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Abstract—Recently, a generalization of association rules that the collection of their adjacency matrices at each consitler
hold in n-ary Boolean tensors has been proposed. Moreover, timestamp. In other terms, their sets of vertices are fixetl an
preliminary results concerning their application to dynamic only edges can appear or disappear. For example, Fig. ltdepic

relational graph analysis have been obtained. We build upon . . ) : .
such a formalization to design more expressive local patterns such a dynamic graph: it describes the relationship between

in this special case of dynamic graph where the set of vertices the departure vertices iD' = {di,dy,ds,ds} and the
remains unchanged though edges that connect them may appeararrival vertices inD? = {a, az, a3, a4} at the timestamps in
or disappear at the different timestamps. To design the pattern D3 — {#, t,, t3,¢,4,t5}. Every "1’ value is at the intersection
domain of the so-called disjunctive rules, we have to design (a) of three elementéd;, a;, ;) € D' x D2 x D3, which indicate

the pattern language, (b) interestingness measures which seras . .
the counterpart of the popular support and confidence measure a directed edge from; t0 a; at timet,. Two examples of

in standard association rules, and (c) an efficient algorithm that disjunctive rules that we want to extract are given in Fig. 2.
may compute every rule that satisfies some primitive constraints The rule in Fig. 2a indicates that, at a time, if the edges from
like minimal frequencies or minimal confidences. The approach \ertices3 and4 converge then they tend to converge to Vertex
Irselteevsz:ﬁcci o(r)rfrgg%deatca(l)srﬁts f‘”dd (;/ye_ dlS?USS tTe expressivity anth 3 o poth Vertex1 and Vertex2. The rule in Fig. 2b means
y puted disjunctive Tules. that, at a time, if the graph contains the sub-graph inclmdin

the edge from Vertex to Vertex2 then it can contains the sub-
graph including the edges from Verticésand 2 to Vertices

Relational graphs are quite common: we can often cdl-and2 or the sub-graph including the edges from Vertites
lect large volumes of interactions between identified m#it and 3 to Vertices2 and 3. To the best of our knowledge,
Mining such graphs to discover interaction patterns has besone available method can support the discovery of such
studied a lot. For instance, many researchers have designdds. Notice however that the formalization in [4] prowde
efficient solutions to compute collections of subgraphgragt a sound basis for an extension towards disjunctive rules. Th
in static graphs (e.g., looking for dense subgraphs likguels second contribution in this paper concerns the design amd th
or quasi-cliques, frequent subgraph mining). Far less vaask implementation of the algorithm I6RE!, that exhaustively
concerned the analysis of dynamic ones, i.e., when inieract lists a priori interesting rules. It builds upon an efficient
may appear of dissapear at the different timestamps fortwhialgorithm that computes closed patterns from Boolean tsnso
the relational graph is available. The popular asssociatite [7] and our previous work on non-redundant multidimensiona
mining task has many applications since its definition in [1lassociation rule discovery [5].

It has been extended in various directions, including towar
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GHO @) Y5V
O O

multidimensional data (see, e.g., [2], [3]). To the best of )
our knowledge, the formalization in [4] is the most general G T
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ones: it describes the semantics of conjunctive desceiptiv
1 1

I. INTRODUCTION

rules in arbitraryn-ary relations. Both the body and the
head of the rules can involve subsets of any dimensionss

Furthermore, the method in [4] computes many redundanf|——— —
rules and this problem has been studied in [5]. Notice that: Lt R - -
in these two papers, preliminary applications to relationa ‘ ‘
oriented dynamic graph analysis have been reported. 1tHé],
authors have also introduced graph-evolution rules toogliec
patterns that describe local changes occurring in an evplvi II. ADISJUNCTIVERULE PATTERN DOMAIN

graph. However, in these previous works, the rules are @way o yronosed semantics for disjunctive rules (as well as

conjunctive rules. We want to increase the expressivity m algorithm listing them all in a given dataset) actually

the discovered rules thanks to disjunction in rule heads ag plies to anyn-ary relation and thus arbitrary Boolean

to con5|de.r their added—vglue for d}’”am'c, graph analysi%‘nsors. The domains (a domain is the set of elements of each
More precisely, we investigate relational directed dyrami

graph mining: such graphs can be represented by means é&€ipre Is a Disjunctive Rule Extractor.

11 1 1

Figure 1272E C {dy,dg,dg,dg} X {a1,an,a3,as} X {t1,ta,t3,ts,t5}



with this association. In its definition, the concatenatien

@\ . © y ev‘e denoted as-’. For instance|ds, a3) - (t1) = (dz, a3, t1).
@/ O, 0‘0 Definition 2 (Support) VD' C D\Dg, let X be an association
@ {ds, da} = ({as}) V ({ar, a2}). on D'. Its support iss(X) = {u € Xpiep,D' | Jw €
X piep\(p'ups) D' such thatvz € X,z - w-u € R}.
O—0 — G—&F v @ﬁ@ Note that in the extreme case’ = D (i.e., Ds = (),
®) {d1} x {az} > ({d} x {a1}) v ({ds} x {az}). by conventionx picgD® = {¢} (wheree is the empty word),

Figure 2: Example of disjunctive rules diD!, D?} in R. the support of an association dn has either zero element
(at least onen-tuple it contains is absent fro®) or one

element,, (everyn-tuple it contains is irfR). The support of
dimension) are denoted®', D?,..., D", these domains are € empty association,(()), is x picps D*. This definition of
supposed finite and disjoint, we ugeto denote the set of all the support is a slight evolution of the definition given if. [4
domains (D', D?,...,D"}). The relationR is a subset of It clearly generalizes that of aitemsetin a Boolean matrix

D'x---x D" The idea is that associations between domaiffse- V‘gh?”” =2 andDs = {D?}). For example, assuming
make sense on a subset of the domain®RinHowever, the that D* is the support domain ilRp: s({d1} x {a2}) =
domains that do not appear in the associations (such a setloft2 s}, s({dr, ds} x {ag,as}) = {t2,t3}, s({ds, da} x
domains is denote®s) can be used to measure their strengths}) = {13, ta}, s({ds, da}) = {t1, 15, ta, ts}. _
(e.g., counting for frequencies). The Cartesian producaliof Theanti-monotonicityof the support cardinality, that is well

the domains ifDs (x picp, D?) is named thesupport domain KNOWn in itemset mining, still holds here.

of the associations on sub-sets Df\ DS. For eXampIe, in Theorem 1(Support Anti_Monotonicity_) VDX - D\Ds and
Rp, assumingDs = {D?}, D* is the support domain of the yp,. ¢ D\ Dg, let X (resp.Y) be an association oDy
associations of D'}, {D?} and {D', D?}. Without loss of (resp. onDy), X CV = s(X) D s(Y).

generality, the domains ifPs are assumed ordered such that

Dg = {D"|Psl+1 pr=IDsl+2 _ pny c P, For example, we can check that{d;} x {a2}) 2

Lo L . S({dladfi} X {a27a3}) ands({d3ad4}) 2 S({d37d4} X {Clg}),
Definition 1 (Association) VD' C D\ Dgs, Xpiep X' IS @n i e., that Theorem 1 holds.
association onD’ iff VD' € D', X* # 0 A X' C D". By  Given a relationR and the user-defined support domain
convention, the only association @ = () is denoted). Dg C D, adisjunctive ruleon D\ Dy is of the formX — VY,
For example, iR, {d1} x {as}, {d1,ds} x {as, a3} and that is disjunf:ti_ons can appear on its head. It is simplyedall
{ds,dy)} x {a3) are associations ofD!, D2}. {ds,d,} is not, a rule when it is clear from the context.
it is an association ofD'}. Definition 3 (Disjunctive Rule) vDs C D, X — V) is a
We use the operators on associations defined in [4]. Wsjunctive rule onD \ Ds iff X is an association on a sub-
assume their semantics can be understood thanks to the gigenofD \ Ds and ) is a set of associations on sub-sets of
examples onX, = {d»,ds} (an association ofD'}) and D\ Dy such thatvyY € Y, X UY is an association oD\ Dg.

Y, = {ds,ds} x an association o D', D?}).
= {ds,da} > fas} ( A N For example, withD3 as the support domain ifRg,

« Projection of an association on a dimensionr)i( {d1,ds)} x {as} — {as}, {ds,ds} — ({as}) vV ({ar,as})
mpi(Xe) = {dz,da}, mp2(Xe) = 0, 7ps(Xe) = 00 and(d)} x {a} — ({do} x {ar}) v ({ds} x {as}) are three
mp1(Ye) = {ds, da}, mp2(Ye) = {as}, andmps (Ye) = 0. disjunctive rules on{ D', D?}.

* U_nlpn of two lasszo<:|at|onsL()1: A U }1/" 'S an asso-  the binary case (i. en, = 2), the semantics of association
ciation on {D",D°} (= {D'} U {D, D7), Xe U pjeq [1], even when generalized to disjunctive terms [8],
Yo = (mp1(Xe) Umpr(Ye)) X (mp2(Xe) Umpz(Ye)) = [9] are based on the frequency and the confidence measures.
({d2, da}U{ds, da}) x ({0} Ufas}) = {da, d3, da}x{as}.  p priori interesting rules are defined as those whose both

* C_or_nplementlof t\ZNO associationg:(Ye \ X is an asso- meagyres exceed user-specified thresholds. In the comtext o
ciation on{D", D}, Ye \ Xe = (mp1 (Ye) \mp1(Xe)) X 41y velations, extensions of these measures have beensgabpo
(mp2(Ye) \ mp2(Xe)) = (1ds, da} \ {d2,da}) x ({as} \ (see, e.g., the natural and the exclusive confidence measure
{03) :l{d3} x {as}. In contrast.X. \ Y. is an association on multidimensional association rules [4]). We have to adap
on {D} only and X \ Yo = mp1(Xe) \ mpr (¥e) = such measures to our disjunctive rule mining setting.

{d2, da} \ {d3, da} = {da}. To illustrate the definitions, given the support domaifin

« Inclusion of associations): {d1} x {az} C {d1,ds} x Rz, We user; to denote{ds, ds} — ({as}) V ({a1,as}) and

{a2,as} and {ds, da} T {ds, da} x {as}. 7 to denote{d } x {as} — ({d2} x {ar}) V ({ds} x {az}).
The support domain of an association ® C D\ Dg is o o
X piepy D', €.9.,D? is the support domain of associations ofp€finition 4 (Association Frequency)vDs C D, let X —
sub-sets of D', D2}. Thesupportof an association is the set > b€ a disjunctive rule o>\ Ds. VY € ), the association

[s(XLY)|

of elements included in the support domain and “connecteffequency ofX' — Y is fo(X —Y) = % piepg D"



For example, considering, f,({ds,ds} — {CL23}) = o 3. {ds} x {a1} = ({az,a3}) V ({ds} x {a2})

(s daPolles} ) _ \s({dg,%}gz{asm 2 and (F1:04,cq: 1),

— [s({ds, ai,a _2 o 74: {d3} x {a1,a2} — ({as}) (fa:0.4,¢cq: 1),
fol{ds, da}  {ar,ap}) = BUttpg{nealll 2. rai {daf x (a1, ’
o - M ° o 5 {ds} x {as} = ({di} x{az}) v ({ar,a2}) V ({az}) v
Definition 5 (Association Confidence)vDg C D, let X — ({ds}) (fa:0.8,¢cq4: 1),
VY be a disjunctive rule oD\ Dg. VY € )3(2 }t/he association o r4: {ds} x {as} — ({d1} x{a2})V({a1})V({a1,a2})V
confidence ofX — Y is ca(X — V) = AL {az}) vV ({da}) (f1:0.8,cq: 1).

For example, considering agah, ¢, ({ds, ds} — {as}) = .They are all c:_;\ngmcal and have thelr aslspmatl_on frequen-
ls(({ds.daHU{asIl _ 2 gnd ¢ ({ds,ds} — f{a1,as)) = cies, their association confidences, their disjunctiveues-
sl (}g((‘i{jf)ﬁ‘l&yl o)) o e\l Bap T AT G2 cies, their disjunctive confidences respectively excagdid,

_&;({dg,m})f = 7 lt means that, in ruler, the (5 (.4 and 0.8. Therefore, they mayindividually satisfy
confidence of the conjunction between the body and afpis aspect of interestingness. Nevertheledistogether they
association in the head 5. provide redundant information. For instance, the premise o

Definition 6 (Disjunctive Frequency)vps g D, let X — \/y Ta is more informative. Fhan that Ofg (tO match the body of
be a disjunctive rule oD \ Ds. The disjunctive frequency of4, @ graph must additionally have the edge from the Vertex

X 5 VYis fo(X = VY) = W 3 to Vertex 2), but the conclusion of, is less informative

ptebs (it does not tell anything abouty). In addition, this does not

We havef,(r) = Is(({ds7d4})u({as})>L|J5g<‘{ds,d4})u({a1,az}m provide@ a greater freguency or a greater confidgnce than
_ [{ts,ta,ts}| _ 3 and  fu(ra) _ Ruler, is therefore said r_edundant. Thg conclu3|omph§s
|s(({d1}x{aQ})5u({d2}x{al}))uS(({dﬁ;{QQ})u({d3}x{a32}))\ _ more elements than that in the conclusionrof However, in
ttadall 3 D71 re, {a1} C {a1, a2}, fa({ds} x {az} —= {a1}) = fa({ds} x
% = 5 {(13} — {al,ag}) = 0.4 and Ca({dg} X {ag} — {(11}) =

Definition 7 (Disjunctive Confidence)vDs C D, let X — ca({ds} x {as} — {a1,a2}) = 0.5. Therefore, the appearance

- ; L . ' of {a;} in the conclusion ofs does not provide new insight.
VY be a disjunctive rule o®\ Dgs. The disjunctive confidence . .
Y Sjunctive \: \ﬁyws(xlu]yli\ v ! {a1} is thus redundant ing. In r5, although{as} C {a1, a2},

OF X = VYis ca(X = V) s ()] {az} is not redundant sincg, ({ds} x {as} — {az}) = 0.8 >

For example, ca(r) fa{ds} x {as} — {a1,a2}) = 0.4 andc,({d3} x {as} —

(s dipoGeapos(ds daholoras )l = 3 and eg(ry) = {az}) = 1 > ca({ds} x {as} — {a1,a2}) = 0.5. Since the

|s(({d1}><{ag})ué{dz}i;{tl}))Us(({dl}x{ag})u({ds.}x{ag}))\ — 3 end-user would not find any added-value in rulgsand rg,
s({di}x{as}) 3¢ orinese rules must not be returned. In other terms, we have to

o s({ | .
Rule r; indicates t\wat, at a time, if the outer edges fro o g X
Vertex 3 and Vertex4 go to the same nodes then they tenkVisit the concept of non-redundant rule in our setting.

to converge to Verte or Verticesl and2 (cq(r1) = 0.75).  Definition 9 (Non-Redundant Disjunctive Rule)Ds C D,

In half of cases, when the edges from Vert&xand Vertex a disjunctive ruleX — v on D\ Ds is non-redundant iff it

4 converge, they converge to Vertéx(c, = 0.5). However, is canonical and satisfies the following constraints:

these outer edges can also go to both Veiteand Vertex2 (1) VY € J, X — Y is a non-redundant association rule on

with ¢, = 0.5. Rule r, means that, at a time, if the graphD \ Dg. It means that, it is canonical and there is no other

contains the sub-graph including the edges from Vertexcanonical association ruleX’ — Y’/, where X’ U Y” is an

to Vertex 2 then it is sure ¢; = 1) that the graph contains association orD \ Dg such that((X’' UY' = X UY A X' T

the sub-graph including the edges from Vertideand2 to X)v (X'UY’' O XUY AX' C X)) A (fu(X' = Y') >

Vertices 1 and 2 or the sub-graph including the edges frony, (X — Y)) A (co (X' = Y') > co(X — Y)).

Vertices 1 and 3 to Vertices2 and 3. Enabling disjunctions (2) It does not exist any rule which is more general théan-

within the heads of the rules provides rules that convey mov®). It means that there is no set of associatighslefined on

information than conjunctive rules. sub-sets ofD \ Dg such thaty ¢ Z, X — VZ is canonical
The association confidence has a monotonicity property. dnd satisfies the constraint (1), affd(X — VZ) > fq(X —

Sec. lll, it is used to prune the search space where no rule 6ai) A c4(X — VZ) > cg(X — V).

satisfy a minimal association confidence constraint.

The first condition shows that the non-redundant assoaiatio
Theorem 2 (Pruning criterion) VDg C D, let X and X’ be rules onD \ Dg, as defined above, can be efficiently derived
associations on sub-sets Bf\ Dg andY be an association from closed sets. Before defining the closed sets, let us
onD\ Ds. We haveX' C X C Y = ¢,(X’ — Y\ X') < introduce the relation in which these patterns are extdacte
co(X =2 Y\ X). It is obtained fromR by “flattening” the dimensions irDg

into a unique support dimensidps'PP = x p: . D?. Denoted

Definition 8 (Canonical Rule) ¥Ds € D, a disjunctive rule ‘R 4 until the end of this article, this relation is defined on the

X — vY onD\Dg is a canonical iffyY € Y andvVD* € D, domainsD., — (D\ D) U { D). Assuming that for alf —

mp:(X) Np:i (V) =0, 1..n, e; is an element of thé" domain, i.e.g; € D?, we have
In Rg, let us consider the following rules: to build Ra = {(e1,e2,..-,ep\Ds|; (€D\Ds|+15- -+ €n))



such that(ei, ez, . . ., e p\Dg|s €D\ Ds|+15 - - - » €n) € R} Two approaches have been proposed to exhaustively list the
In this relation, a closed set is an associationZon that closed sets internary relations, namely GBEMINER [10]

(a) only coversD 4]-tuples present irR 4 and (b) cannot be and TRiAs [11]. A third algorithm, DaTA-PEELER [7] can

enlarged without violating (a). compute every closed set in relations of arbitrary aritysjie

its broader scope, it is orders of magnitude faster than both

is a closed set iMR4 iff (X C Ru) A (VDI € Da,Ve ¢ TRIAS and CUBEMINE'F\’. on ternary relations. quthermore,

DI\ 7pe(X), X Ui {e} Z R). DATA-P_EELER c_an_efﬁmer_ltly handle an expressive class of

constraints. This is particularly appealing in our context

ConsideringR g, since Ds = {D?} contains only one To guarantee all association rules exceed the user-defined

domain,R 4 = Rg. Association{d;,ds} x {az,as} x {t2,t3} association frequency threshold, R4, we only discover the

is a closed set{d;,d3} x {aa,as} x {t1,t2,t3} is not a closed frequent closed sets which are gather at least a propagstion

set becauséd;, as, t1) ¢ Ra. {d1,d3} x {az} x {t2,t3} is of the elements iD**FP. It means that every extracted closed

Definition 10 (Closed Set) Given a relationR 4 on Dy, X

not a closed set because it can be enlarged wjth setC' must satisfy the constraity,.,(C) = ”Tﬁ%lc)‘ > g
There is a strong link between closed sets and noDATA-PEELER can handle it directly on the closed sets.
redundant association rules as stated in Theorem 3. It may also be interesting to specify minimal numbers of

lements in the exploited dimensions (i. e., the dimensions
\Dg). In this case, every extracted closed Semust satisfy
C(a"’),;zl_wp\ps‘7minfsizes(c) =VvD" €D \ D57 |7TD" (C)| >

%

Theorem 3 (Closed Sets and Non-Redundant Associatio
Rules) vDg C D, let X — Y be a canonical associa-
tion rule such thatX U Y is an association orD \ Dg.
X — Y is a non-redundant association rule dn \ Dg iff

(XUY Us(XUY)) is a closed set iR, and VX' C X, From a closed se€’, ASSOCIATION RULES (Alg. 1) de-
cal X' = (YUX)\ X) < ca(X = Y). rives non-redundant association rules®n, Dy that involve
¢ “ all the elements inJp:ep\pympi (C).

Non-redundant association rules are key elements to obtain
non-redundant disjunctive rules. B. Deriving Non-Redundant Rules from Closed Sets

2

Theorem 4 (Non-Redundant Association Rules and Non-Re-
dundant Disjunctive Rules)vDg C D, let P the set of all Algorithm 1: ASSOCIATION RULES.
non-redundant association rules dd \ Dg, X — V) is a Data: (B, H), i.e., a body and a head

non redundant disjunctive rule d®\ Dy iff Y = Ux_,yepY. forall e > max(H) do

if ca(B\{e} = HU{e})>p, then
forall f € Upicp\psmpi(B\ {e}) do

IIl. DISCOVERINGNON-REDUNDANT RULES

Given ann-ary relationR C x picpD?, Ds C D, every if ca((B\{e})\{f} = HU{eJuU{f}) =
interesting and non-redundant disjunctive rule®n Dgs has ca(B\ {e} — HU{e}) then
to be enumerated. Such rules satisfy the user-specifieshthre | goto skip

olds: the association frequency threshglg the association
confidence threshold,, the disjunctive frequency threshold
g and the disjunctive confidence threshglgd In other terms,
our algorithm GDRE computes:

output B\ {e} — H U {e}
| skip: RULES(B \ {e}, H LI {e})

X — VY is non-redundant ASSOCIATION_RULES derivesa priori interesting and non-
VY €Y, fo(X = Y) > pg redundant association rules, of the fofth— H, from every
(X 5>VYonD\Ds | {VY €V,calX = Y)>fBa - frequent closed associatioh (= C \ mpswe(C)). It splits all

elements inUpicp\p.Tpi (A) between the bodyB and the
Ja(X = V) = pra headH, i.e., B ¥ I} Z A EI'h)e candidate rules are structured
ca(X = VY) > Ba in a tree. By only looking at the head#, of the rules @
CIDRE is divided into four successive steps: (1) it construc@&nd H being given, the bodyB is A\ H), this tree actually
the relationR 4 defined in Section II, this step is trivial; (2)is that of ARRIORI [1]. Nevertheless, ASOCIATION RULES
it extracts thefrequentclosed sets iR 4; (3) it derives from traverses it in a depth-first way. The root of the treelis> 0.
these closed sets the non-redundant association rulsfysai At every level, H grows by one element which is removed
the user-defined thresho|ds; (4) it Computes the non_rmjundfrom B. An arbitrary total order is chosen for the elements
disjunctive rules whose disjunctive frequencies and disive N Upiecp\ps7mpi(A). At every node, the singletons that are

confidences hold for the user-defined threshglgsand 3,.  allowed to augment (vial) the head are those greater than any
) ) element in the current head (i. e., greater thaix - (H) and
A. Extracting Closed Sets under Constraints under the convention thatax () is smaller than any other

Theorem 3 states the link between the non-redundant agement). The pruning criterion is the minimal association
sociation rules and the closed sets R4 but, to bea confidence constraint. According to Theorem 2, this pruisng
priori interesting, the association rules must satisfy congtainsafe, i.e., no association rule, with an association condiele



higher thans,, is missed. On the opposite, the non-redundancy o

constraints cannot give rise to search space pruning. Bhat i /
why it is checked after the constraint on the minimal associ- —  (SunSpm — 6pm) V (Sun6pm — Tpm)
ation confidence. If it is satisfied then the rule is output. To , N

oo X (@)  {e002} - (SunSpm  —  6pm)r..0.24,c4:0.64V
enforce the non-redundancy, Theorem 3 indicates thatd®esi (SunGpm = 7pm) £,:0.25,c4:0.67 (fa : 0-31, cq : 0.83).

the necessity to process a closed setSACIATION RULES

- . )
must check the association confidences of the more general W (Mom) v (Mom. Tue) v (Tue) v (Wed)

association rules sharing the same elements. If such a rule () ——  V(Thu) V (Thu, Tue) V (Fri)
has the same association confidence then the current rule is i )
(0) (epm — 7pm} x {3001} — (Mon)f,.0.3,64:0.7 V
redundant. (Mon, Tue)f,.0.26,c4:0.6 vV  (Tue)f .0.32,c4:0.74 V
E;Vhﬂd)éa;ojzs,ca;o.% v \(/Th'“)fa(:g.29),ca:0.67 \
C. Computing Non-Redundant Disjunctive Rules (Fg ¢ 0.41, g% 03804100 Ja:0:26,¢a:0-6

P denotes the set of all non-redundant association rulegigure 3: Example of rules ofiDeparture, Day, Hour}.
on D\ Dg which are extracted in Sec. IlI-B. According
to Theorem 4, we construct non-redundant disjunctive rules
of the form X' — VY where) = Ux_yepY. Alg. 2 over Lyon and its surrounding area. At any of these stations,
only outputs the non-redundant disjunctive rules whose diie users can take a bicycle and bring it to any other station.
junctive frequencies and disjunctive confidences exceed §yhenever a bicycle is rented or returned, this event is logged
user-defined thresholds.IGRE (see Alg. 2) successively (1) The logs we were granted the access to represent more than
constructsR 4, (2) extracts the frequent closed sets in it, (3)3.1 million rides along 30 monthd/elo'v  data can be
derives, from each of these closed sets,atiori interesting represented as a dynamic directed graph evolving into two
and non-redundant association rules and (4) computes tBgporal dimensions: the 7 days of the week and the 24

interesting and non-redundant disjunctive rules. one-hour periods in a day. A significant amount of bicycles
(using a local test inspired by the computation of a p-value)
Algorithm 2: CIDRE. that are rented at the (departure) statibnon dayd (e.qg.,
Input: A relation R on D, Ds € D, and Monday) at hout: (e. g., from 1pm to 2pm) and returned at the
(ttas Bas ttas Ba) € 10,1]* (arrival) stationas, translates to an edge frods to as in the
Output: Every interesting and non-redundant disjunctive graph timestamped witlid, »). In other terms,(ds, as, d, h)
rule onD \ Ds belongs to the relatioRveiovy < Departure x Arrival x
DSuPP XD7€DSD1‘ Day x Hour. Ryeioyy CONtains117,411 4-tuples, hence a
(Da,Ra) « ((D\ Ds) U D) Tanaanazy = 0.7% density.
forall (ei1,...,ep\pg|; €D\Ds|+15--->€n) € R dO The temporal dimension(s) of such a dynamic network
| Ra+ RaUl(er,...,ep\ps|, (€D\Dg|4+15- - -+ €n)) either appear in the rules (i.e., iR \ Dg) or can be used
C « DATA-PEELER(D, X picp, DY) to compute the frequencies and the confidences of the rules
P () (i.e., in Dg). Different templates depend on different mining
forall C € C do motivations. Let us now discuss a couple of examples.
| P + P UASSOCIATION RULES(C \ 7 psurs (C), 1) To study dep_arture. time periods of statipnge discover
forall X — Y € P do rules on the dimension®eparture Day and Hour. As a
Yy consequence, the support domainAigival which contains
forall X — Y’ € P such thatY”’ 7& Y do 327 stations. Wlthl,a = Uq = 02, Be = 0.6 and Ba = 0.8
Yy yuy! CIDRE extracts 33 rules. They indicate that preferred departure
L deleteX — Y’ from P times are different from one station to another. Fig. 3 repor
it (£f2(X = V) > pa) A (ca(X = VY) > By) then two of them. The rule in Fig. 3a means that the departures
| output X — VY from Station 6002, with a high enough association confidence
| deleteX — Y from P (ca > 0.6), almost occur between 5pm and 7pm on Sundays

(ca = 0.83). Here, arrival stations of the departures from
Station 6002 on Sundays between 5pm and 6pm can be
IV. EXPERIMENTAL STUDY different from those between 6pm and 7pm. Therefore, this
rule cannot be extracted given previous approaches in [4],
[5]. The rule in Fig. 3b indicates that, with a high enough
association confidence>(0.6), the rides from Station 3001
between 6pm and 7pm only occur during the working days.
Iso because, arrival stations of the rides from Station1300
etween 6pm and 7pm can be different between days, this rule
cannot be returned by known techniques.
2http:/www.velov.grandlyon.com/ On graph evolution: if a sub-network is frequent, then

Experiments have been performed on a GNU/Liisys-
tem equipped with an Int@ Coréd™ 2 Duo CPU E7300 at
2.66 GHz and 3 GB of RAM. ®RE was implemented in
C++ and compiled with GCC 4.2.4.

Velo'v 2 is a bicycle rental service run by the urba
community of Lyon, France327 Velo'v  stations are spread
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Figure 4: Example of rules of the form

“sub-network” — “larger sub-networks”. between 0 and 1. On the contrary, the search space cannot be
pruned thanks to the thresholds of disjunctive frequenay an
disjunctive confidence. Indeed, I ®RE must consider every

to which sub-networks it can be enlargeable with stronaSSOCIatlon rule when computing disjunctive ones.

enough confidenceslo study such patterns, a rule has to V. CONCLUSION
involve Departure and Arrival stations, i.e.,D \ Dg =
{Departure, Arrival}. As a result, the support domain is

the Carte5|ar_1 product of the 7 days and the 24 hours. Ad libsets of any dimension (including temporal dimensiong).
pone;l d_cpntrfillmts, fthe %Ons’trar':ﬂ(?@)'m‘“f‘zels (see SE_ECI' Im) have proposed a semantics for such rules and we introduced
Is additionally enforced so that every rule must involve %IDRE, an efficient solution for computing non redundant dis-
least two departure stations and two arrival stations. lhae junctive rules. Experiments on a real-world dynamic networ
we force the body of every rule to be a graph with at lea§t,\onstrated the interest of our proposal

an edge, i.e., it must involve at least one departure Statiﬂ@knowledgements.‘l’his work was partly funded by the ANR

and one arrival station. The non-redundancy of the eXtdaCtﬁroject FoSTER (COSINUS 2010) and by a grant from the
rules favors the discovery of minimal sub-networks (at th\?ietnamese government

bodies of the rules) that can be confidently (i.e., with high
enough confidences) enlarged (with the stations at the heads REFERENCES
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We have studied the problem of describing relational dy-
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