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Abstract—Recently, a generalization of association rules that
hold in n-ary Boolean tensors has been proposed. Moreover,
preliminary results concerning their application to dynamic
relational graph analysis have been obtained. We build upon
such a formalization to design more expressive local patterns
in this special case of dynamic graph where the set of vertices
remains unchanged though edges that connect them may appear
or disappear at the different timestamps. To design the pattern
domain of the so-called disjunctive rules, we have to design (a)
the pattern language, (b) interestingness measures which serveas
the counterpart of the popular support and confidence measures
in standard association rules, and (c) an efficient algorithm that
may compute every rule that satisfies some primitive constraints
like minimal frequencies or minimal confidences. The approach
is tested on real datasets and we discuss the expressivity and the
relevancy of some computed disjunctive rules.

I. I NTRODUCTION

Relational graphs are quite common: we can often col-
lect large volumes of interactions between identified entities.
Mining such graphs to discover interaction patterns has been
studied a lot. For instance, many researchers have designed
efficient solutions to compute collections of subgraph patterns
in static graphs (e.g., looking for dense subgraphs like cliques
or quasi-cliques, frequent subgraph mining). Far less workhas
concerned the analysis of dynamic ones, i.e., when interactions
may appear of dissapear at the different timestamps for which
the relational graph is available. The popular asssociation rule
mining task has many applications since its definition in [1].
It has been extended in various directions, including towards
multidimensional data (see, e.g., [2], [3]). To the best of
our knowledge, the formalization in [4] is the most general
ones: it describes the semantics of conjunctive descriptive
rules in arbitraryn-ary relations. Both the body and the
head of the rules can involve subsets of any dimensions.
Furthermore, the method in [4] computes many redundant
rules and this problem has been studied in [5]. Notice that
in these two papers, preliminary applications to relational
oriented dynamic graph analysis have been reported. In [6],the
authors have also introduced graph-evolution rules to discover
patterns that describe local changes occurring in an evolving
graph. However, in these previous works, the rules are always
conjunctive rules. We want to increase the expressivity of
the discovered rules thanks to disjunction in rule heads and
to consider their added-value for dynamic graph analysis.
More precisely, we investigate relational directed dynamic
graph mining: such graphs can be represented by means of

the collection of their adjacency matrices at each considered
timestamp. In other terms, their sets of vertices are fixed and
only edges can appear or disappear. For example, Fig. 1 depicts
such a dynamic graph: it describes the relationship between
the departure vertices inD1 = {d1, d2, d3, d4} and the
arrival vertices inD2 = {a1, a2, a3, a4} at the timestamps in
D3 = {t1, t2, t3, t4, t5}. Every ’1’ value is at the intersection
of three elements(di, aj , tk) ∈ D1×D2×D3, which indicate
a directed edge fromdi to aj at time tk. Two examples of
disjunctive rules that we want to extract are given in Fig. 2.
The rule in Fig. 2a indicates that, at a time, if the edges from
Vertices3 and4 converge then they tend to converge to Vertex
3 or both Vertex1 and Vertex2. The rule in Fig. 2b means
that, at a time, if the graph contains the sub-graph including
the edge from Vertex1 to Vertex2 then it can contains the sub-
graph including the edges from Vertices1 and 2 to Vertices
1 and2 or the sub-graph including the edges from Vertices1
and 3 to Vertices 2 and 3. To the best of our knowledge,
none available method can support the discovery of such
rules. Notice however that the formalization in [4] provides
a sound basis for an extension towards disjunctive rules. The
second contribution in this paper concerns the design and the
implementation of the algorithm CIDRE1, that exhaustively
lists a priori interesting rules. It builds upon an efficient
algorithm that computes closed patterns from Boolean tensors
[7] and our previous work on non-redundant multidimensional
association rule discovery [5].
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a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4
d1 1 1 1 1 1 1 1 1 1 1
d2 1 1 1 1 1 1 1 1 1
d3 1 1 1 1 1 1 1 1 1 1 1
d4 1 1 1 1 1 1 1 1 1 1 1

t1 t2 t3 t4 t5

Figure 1:RE ⊆ {d1, d2, d3, d4} × {a1, a2, a3, a4} × {t1, t2, t3, t4, t5}.

II. A D ISJUNCTIVE RULE PATTERN DOMAIN

The proposed semantics for disjunctive rules (as well as
the algorithm listing them all in a given dataset) actually
applies to anyn-ary relation and thus arbitrary Boolean
tensors. The domains (a domain is the set of elements of each

1CIDRE Is a Disjunctive Rule Extractor.
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(a) {d3, d4} → ({a3}) ∨ ({a1, a2}).

1 2 1 2 ∨ 1
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(b) {d1} × {a2} → ({d2} × {a1}) ∨ ({d3} × {a3}).

Figure 2: Example of disjunctive rules on{D1, D2} in RE .

dimension) are denotedD1, D2, . . . , Dn, these domains are
supposed finite and disjoint, we useD to denote the set of all
domains ({D1, D2, . . . , Dn}). The relationR is a subset of
D1×· · ·×Dn. The idea is that associations between domains
make sense on a subset of the domains inR. However, the
domains that do not appear in the associations (such a set of
domains is denotedDS) can be used to measure their strength
(e.g., counting for frequencies). The Cartesian product ofall
the domains inDS (×Di∈DS

Di) is named thesupport domain
of the associations on sub-sets ofD \ DS . For example, in
RE , assumingDS = {D3}, D3 is the support domain of the
associations on{D1}, {D2} and {D1, D2}. Without loss of
generality, the domains inDS are assumed ordered such that
DS = {Dn−|DS |+1, Dn−|DS |+2, ..., Dn} ⊆ D.

Definition 1 (Association). ∀D′ ⊆ D \ DS , ×Di∈D′Xi is an
association onD′ iff ∀Di ∈ D′, Xi 6= ∅ ∧ Xi ⊆ Di. By
convention, the only association onD′ = ∅ is denoted∅.

For example, inRE , {d1}× {a2}, {d1, d3}× {a2, a3} and
{d3, d4}×{a3} are associations on{D1, D2}. {d3, d4} is not,
it is an association on{D1}.

We use the operators on associations defined in [4]. We
assume their semantics can be understood thanks to the given
examples onXe = {d2, d4} (an association on{D1}) and
Ye = {d3, d4} × {a3} (an association on{D1, D2}).

• Projection of an association on a dimension (π):
πD1(Xe) = {d2, d4}, πD2(Xe) = ∅, πD3(Xe) = ∅,
πD1(Ye) = {d3, d4}, πD2(Ye) = {a3}, andπD3(Ye) = ∅.

• Union of two associations (⊔): Xe ⊔ Ye is an asso-
ciation on {D1, D2} (= {D1} ∪ {D1, D2}), Xe ⊔
Ye = (πD1(Xe) ∪ πD1(Ye)) × (πD2(Xe) ∪ πD2(Ye)) =
({d2, d4}∪{d3, d4})×({∅}∪{a3}) = {d2, d3, d4}×{a3}.

• Complement of two associations (\): Ye \Xe is an asso-
ciation on{D1, D2}, Ye \Xe = (πD1(Ye) \πD1(Xe))×
(πD2(Ye) \ πD2(Xe)) = ({d3, d4} \ {d2, d4}) × ({a3} \
{∅}) = {d3}×{a3}. In contrast,Xe\Ye is an association
on {D1} only andXe \ Ye = πD1(Xe) \ πD1(Ye) =
{d2, d4} \ {d3, d4} = {d2}.

• Inclusion of associations (⊑): {d1}× {a2} ⊑ {d1, d3}×
{a2, a3} and{d3, d4} ⊑ {d3, d4} × {a3}.

The support domain of an association onD′ ⊆ D \ DS is
×Di∈DS

Di, e.g.,D3 is the support domain of associations on
sub-sets of{D1, D2}. Thesupportof an association is the set
of elements included in the support domain and “connected”

with this association. In its definition, the concatenationis
denoted as ’·’. For instance,(d2, a3) · (t1) = (d2, a3, t1).

Definition 2 (Support). ∀D′ ⊆ D\DS , letX be an association
on D′. Its support iss(X) = {u ∈ ×Di∈DS

Di | ∃w ∈
×Di∈D\(D′∪DS)D

i such that∀x ∈ X,x · w · u ∈ R}.

Note that in the extreme caseD′ = D (i. e., DS = ∅),
by convention×Di∈∅D

i = {ǫ} (whereǫ is the empty word),
the support of an association onD has either zero element
(at least onen-tuple it contains is absent fromR) or one
element,ǫ, (everyn-tuple it contains is inR). The support of
the empty association,s(∅), is ×Di∈DS

Di. This definition of
the support is a slight evolution of the definition given in [4].
It clearly generalizes that of anitemsetin a Boolean matrix
(i.e., whenn = 2 andDS = {D2}). For example, assuming
that D3 is the support domain inRE : s({d1} × {a2}) =
{t1, t2, t3}, s({d1, d3} × {a2, a3}) = {t2, t3}, s({d3, d4} ×
{a3}) = {t3, t4}, s({d3, d4}) = {t1, t3, t4, t5}.

Theanti-monotonicityof the support cardinality, that is well
known in itemset mining, still holds here.

Theorem 1 (Support Anti-Monotonicity). ∀DX ⊆ D\DS and
∀DY ⊆ D \ DS , let X (resp.Y ) be an association onDX

(resp. onDY ), X ⊑ Y ⇒ s(X) ⊇ s(Y ).

For example, we can check thats({d1} × {a2}) ⊇
s({d1, d3}× {a2, a3}) ands({d3, d4}) ⊇ s({d3, d4}× {a3}),
i. e., that Theorem 1 holds.

Given a relationR and the user-defined support domain
DS ⊆ D, adisjunctive ruleonD\DS is of the formX → ∨Y,
that is disjunctions can appear on its head. It is simply called
a rule when it is clear from the context.

Definition 3 (Disjunctive Rule). ∀DS ⊆ D, X → ∨Y is a
disjunctive rule onD \ DS iff X is an association on a sub-
set ofD \ DS and Y is a set of associations on sub-sets of
D\DS such that∀Y ∈ Y, X⊔Y is an association onD\DS .

For example, withD3 as the support domain inRE ,
{d1, d3} × {a2} → {a3}, {d3, d4} → ({a3}) ∨ ({a1, a2})
and{d1} × {a2} → ({d2} × {a1})∨ ({d3} × {a3}) are three
disjunctive rules on{D1, D2}.

In the binary case (i. e.,n = 2), the semantics of association
rules [1], even when generalized to disjunctive terms [8],
[9] are based on the frequency and the confidence measures.
A priori interesting rules are defined as those whose both
measures exceed user-specified thresholds. In the context of n-
ary relations, extensions of these measures have been proposed
(see, e.g., the natural and the exclusive confidence measures
on multidimensional association rules [4]). We have to adapt
such measures to our disjunctive rule mining setting.

To illustrate the definitions, given the support domainD3 in
RE , we user1 to denote{d3, d4} → ({a3})∨ ({a1, a2}) and
r2 to denote{d1} × {a2} → ({d2} × {a1}) ∨ ({d3} × {a3}).

Definition 4 (Association Frequency). ∀DS ⊆ D, let X →
∨Y be a disjunctive rule onD\DS . ∀Y ∈ Y, the association
frequency ofX → Y is fa(X → Y ) = |s(X⊔Y )|

|×
Di∈DS

Di| .



For example, consideringr1, fa({d3, d4} → {a3}) =
|s(({d3,d4})⊔({a3}))|

|D3| = |s({d3,d4}×{a3})|
|D3| = 2

5 , and

fa({d3, d4} → {a1, a2}) =
|s(({d3,d4})⊔({a1,a2}))|

|D3| = 2
5 .

Definition 5 (Association Confidence). ∀DS ⊆ D, let X →
∨Y be a disjunctive rule onD\DS . ∀Y ∈ Y, the association
confidence ofX → Y is ca(X → Y ) = |s(X⊔Y )|

|s(X)| .

For example, considering againr1, ca({d3, d4} → {a3}) =
|s(({d3,d4})⊔({a3}))||

|s({d3,d4})|
= 2

4 , and ca({d3, d4} → {a1, a2}) =
|s(({d3,d4})⊔({a1,a2}))|

|s({d3,d4})|
= 2

4 . It means that, in ruler1, the
confidence of the conjunction between the body and any
association in the head is0.5.

Definition 6 (Disjunctive Frequency). ∀DS ⊆ D, letX → ∨Y
be a disjunctive rule onD \DS . The disjunctive frequency of
X → ∨Y is fd(X → ∨Y) =

|∪Y ∈Ys(X⊔Y )|
|×

Di∈DS
Di| .

We havefd(r1) =
|s(({d3,d4})⊔({a3}))∪s(({d3,d4})⊔({a1,a2}))|

|D3|

= |{t3,t4,t5}|
5 = 3

5 , and fd(r2) =
|s(({d1}×{a2})⊔({d2}×{a1}))∪s(({d1}×{a2})⊔({d3}×{a3}))|

|D3| =
|{t1,t2,t3}|

5 = 3
5 .

Definition 7 (Disjunctive Confidence). ∀DS ⊆ D, let X →
∨Y be a disjunctive rule onD\DS . The disjunctive confidence
of X → ∨Y is cd(X → ∨Y) =

|∪Y ∈Ys(X⊔Y )|
|s(X)| .

For example, cd(r1) =
|s(({d3,d4})⊔({a3}))∪s(({d3,d4})⊔({a1,a2}))|

|s({d3,d4})|
= 3

4 , and cd(r2) =
|s(({d1}×{a2})⊔({d2}×{a1}))∪s(({d1}×{a2})⊔({d3}×{a3}))|

|s({d1}×{a2})|
= 3

3 .
Rule r1 indicates that, at a time, if the outer edges from
Vertex 3 and Vertex4 go to the same nodes then they tend
to converge to Vertex3 or Vertices1 and 2 (cd(r1) = 0.75).
In half of cases, when the edges from Vertex3 and Vertex
4 converge, they converge to Vertex3 (ca = 0.5). However,
these outer edges can also go to both Vertex1 and Vertex2
with ca = 0.5. Rule r2 means that, at a time, if the graph
contains the sub-graph including the edges from Vertex1
to Vertex 2 then it is sure (cd = 1) that the graph contains
the sub-graph including the edges from Vertices1 and 2 to
Vertices1 and 2 or the sub-graph including the edges from
Vertices 1 and 3 to Vertices2 and 3. Enabling disjunctions
within the heads of the rules provides rules that convey more
information than conjunctive rules.

The association confidence has a monotonicity property. In
Sec. III, it is used to prune the search space where no rule can
satisfy a minimal association confidence constraint.

Theorem 2 (Pruning criterion). ∀DS ⊆ D, let X and X ′ be
associations on sub-sets ofD \ DS and Y be an association
on D \ DS . We haveX ′ ⊑ X ⊑ Y ⇒ ca(X

′ → Y \ X ′) ≤
ca(X → Y \X).

Definition 8 (Canonical Rule). ∀DS ⊆ D, a disjunctive rule
X → ∨Y onD\DS is a canonical iff∀Y ∈ Y and∀Di ∈ D,
πDi(X) ∩ πDi(Y ) = ∅.

In RE , let us consider the following rules:

• r3: {d3} × {a1} → ({a2, a3}) ∨ ({d4} × {a2})
(fd : 0.4, cd : 1),

• r4: {d3} × {a1, a2} → ({a3}) (fd : 0.4, cd : 1),
• r5: {d3}×{a3} → ({d1}×{a2})∨({a1, a2})∨({a2})∨

({d4}) (fd : 0.8, cd : 1),
• r6: {d3}×{a3} → ({d1}×{a2})∨({a1})∨({a1, a2})∨

({a2}) ∨ ({d4}) (fd : 0.8, cd : 1).
They are all canonical and have their association frequen-

cies, their association confidences, their disjunctive frequen-
cies, their disjunctive confidences respectively exceeding 0.4,
0.5, 0.4 and 0.8. Therefore, they mayindividually satisfy
this aspect of interestingness. Nevertheless,all together, they
provide redundant information. For instance, the premise of
r4 is more informative than that ofr3 (to match the body of
r4, a graph must additionally have the edge from the Vertex
3 to Vertex 2), but the conclusion ofr4 is less informative
(it does not tell anything aboutd4). In addition, this does not
provider4 a greater frequency or a greater confidence thanr3.
Rule r4 is therefore said redundant. The conclusion ofr6 has
more elements than that in the conclusion ofr5. However, in
r6, {a1} ⊏ {a1, a2}, fa({d3} × {a3} → {a1}) = fa({d3} ×
{a3} → {a1, a2}) = 0.4 and ca({d3} × {a3} → {a1}) =
ca({d3}×{a3} → {a1, a2}) = 0.5. Therefore, the appearance
of {a1} in the conclusion ofr6 does not provide new insight.
{a1} is thus redundant inr6. In r5, although{a2} ⊑ {a1, a2},
{a2} is not redundant sincefa({d3}×{a3} → {a2}) = 0.8 >
fa({d3} × {a3} → {a1, a2}) = 0.4 and ca({d3} × {a3} →
{a2}) = 1 > ca({d3} × {a3} → {a1, a2}) = 0.5. Since the
end-user would not find any added-value in rulesr4 and r6,
these rules must not be returned. In other terms, we have to
revisit the concept of non-redundant rule in our setting.

Definition 9 (Non-Redundant Disjunctive Rule). ∀DS ⊆ D,
a disjunctive ruleX → ∨Y onD \DS is non-redundant iff it
is canonical and satisfies the following constraints:
(1) ∀Y ∈ Y, X → Y is a non-redundant association rule on
D \ DS . It means that, it is canonical and there is no other
canonical association ruleX ′ → Y ′, whereX ′ ⊔ Y ′ is an
association onD \DS such that((X ′ ⊔ Y ′ = X ⊔ Y ∧X ′

⊏

X) ∨ (X ′ ⊔ Y ′
⊐ X ⊔ Y ∧ X ′ ⊑ X)) ∧ (fa(X

′ → Y ′) ≥
fa(X → Y )) ∧ (ca(X

′ → Y ′) ≥ ca(X → Y )).
(2) It does not exist any rule which is more general thanX →
∨Y. It means that there is no set of associationsZ defined on
sub-sets ofD \ DS such thatY ⊂ Z, X → ∨Z is canonical
and satisfies the constraint (1), andfd(X → ∨Z) ≥ fd(X →
∨Y) ∧ cd(X → ∨Z) ≥ cd(X → ∨Y).

The first condition shows that the non-redundant association
rules onD \ DS , as defined above, can be efficiently derived
from closed sets. Before defining the closed sets, let us
introduce the relation in which these patterns are extracted.
It is obtained fromR by “flattening” the dimensions inDS

into a unique support dimensionDsupp= ×Di∈DS
Di. Denoted

RA until the end of this article, this relation is defined on the
domainsDA = (D\DS)∪{D

supp}. Assuming that for alli =
1..n, ei is an element of theith domain, i. e.,ei ∈ Di, we have
to build RA = {(e1, e2, . . . , e|D\DS |, (e|D\DS |+1, . . . , en))



such that(e1, e2, . . . , e|D\DS |, e|D\DS |+1, . . . , en) ∈ R}.
In this relation, a closed set is an association onDA that

(a) only covers|DA|-tuples present inRA and (b) cannot be
enlarged without violating (a).

Definition 10 (Closed Set). Given a relationRA on DA, X
is a closed set inRA iff (X ⊆ RA) ∧ (∀Di ∈ DA, ∀e ∈
Di \ πDi(X), X ⊔ {e} 6⊆ R).

ConsideringRE , since DS = {D3} contains only one
domain,RA = RE . Association{d1, d3}×{a2, a3}×{t2, t3}
is a closed set.{d1, d3}×{a2, a3}×{t1, t2, t3} is not a closed
set because(d1, a3, t1) /∈ RA. {d1, d3} × {a2} × {t2, t3} is
not a closed set because it can be enlarged witha3.

There is a strong link between closed sets and non-
redundant association rules as stated in Theorem 3.

Theorem 3 (Closed Sets and Non-Redundant Association
Rules). ∀DS ⊆ D, let X → Y be a canonical associa-
tion rule such thatX ⊔ Y is an association onD \ DS .
X → Y is a non-redundant association rule onD \ DS iff
(X ⊔ Y ⊔ s(X ⊔ Y )) is a closed set inRA and ∀X ′

⊏ X,
ca(X

′ → (Y ⊔X) \X ′) < ca(X → Y ).

Non-redundant association rules are key elements to obtain
non-redundant disjunctive rules.

Theorem 4 (Non-Redundant Association Rules and Non-Re-
dundant Disjunctive Rules). ∀DS ⊆ D, let P the set of all
non-redundant association rules onD \ DS , X → ∨Y is a
non redundant disjunctive rule onD\DS iff Y = ∪X→Y ∈PY .

III. D ISCOVERINGNON-REDUNDANT RULES

Given ann-ary relationR ⊆ ×Di∈DD
i, DS ⊂ D, every

interesting and non-redundant disjunctive rule onD \DS has
to be enumerated. Such rules satisfy the user-specified thresh-
olds: the association frequency thresholdµa, the association
confidence thresholdβa, the disjunctive frequency threshold
µd and the disjunctive confidence thresholdβd. In other terms,
our algorithm CIDRE computes:

{X → ∨Y on D \ DS |































X → ∨Y is non-redundant

∀Y ∈ Y, fa(X → Y ) ≥ µa

∀Y ∈ Y, ca(X → Y ) ≥ βa

fd(X → ∨Y) ≥ µd

cd(X → ∨Y) ≥ βd

.

CIDRE is divided into four successive steps: (1) it constructs
the relationRA defined in Section II, this step is trivial; (2)
it extracts thefrequentclosed sets inRA; (3) it derives from
these closed sets the non-redundant association rules satisfying
the user-defined thresholds; (4) it computes the non-redundant
disjunctive rules whose disjunctive frequencies and disjunctive
confidences hold for the user-defined thresholdsµd andβd.

A. Extracting Closed Sets under Constraints

Theorem 3 states the link between the non-redundant as-
sociation rules and the closed sets inRA but, to be a
priori interesting, the association rules must satisfy constraints.

Two approaches have been proposed to exhaustively list the
closed sets internary relations, namely CUBEM INER [10]
and TRIAS [11]. A third algorithm, DATA -PEELER [7] can
compute every closed set in relations of arbitrary arity. Despite
its broader scope, it is orders of magnitude faster than both
TRIAS and CUBEM INER on ternary relations. Furthermore,
DATA -PEELER can efficiently handle an expressive class of
constraints. This is particularly appealing in our context.
To guarantee all association rules exceed the user-defined
association frequency threshold, inRA, we only discover the
frequent closed sets which are gather at least a proportionµa

of the elements inDsupp. It means that every extracted closed
setC must satisfy the constraintCfreq(C) ≡ |πDsupp(C)|

|Dsupp| ≥ µa.
DATA -PEELER can handle it directly on the closed sets.

It may also be interesting to specify minimal numbers of
elements in the exploited dimensions (i. e., the dimensionsin
D\DS). In this case, every extracted closed setC must satisfy
C(αi)i=1..|D\DS |−min−sizes(C) ≡ ∀Di ∈ D \ DS , |πDi(C)| ≥

αi.
From a closed setC, ASSOCIATION RULES (Alg. 1) de-

rives non-redundant association rules onD \ DS that involve
all the elements in∪Di∈D\DS

πDi(C).

B. Deriving Non-Redundant Rules from Closed Sets

Algorithm 1 : ASSOCIATION RULES.

Data: (B,H), i. e., a body and a head
forall e ≻ max≺(H) do

if ca(B \ {e} → H ⊔ {e}) ≥ βa then
forall f ∈ ∪Di∈D\DS

πDi(B \ {e}) do
if ca((B \ {e}) \ {f} → H ⊔ {e} ⊔ {f}) =
ca(B \ {e} → H ⊔ {e}) then

goto skip

output B \ {e} → H ⊔ {e}
skip: RULES(B \ {e}, H ⊔ {e})

ASSOCIATION RULES derivesa priori interesting and non-
redundant association rules, of the formB → H, from every
frequent closed associationA (= C \ πDsupp(C)). It splits all
elements in∪Di∈D\DS

πDi(A) between the bodyB and the
headH, i. e.,B ⊔H = A. The candidate rules are structured
in a tree. By only looking at the heads,H, of the rules (A
andH being given, the bodyB is A \H), this tree actually
is that of APRIORI [1]. Nevertheless, ASSOCIATION RULES

traverses it in a depth-first way. The root of the tree isA→ ∅.
At every level,H grows by one element which is removed
from B. An arbitrary total order≺ is chosen for the elements
in ∪Di∈D\DS

πDi(A). At every node, the singletons that are
allowed to augment (via⊔) the head are those greater than any
element in the current head (i. e., greater thanmax≺(H) and
under the convention thatmax≺(∅) is smaller than any other
element). The pruning criterion is the minimal association
confidence constraint. According to Theorem 2, this pruningis
safe, i. e., no association rule, with an association confidence



higher thanβa, is missed. On the opposite, the non-redundancy
constraints cannot give rise to search space pruning. That is
why it is checked after the constraint on the minimal associ-
ation confidence. If it is satisfied then the rule is output. To
enforce the non-redundancy, Theorem 3 indicates that, beside
the necessity to process a closed set, ASSOCIATION RULES

must check the association confidences of the more general
association rules sharing the same elements. If such a rule
has the same association confidence then the current rule is
redundant.

C. Computing Non-Redundant Disjunctive Rules

P denotes the set of all non-redundant association rules
on D \ DS which are extracted in Sec. III-B. According
to Theorem 4, we construct non-redundant disjunctive rules
of the form X → ∨Y where Y = ∪X→Y ∈PY . Alg. 2
only outputs the non-redundant disjunctive rules whose dis-
junctive frequencies and disjunctive confidences exceed the
user-defined thresholds. CIDRE (see Alg. 2) successively (1)
constructsRA, (2) extracts the frequent closed sets in it, (3)
derives, from each of these closed sets, thea priori interesting
and non-redundant association rules and (4) computes the
interesting and non-redundant disjunctive rules.

Algorithm 2 : CIDRE.
Input : A relationR on D, DS ( D, and

(µa, βa, µd, βd) ∈ [0, 1]4

Output : Every interesting and non-redundant disjunctive
rule onD \ DS

Dsupp← ×Di∈DS
Di

(DA,RA)← ((D \ DS) ∪Dsupp, ∅)
forall (e1, . . . , e|D\DS |, e|D\DS |+1, . . . , en) ∈ R do
RA ← RA ∪ (e1, . . . , e|D\DS |, (e|D\DS |+1, . . . , en))

C ← DATA -PEELER(∅,×Di∈DA
Di)

P ← ∅
forall C ∈ C do
P ← P ∪ ASSOCIATION RULES(C \ πDsupp(C), ∅)

forall X → Y ∈ P do
Y ← Y
forall X → Y ′ ∈ P such thatY ′ 6= Y do
Y ← Y ∪ Y ′

deleteX → Y ′ from P
if (fd(X → ∨Y) ≥ µd) ∧ (cd(X → ∨Y) ≥ βd) then

output X → ∨Y
deleteX → Y from P

IV. EXPERIMENTAL STUDY

Experiments have been performed on a GNU/LinuxTM sys-
tem equipped with an IntelR© CoreTM 2 Duo CPU E7300 at
2.66 GHz and 3 GB of RAM. CIDRE was implemented in
C++ and compiled with GCC 4.2.4.

Vélo’v 2 is a bicycle rental service run by the urban
community of Lyon, France.327 Vélo’v stations are spread

2http://www.velov.grandlyon.com/

xxxx

6002 (Sun5pm− 6pm) ∨ (Sun6pm− 7pm)

(a) {6002} → (Sun5pm − 6pm)fa:0.24,ca:0.64∨

(Sun6pm − 7pm)fa:0.25,ca:0.67 (fd : 0.31, cd : 0.83).

xxxx

3001

6p
m

−
7p

m

(Mon) ∨ (Mon, Tue) ∨ (Tue) ∨ (Wed)

∨(Thu) ∨ (Thu, Tue) ∨ (Fri)

(b) {6pm − 7pm} × {3001} → (Mon)fa:0.3,ca:0.7 ∨

(Mon, Tue)fa:0.26,ca:0.6 ∨ (Tue)fa:0.32,ca:0.74 ∨

(Wed)fa:0.28,ca:0.65 ∨ (Thu)fa:0.29,ca:0.67 ∨

(Thu, Tue)fa:0.26,ca:0.6 ∨ (Fri)fa:0.26,ca:0.6
(fd : 0.41, cd : 0.94).

Figure 3: Example of rules on{Departure,Day,Hour}.

over Lyon and its surrounding area. At any of these stations,
the users can take a bicycle and bring it to any other station.
Whenever a bicycle is rented or returned, this event is logged.
The logs we were granted the access to represent more than
13.1 million rides along 30 months.Vélo’v data can be
represented as a dynamic directed graph evolving into two
temporal dimensions: the 7 days of the week and the 24
one-hour periods in a day. A significant amount of bicycles
(using a local test inspired by the computation of a p-value),
that are rented at the (departure) stationds on dayd (e. g.,
Monday) at hourh (e. g., from 1pm to 2pm) and returned at the
(arrival) stationas, translates to an edge fromds to as in the
graph timestamped with(d, h). In other terms,(ds, as, d, h)
belongs to the relationRVélov’v ⊆ Departure× Arrival ×
Day × Hour. RVélov’v contains117, 411 4-tuples, hence a

117,411
7×24×327×327 = 0.7% density.

The temporal dimension(s) of such a dynamic network
either appear in the rules (i. e., inD \ DS) or can be used
to compute the frequencies and the confidences of the rules
(i. e., inDS). Different templates depend on different mining
motivations. Let us now discuss a couple of examples.

To study departure time periods of stations, we discover
rules on the dimensionsDeparture, Day and Hour. As a
consequence, the support domain isArrival which contains
327 stations. Withµa = µd = 0.2, βa = 0.6 and βd = 0.8
CIDRE extracts 33 rules. They indicate that preferred departure
times are different from one station to another. Fig. 3 reports
two of them. The rule in Fig. 3a means that the departures
from Station 6002, with a high enough association confidence
(ca ≥ 0.6), almost occur between 5pm and 7pm on Sundays
(cd = 0.83). Here, arrival stations of the departures from
Station 6002 on Sundays between 5pm and 6pm can be
different from those between 6pm and 7pm. Therefore, this
rule cannot be extracted given previous approaches in [4],
[5]. The rule in Fig. 3b indicates that, with a high enough
association confidence (≥ 0.6), the rides from Station 3001
between 6pm and 7pm only occur during the working days.
Also because, arrival stations of the rides from Station 3001
between 6pm and 7pm can be different between days, this rule
cannot be returned by known techniques.

On graph evolution: if a sub-network is frequent, then



2002 5004 2002 5004 ∨ 2002 5004

2001 1021

(a) {2002}×{5004} → ({5004}×{2002})fa:0.13,ca:0.71 ∨

({2001} × {1021})fa:0.1,ca:0.55 (fd : 0.15, cd : 0.84).

1002 2001 1002 2001 ∨ 1002 2001

5004

∨ 1002 2001

7034

(b) {1002} × {2001} → ({2001} × {1002})fa:0.35,ca:0.92∨

({5004} × {1002})fa:0.19,ca:0.51 ∨ ({7034} × {7034})fa:0.2,ca:0.54
(fd : 0.36, cd : 0.97).

Figure 4: Example of rules of the form
“sub-network”→ “larger sub-networks”.

to which sub-networks it can be enlargeable with strong
enough confidences. To study such patterns, a rule has to
involve Departure and Arrival stations, i. e.,D \ DS =
{Departure,Arrival}. As a result, the support domain is
the Cartesian product of the 7 days and the 24 hours. Addi-
tional contraints, the constraintC(2,2)-min-sizes (see Sect. III)
is additionally enforced so that every rule must involve at
least two departure stations and two arrival stations. Moreover
we force the body of every rule to be a graph with at least
an edge, i. e., it must involve at least one departure station
and one arrival station. The non-redundancy of the extracted
rules favors the discovery of minimal sub-networks (at the
bodies of the rules) that can be confidently (i. e., with high
enough confidences) enlarged (with the stations at the heads).
With µa = µd = 0.1, βa = 0.5 and βd = 0.8, 228 rules
are discovered. The larger sub-networks can contain more
nodes or only more edges. Some of them are reported in
Fig. 4. These rules explicit diverse mechanisms like auto-
regulation and convergence. They are much more informative
than multidimensional association rules and can be used to
anticipate the effect of a typical breakdown: a station thatcan
only emit (resp. receive) bicycles. If such a station at the body
of a rule is fail, then the other stations in the rule may be
overloaded (resp. suffer a shortage).

Let us finally provide a performance study when mining in-
teresting and non-redundant disjunctive rules inRVélo’v with
DS = {Arrival}. When the minimal association frequency
threshold increases, CIDRE prunes large areas of the search
space where no association is frequent, as consequently both
the number of frequent rules and the running time decrease.
Fig. 5a was obtained withµd = µa, βa = 0.6 andβd = 0.8.
The time spent on extracting the closed sets is given as well.
It shows that each step contributes to the overall complexity.
Theorem 2 enables to deeply prune the search space too.
Indeed, the ASSOCIATION RULES algorithm does not traverse
the enumeration sub-trees empty of confident rules (w.r.t.
βa). That is why both the number of rules and the time it
takes to extract them decrease when the minimum association
confidence threshold increases. Experiments in Fig. 5b are
performed withµa = µd = 0.2, βd = 0.8 and βa varying

 69

 70

 71

 72

 73

 74

 75

 76

 77

 0.1  0.12  0.14  0.16  0.18  0.2

 50

 100

 150

 200

 250

 300

 350

 400

R
un

ni
ng

 ti
m

e(
s)

N
um

be
r 

of
 r

ul
es

Minimum association frequency

Running time
Number of rules

(a) Pruning w.r.t.µa.

 68

 68.5

 69

 69.5

 70

 70.5

 71

 0  0.2  0.4  0.6  0.8  1
 0

 5

 10

 15

 20

 25

 30

 35

R
un

ni
ng

 ti
m

e(
s)

N
um

be
r 

of
 r

ul
es

Minimum association confidence

Running time
Number of rules

(b) Pruning w.r.t.βa.

Figure 5: Effectiveness of CIDRE.

between 0 and 1. On the contrary, the search space cannot be
pruned thanks to the thresholds of disjunctive frequency and
disjunctive confidence. Indeed, CIDRE must consider every
association rule when computing disjunctive ones.

V. CONCLUSION

We have studied the problem of describing relational dy-
namic graphs via disjunctive association rules that can involve
subsets of any dimension (including temporal dimensions).We
have proposed a semantics for such rules and we introduced
CIDRE, an efficient solution for computing non redundant dis-
junctive rules. Experiments on a real-world dynamic network
demonstrated the interest of our proposal.
Acknowledgements.This work was partly funded by the ANR
project FOSTER (COSINUS 2010) and by a grant from the
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