] R. Agrawal, T. Imielinski and A. Swami, Mining Asso-

ciation Rules between Sets of Items in Large Databases,
ACM SIGMOD’93, pp. 207–216.

[3] R. Agrawal and R. Srikant, Fast Algorithms for Min-

ing Association Rules in Large Databases, VLDB’94),
Morgan Kaufmann, pp. 487–499 (Introduction to the
Quest data generator).

[4] J. Besson, C. Robardet, J-F. Boulicaut and S. Rome.
Constraint-Based Formal Concept Mining and its Ap-

plication to Microarray Data Analysis. Intelligent Data
Analysis 9(1), IOS Press (2005), pp. 59–82

[5] S. Blachon, R. G. Pensa, J. Besson, C. Robardet,
J.F.Boulicaut and O. Gandrillon. Clustering Formal

Concepts to Discover Biologically Relevant Knowledge

from Gene Expression Data, In Silico Biology 7(0033)
(2007).

[6] R. K. Brayton, C. T. McMullen, G. D. Hachtel and
A. L. Sangiovanni-Vincentelli, Logic Minimization Al-

gorithms for VLSI Synthesis, Kluwer Academic Pub-
lishers (1984).

[7] A. Gely, A Generic Algorithm for Generating Closed

Sets of a Binary Relation, IFCA’05, Springer LNCS
3403, pp. 223–234.

[8] G.C. Garriga, R. Khardon and Luc De Raedt, On Min-

ing Closed Sets in Multi-Relational Data, IJCAI’07,
pp. 804–809.

[9] B. Goethals and M. Zaki. Advances in Frequent Item-

set Mining Implementations: Report on FIMI’03,
SIGKDD’04 Explorations 6(1), pp. 109–117.

[10] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns

without Candidate Generation, ACM SIGMOD’00,
pp. 1–12.

[11] R. Jaschke, A. Hotho, C. Schmitz, B. Ganter and
G. Stumme, TRIAS: An Algorithm for Mining Iceberg

Tri-Lattices, IEEE ICDM’06, pp. 907–911.
[12] L. Ji, K-L. Tan and A. K. H. Tung, Mining Frequent

Closed Cubes in 3D Data Sets, VLDB’06, Morgan
Kaufmann, pp. 811–822.

[13] M. Karnaugh, The Map Method for Synthesis of Com-

binational Logic Circuits, Transactions of American In-
stitute of Electrical Engineers part I (November 1953),
pp. 593–599.

[14] D. Jiang, J. Pei, M. Ramanathan, C. Tang and A.
Zhang, Mining Coherent Gene Clusters from Gene-

Sample-Time Microarray Data, ACM SIGKDD’04,
pp. 430–439.

[15] E. L. McCluskey, Minimization of Boolean Functions,
Bell System Technical Journal (April 1959), pp. 149–
175.

[16] J. Sun, D. Tao and C. Faloutsos, Beyond Streams and

Graphs: Dynamic Tensor Analysis, ACM SIGKDD’06,
pp. 374–383.

[17] T. Uno, M. Kiyomi and H. Arimura, LCM ver.3:

Collaboration of Array, Bitmap and Prefix Tree for

Frequent Itemset Mining, ACM OSDM’05, pp. 77–86.
[18] J. Wang, J. Han and J. Pei, CLOSET+: Searching

for the Best Strategies for Mining Frequent Closed

Itemsets, ACM SIGKDD’03, pp. 236–245.
[19] M. J. Zaki and C-J. Hsiao, CHARM: An Efficient

Algorithm for Closed Itemset Mining, SIAM SDM’02.
[20] L. Zhao and M. J. Zaki, TriCluster: An Effective Algo-

rithm for Mining Coherent Clusters in 3D Microarray

Data, ACM SIGMOD’05, pp. 694–705.

48

