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Abstract. We focus on the discovery of interesting patterns in dynamic attributed
graphs. To this end, we define the novel problem of mining cohesive co-evolution
patterns. Briefly speaking, cohesive co-evolution patterns are tri-sets of vertices,
timestamps, and signed attributes that describe the local co-evolutions of similar
vertices at several timestamps according to set of signed attributes that express
attributes trends. We design the first algorithm to mine the complete set of cohe-
sive co-evolution patterns in a dynamic graph. Some experiments performed on
both synthetic and real-world datasets demonstrate that our algorithm enables to
discover relevant patterns in a feasible time.

1 Introduction

Real-world phenomena are often depicted by graphs where vertices represent entities
and edges represent their relationships or interactions. With the rapid development of
social media, sensor technologies and bioinformatics assay tools, large heterogeneous
information networks have become available and deserve new knowledge discovery
methods. As a result, graph mining has become an extremely active research domain. It
has recently been extended into several complementary directions as multidimensional
graphs [5], attributed graphs [16,17,22], and dynamic graphs [6]. Indeed, entities can be
described by one or more attributes that constitute the attribute vectors associated with
the graph vertices. Moreover, in many applications, edges may appear or disappear
through time giving rise to dynamic graphs.

So far, sophisticated methods have been designed to provide new insights from at-
tributed or dynamic graphs. Recent contributions have shown that using additional in-
formation associated to vertices enables to exploit both the graph structure and local
vertex attributes [16,17,22]. Dynamic graphs have been studied in two different ways.
On one hand, it is possible to study the evolution of specific properties (e.g., the di-
ameter). On the other hand, it makes sense to look at local patterns and it provides
a large spectra of approaches to characterize the evolution of graphs with association
rules [3,18], transformation rules [24] or other types of patterns [6,12,13,15,20].

Analysing dynamic attributed graphs (i.e., sequence over time of attributed graphs
whose relations between vertices and attributes values depends on the timestamp) has
been less studied and we claim that it is interesting for several reasons. First, this kind of
data offers a richer representation of real-world phenomena in which entities have their
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own characteristics (vertex attributes). Furthermore, both entities and their interactions
(edges) may evolve through time. Second, we believe that we cannot handle separately
attributed graphs and dynamic graphs without introducing severe biases in the knowl-
edge discovery process. Indeed, local vertex attributes and the role of the vertex within
the graph are often closely related. Our thesis is that the simultaneous mining of the
vertex attributes and the temporal dimensions has to be studied.
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Fig. 1. Example of an undirected dynamic attributed graph

In this work, we assume that attributes related to vertices are numerical or ordinal.
Let us illustrate our approach on a dynamic co-authorship graph depicted in Figure 1.
This graph involves five vertices (i.e., authors labeled from 1 to 5) through three time-
stamps (t1, t2 and t3). Each vertex/author is described with two numerical attributes
(a1 and a2) that are indicators about each author. For instance, it could be the number
of publications in a specific conference series during the period identified by the times-
tamp. It could also be the number of hours per week spent by the author on instructional
duties. For each author, at each timestamp, we know the value of every attributes. As
an example, the value of Attribute a1 for Vertex 1 at Timestamp t3 is 2. Co-evolution
patterns are tri-sets of vertices, timestamps, and signed attributes that describe the lo-
cal co-evolutions of similar vertices at several timestamps according to set of signed
attributes that express attribute trends. In Figure 1, Vertices 1 and 3 share the same evo-
lutions of their Attributes a1 and a2 over the three graphs: a1 remains constant and a2
decreases over time. Two vertices can be similar if they share a same neighborhood, i.e.,
they are close within the graph like Vertices 1 and 3 that share the same neighbors in the
three timestamped graphs: Vertices 2 and 5 at Time t1, Vertex 2 at Time t2 and Vertices
2 and 4 at Time t3. They can also be considered as similar if they play a similar role in
the graph. This data mining problem is challenging since the search space is very large
and clever enumeration strategies of all co-evolution patterns are needed when looking
for complete extractions.

Our main contributions are as follows. We define the problem of mining co-evolution
patterns in dynamic attributed graphs in Section 2 and we propose the first algorithm
that computes them thanks to dedicated pruning strategies in Section 3. Then, in Section
4, we report an experimental study on two real datasets showing that this new kind of
pattern holds in the data, that computing them in practice is feasible, and that they can
be easily interpreted. The related work is discussed in Section 5 and Section 6 briefly
concludes.
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2 Problem Setting

2.1 A New Pattern Domain

Let us define a dynamic attributed graph G as a sequence over the time period T of
attributed graphs 〈G1, · · · , G|T |〉 where each attributed graph Gt is a triplet (V,Et,A)
with V as a set of vertices that is invariant with t, Et as a set of not valued edges that
depends on t, and A as a set of vertex attributes that gathers functions that associate
a numerical value to the vertices of V at each timestamp t ∈ T 1. More formally,
p ∈ A is an application from V ×T to R, i.e., p(n, t) returns the value of attribute p for
vertex n in timestamped graph Gt. To provide the formal definition of a co-evolution
pattern, we need to define a relation between vertex attributes with regard to time. Let
s ∈ {+,−,=}, we define �s as follows:

– if s is equal to +, �s stands for the relation <,
– if s is equal to −, �s stands for the relation >,
– if s is equal to =, �s stands for the relation =.

Definition 1 (co-evolution pattern). Let us consider a dynamic attributed graph G and
a triplet (N, T, P ) such thatN ⊆ V is a set of vertices, T ⊂ T is a set of not necessarily
consecutive timestamps and P is a set of signed attributes, that is a subset of A × �.
(N, T, P ) is a co-evolution pattern of G iff: (i) ∀n ∈ N , ∀t ∈ T and ∀(p, s) ∈ P ,
p(n, t) �s p(n, t + 1). (ii) (N, T, P ) is maximal: adding any vertex, any timestamp or
any signed attribute leads to the violation of (i).
We denote by evol(N, T, P ) the fact that (N, T, P ) is a co-evolution pattern.

For the sake of simplicity, we also denote the pair (p, s) by ps. Considering the data
from Figure 1, three examples of co-evolution patterns are

(
{1, 3}, {t1, t2}, {a=1 , a−2 }

)
,

({1, 3, 4}, {t1, t2}, {a=1 }) and
(
{1, 2, 3, 4}, {t2}, {a=1 , a−2 }

)
. Let us notice that the pres-

ence of a timestamp t in T means that condition �s on every ps for every vertex holds
between t and t+1. Thus, the last timestamp of G cannot appear in a co-evolution pattern.

In many real-world applications, it is difficult to obtain strict equality of an attribute
value between two consecutive timestamps, for instance when the values come from
sensors. Thus, it is important to relax such a condition. To this end, we consider sim-
ilarity between attribute values. Given a threshold δ ∈ [0, 1], p(n, t) and p(n, t + 1)
being two values of Attribute p of Vertex n at Timestamp t and t + 1, are said similar
(denoted as p(n, t) �δ

= p(n, t + 1)) if (1 − δ)p(n, t) < p(n, t + 1) < (1 + δ)p(n, t).
We can easily derive the definitions for �δ

+ and �δ
−:

(1 + δ)p(n, t) < p(n, t+ 1) ⇔ p(n, t)�δ
+ p(n,+1),

(1− δ)p(n, t) > p(n, t+ 1) ⇔ p(n, t)�δ
− p(n, t+ 1).

We are interested in specific co-evolution patterns that satisfy some user-defined rele-
vancy constraints: we look for patterns that are somehow “large” enough and that gather
“cohesive” vertices. Let us now formalize such notions.

1 The collection A does not change while the values of these attributes depend on the relative
vertices and timestamps.



Cohesive Co-evolution Patterns in Dynamic Attributed Graphs 113

2.2 Volume

A co-evolution pattern (N, T, P ) is said to be large when its volume is greater than
or equal to a given threshold ϑ. We propose the following measure to compute the so-
called natural volume of a pattern: volume(N, T, P ) = (|N |)γv×(|T |)γt×(|P |)γp This
definition of the volume is a simple product of set cardinalities (i.e., γv = γt = γp = 1).
However, in practice the sizes of V , T and A are of different orders of magnitude.
Indeed, a dynamic attributed graph often contains much more vertices than timestamps
or attributes. This may lead to favor patterns which have a larger number of elements
within the largest dimension (often V ). Therefore, it makes sense to correct this measure
to focus on patterns that have more elements from smaller dimensions, i.e., adding an
element to the largest dimension should lead to a corrected volume smaller than adding
an element to the other dimensions. To this end, the exponents are defined as follows:
γv = |V |+(|T |−1)+|A|

3×|V | , γt =
|V |+(|T |−1)+|A|

3×(|T |−1) and γp = |V |+(|T |−1)+|A|
3×|A| .

Considering our running example: volume({1, 3, 4}, {t1, t2}, {a=1 }) = 3
9
15 × 2

3
2 ×

1
3
2 = 5.47, while the natural volume (i.e., γi = 1) is 3× 2× 1 = 6.

2.3 Taking into Account the Graph Structure

Until now, the specification of a co-evolution pattern only considers a set of vertices that
follow the same evolution among a set of signed attributes over a set of timestamps. It
is then important to take into account the graph structure, i.e., the edges of the graph at
every timestamp. To this end, we use similarity measure between vertices.

Definition 2 (Cohesive co-evolution pattern). Given a similarity threshold σ ∈ [0, 1]
and a similarity measure sim, a co-evolution pattern (N, T, P ) is said to be cohesive
if the following condition holds:

cohesive(N, T, P ) ≡ ∀t ∈ T, ∀u, v ∈ N2, sim(u, v,Gt) ≥ σ

Any similarity measure can be considered. Let us introduce some of them that exploit
differently the graph structure. We can focus on the direct neighborhood of vertices to
assess how they are similar. To this end, cosine or Jaccard measures are well adapted.
Let Adj(u) denotes the set of vertices that are adjacent to Vertex u.

cos(u, v) =
| (Adj(u) ∪ {u}) ∩ (Adj(v) ∪ {v}) |
√
|Adj(u) ∪ {u}| × |Adj(v) ∪ {v}|

jac(u, v) =
| (Adj(u) ∪ {u}) ∩ (Adj(v) ∪ {v}) |
|Adj(u) ∪ {u} ∪ Adj(v) ∪ {v}|

These definitions require to take into account vertices that are adjacent to Vertices u
and v but also Vertices u and v themselves to make it possible to have perfect similarity
(i.e., similarity equals to 1) even if self loops are not allowed. Cosine and Jaccard mea-
sures only consider the direct neighborhood, i.e., the adjacent vertices. However, one
may exploit larger neighborhood to establish similarity based on spreading activation. It
enables to highlight vertices that play similar roles within the graph. Thiel and Berthold
have introduced this kind of measure in [23]. They introduced two types of similarity
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both based on spreading activation. Thus the similarity between two vertices needs to
consider and compare the graphs after diffusion of the activation with each of the two
vertices as spreading starts.

a0
v(u) = 0, if v �= u, 1 otherwise

ak
v(u) =

∑
i∈Adj(v) a

k−1
i (u)

||
∑

i∈Adj(v) a
k−1
i (u)||2

The activation of the graph is associated to a beginning activation Vertex u and is com-
puted in kmax steps. ak(u) represents the vector of activation of the graph at Step k of
the spreading started at u and akv(u) represent the activation of Vertex v, i.e., the value
of the Vertex v in the vector with 0 < k < kmax. At Step 0, the only activated vertex is
u with a value of 1. Thus, at the following Steps k ∈ [1, kmax], each vertex activation
depends on its direct neighbor activation value at k − 1.
Two similarity measures are now defined. The first one, called the activation similarity,
compares the result of this spreading on the k-neighborhood, and the common activated
vertices.

â�(u) = D−1/2
kmax∑

k=0

αkak(u)

Activation = cos(â�(u), â�(v)) =

∑n
i=1 â

�
i (u)â

�
i (v)

||â�(u)|| ||â�(v)||

with α a decay parameter of ak in the final result and D the degree matrix. The degree
matrix is a diagonal matrix which contains the degree of each vertex in the graph.

As the similarity here is looking for common close neighborhood, the spreading
activation needs to loose weight over spreading with a certain value α. The more u
and v have common highly activated vertices, the higher is the activation similarity
cos(â�(u), â�(v)). The second measure, called the signature similarity, compares how
activation spreads into the neighborhood and then compares the structure of the vertices
neighborhood.

δk(u) =

{
0, if k = 0

ak(u)− ak−1(u)

τk(u) = ||δk(u)||2

Signature = cos(τ (u), τ (v)) =

∑kmax
k=1 ||δ

k(u)| ||δk(v)||
||τ (u)|| ||τ (v)||

The velocity vector δk(u) represents the change of activation of the graph between
spreading steps and the convergence vector τk(u) describes the convergence speed in
the spreading process. The more the structure of the vertices neighborhood is similar,
the higher is the signature similarity cos(τ(u), τ(v)). Thanks to these two similari-
ties, we can compare a larger neighborhood than with the cosine or Jaccard measures.
Moreover, the signature similarity can be considered as a role comparison and it allows
completely different patterns.
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2.4 Mining Task

The problem we aim to solve is defined as follows:

Problem 1 (Cohesive co-evolution pattern mining). Let G be a dynamic attributed graph.
Given a similarity measure sim, a minimum vertex similarity threshold σ and a mini-
mum volume threshold ϑ, the goal of mining cohesive co-evolution patterns is to find
the complete set of co-evolution patterns that have a volume greater or equal to ϑ and
fulfill the cohesiveness constraint.

In the following section, we define an algorithm that efficiently mines all large cohe-
sive co-evolution patterns and only them.

3 Mining Cohesive Co-evolution Patterns

The enumeration of all the patterns by materializing and traversing all possible tri-sets
from V ×T ×(A×�) is in practice not feasible. Therefore, we look for a decomposition
of the original search space into smaller pieces such that each portion can be indepen-
dently studied in main memory and such that the union of the cohesive co-evolution
patterns extracted from each portion is the whole collection of cohesive co-evolution
patterns. Therefore, all possible tri-sets are explored in a depth-first search manner. We
use a binary enumeration inspired from the strategy for closed set mining in tensors
described in [7].

At each step, a tri-set (N, T, P ) from V × T × (A × �) is considered and can be
represented as a node in the binary enumeration tree. Each node contains the elements
that have already been enumerated and added or not to the current pattern. Given ele-
ments already enumerated, the node also maintains candidate elements, i.e., elements
that can be potentially added to the current pattern. To this end, we define, for each
dimension, three sets to summarize the enumeration choices made before the current
tri-set (N, T, P ) and to maintain the candidate elements to be enumerated:

– In.N , In.T and In.P respectively denote the vertices, the timestamps and the signed
attributes that have already been enumerated and chosen as being in (N, T, P ), i.e.,
In.N = N , In.T = T , and In.P = P .

– Out.N , Out.T and Out.P respectively denote the vertices, the timestamps and
the signed attributes that have already been enumerated but were not added to
(N, T, P ).

– Cand.N , Cand.T and Cand.P respectively denote the candidates vertices, times-
tamps and signed attributes, i.e., elements that are promising for enlarging the cur-
rent pattern (N, T, P ).

Therefore, at a node n an element e from Cand = Cand.N ∪ Cand.T ∪ Cand.P is
selected and two nodes are generated, one by adding e to In = In.N ∪ In.T ∪ In.P ,
the other one by adding e to Out = Out.N ∪ Out.T ∪ Out.P . The process is recur-
sively iterated until Cand becomes empty. This enumeration is correct and complete:
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it computes the complete set of cohesive co-evolution patterns. Its efficiency relies on
safe pruning possibilities thanks to constraints:

Volume: This constraint can be easily exploited. Indeed, given the pattern (N, T, P ),
if the volume constraint does not hold and adding all candidates from Cand does not
enlarge enough the pattern to satisfy it, the enumeration can be safely interrupted.

Cohesiveness: Given (N, T, P ), we can propagate this constraint among Cand.N ,
Cand.T , Out.N , and Out.T . We can discard vertices from Cand.N and Out.N that
are too different than vertices from N at a given time from T , and we can remove
timestamps from Cand.T and Out.T when vertices from N are too different.

Evolution of properties: This constraint can be propagated to discard Cand and Out
vertices, timestamps and properties that do not follow the evolution of (N, T, P ). First,
in Cand.P and Out.P we can remove signed attributes that are in contradiction with
those in P . For instance, if X+ ∈ In.P , we delete X− and X= from Cand.P and
Out.P . We can also remove signed attributes whose trends are not followed by vertices
from N at a given timestamp from T . Second, we can remove vertices from Cand.N
and Out.N that do not follow trends of P at a given timestamp from T . Finally we
can remove timestamps from Cand.T and Out.T when vertices from N do not follow
trends of P .

Maximality: We can exploit this constraint by checking if In can still be maximal or
if the existence of an enumerated element not added within the pattern prevent it to be
maximal. Let ∪IC

N ≡ In.N ∪ Cand.N , ∪IC
T ≡ In.T ∪ Cand.T , ∪IC

P ≡ In.P ∪
Cand.P , a pattern (N, T, P ) can be maximal (canBeMaximal (In, Cand,Out)) if
the following set of conditions are satisfied:

– ∀v ∈ Out.N, ¬cohesive
(
v,∪IC

N ,∪IC
T

)
∨ ¬evol

(
v,∪IC

T ,∪IC
P

)

– ∀t ∈ Out.T, ¬cohesive
(
∪IC
N ,∪IC

N , t
)
∨ ¬evol

(
∪IC
N , t,∪IC

P

)

– ∀p ∈ Out.P, ¬evol
(
∪IC
N ,∪IC

T , p
)

Algorithm 1 presents the general enumeration principle. Notice that the pruning opera-
tions are different with respect to the type of the element to be enumerated (see Lines
12, 16 and 19, cohesiveness and evolution pruning). For the sake of simplicity, e will
denote either a vertex, a timestamp or an attribute. Details of these subroutines are:

PruneAddingVertex: The addition of a vertex e to In.N makes inconsistent some el-
ements of Cand.N,Cand.T, Cand.P that have to be removed. We also filter elements
from Out.N,Out.T and Out.P to further verify the predicate canBeMaximal:

Cand.N ← {v ∈ Cand.N \ {e} |cohesive(e, v, In.T )}
Out.N ← {v ∈ Out.N |cohesive(e, v, In.T )}
Cand.T ← {t ∈ Cand.T |cohesive(e, In.N, t) ∧ evol(e, t, In.P )}
Out.T ← {t ∈ Out.T |cohesive(e, In.N, t) ∧ evol(e, t, In.P )}
Cand.P ← {p ∈ Cand.P |evol(e, In.T, p)}
Out.P ← {p ∈ Out.P |evol(e, In.T, p)}

PruneAddingTime: The addition of a timestamp enables to remove elements from
Cand.N and Cand.P . We also filter elements from Out.N and Out.P :
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Algorithm 1. PatternExtraction
Input: Cand,In,Out,σ, ϑ
Output: A set of cohesive co-evolution patterns

1 begin
2 inIsOk ← false;
3 if (volume(In.N ∪ Cand.N ,In.T ∪ Cand.T ,In.P ∪ Cand.P )≥ ϑ)∧

CanBeMaximal(Cand,In,Out) then
4 if isEmpty(Cand) then
5 output In.N ,In.T ,In.P ;
6 else
7 e← chooseElement(Cand);
8 Cand← Cand \ {e};
9 PatternExtraction(Cand,In,Out ∪ {e},ϑ);

10 In← In ∪ {e};
11 if e ∈ N then
12 (Cand,Out)← PruneAddingV ertex(e, In,Cand,Out);
13 inIsOk ← cohesive(e, In.N, In.T ) ∧ evol(e, In.T, In.P );

14 else
15 if e ∈ T then
16 (Cand,Out)← PruneAddingT ime(e, In,Cand,Out);
17 inIsOk ← cohesive(In.N, In.N, e) ∧ evol(In.N, e, In.P );

18 else if e ∈ P then
19 (Cand,Out)← PruneAddingProperty(e, In,Cand,Out);
20 inIsOk ← evol(In.N, In.T, e);

21 if inIsOk then
22 PatternExtraction(Cand,In,Out,σ,ϑ);

Cand.N ← {v ∈ Cand.N |cohesive(In.N, v, e) ∧ evol(v, e, In.P )}
Out.N ← {v ∈ Out.N |cohesive(In.N, v, e) ∧ evol(v, e, In.P )}
Cand.P ← {p ∈ Cand.P |evol(In.N, e, p)}
Out.P ← {p ∈ Out.P |evol(In.N, e, p)}

PruneAddProperty: The addition of a signed attribute leads to the following filtering:
Cand.P ← Cand.P \ {e}
Out.P ← Out.P \ {e}
Cand.N ← {v ∈ Cand.N |¬evol(v, In.T, e)}
Out.N ← {v ∈ Out.N |¬evol(v, In.T, e)}
Cand.T ← {t ∈ Cand.T |¬evol(In.N, t, e)}
Out.T ← {t ∈ Out.T |¬evol(In.N, t, e)}

Table 1. Main characteristics of the dynamic attributed graphs

DATASET #V #T #A Avg. density
synthetic 500 10 20 0.164

DBLP 2,723 9 43 0.002
Brazil landslide 10,521 2 8 0.0065
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4 Experimental Study

Let us now report on experimental results for both synthetic and real-world datasets.
We first describe the used dynamic attributed graphs, then we provide quantitative and
qualitative results. All experiments were performed on a cluster. Nodes are equipped
with 16 processors at 2.5GHz and 16GB of RAM under Linux operating systems. The
algorithm has been implemented in C++ and compiled with GCC 4.1.2.

4.1 Dataset Description

We consider one synthetic and two real-world dynamic attributed graphs whose char-
acteristics are given in Table 1.

Synthetic: We generated an Erdös-Rényi graph with n vertices and a uniform proba-
bility p0 that there is an edge between two vertices of 0.04 for time t0. Notice that this
density will change for each timestamp, consequently, the average density presented in
Table 1 for the whole dataset is not 0.04. For time t ∈ [t1, t|τ |−1], we built the graphs
Gt from the graph Gt−1 by introducing some edge-perturbations. To this end, we in-
troduced the probability of edge-change, that is the probability that an edge which does
not belong to the set of edges at time t − 1 appears at time t (and vice-versa for edge-
disappearance). This probability was set to 0.04. For attributes related to vertices, we
generated a random values between 0 and 100 at Time t0 for each vertex. Then, for
each Time ti, with i ∈ [1, |τ | − 1], we introduced attributes variation probabilities, i.e.,
the probability of increase p+ and the probability of decrease p−.

DBLP: We consider a subset of the DBLP2 dataset. Vertices of the graph are authors
and an edge exists between them if the corresponding authors have written a paper to-
gether in a given period of time. Only authors who had at least 10 publications (in a
selected set of 43 conferences/journals) from 1990 to 2010 are considered. There are
in total 2,723 authors. Each graph depicts co-authorship relations over 5 years ([1990-
1994][1992-1996]...[2006-2010]). Notice that we consider overlapping time periods to
maintain a coherence in the authorship relations. Each vertex at each time is associated
to a set of 43 attributes corresponding to the number of publications in each confer-
ence/journal during the related period. To summarize, this dataset consists in 2,723
vertices, 9 timestamps and 43 attributes. This dataset is singular as there is a large scale
of conferences/journals in which each author will have a significative set with no pub-
lication all along their carrier. Thus in the experiments, equal evolution (i.e., �=) will
not be considered.

Brazil landslide: This dataset is extracted from two satellite images taken before and
after a huge landslide. 10,521 regions (i.e., shapes in the image) have been computed
with 9 attributes from a picture of 250,000 square meters of ground. The segmentation
was performed in eCognition 8.64 with a scale factor of 20 [2]. Therefore, a vertex is
a region (segmented area) and there is an edge between two vertices if they are at less
than 50 pixels (25m). Having only two timestamps, we aim at looking for significant
attributes variations that could characterize a landslide.

2 DBLP is a computer science bibliography: http://dblp.uni-trier.de/

http://dblp.uni-trier.de/
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(a) DBLP dataset
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(b) synthetic dataset

Fig. 2. Cumulative distributions of vertex similarities at first, middle and last time

We report in Figure 2 the cumulative distribution of similarities between vertices
for synthetic and DBLP datasets. Notice that each measure has his own distribution.
Activation and signature similarities need two parameters. In [23], the authors used
α = 0.3 and they recommend not to have k higher than 10: we choose α = 0.3 and
k = 5.

4.2 Quantitative Results

Figure 3(a) and Figure 3(b) present, respectively, the number of patterns and relative
execution times with regard to the similarity threshold, for cosine and Jaccard similar-
ities in DBLP and synthetic datasets. Considering the synthetic dataset, notice that the
number of patterns remains stable. This is mainly due to the fact that most of the sim-
ilarities of vertices couples is lower than the considered threshold. Consequently, most
of the discovered patterns contain only one vertex. This explains that the related execu-
tion times for this dataset remain constant. In DBLP dataset the impact of this threshold
is more important since the running time increases when the similarity constraint be-
comes less stringent. Figure 4(a), 4(b) and 4(c) also report relative execution times with
regards to the similarity threshold, for activation and signature similarities in DBLP and
synthetic datasets. Notice that the similarity threshold meets “harder distribution”, i.e.,
vertices couples similarities are stronger than Jaccard and cosine ones. The execution
times are highly related to the distribution of vertex couples similarities and thus to the
similarity threshold.

Figure 4(d) and 4(e) show the execution times of our algorithm according to the
volume threshold for activation and Jaccard Similarities in the synthetic dataset. The
running time decreases when the volume threshold increases, meaning that our algo-
rithm enables to prune large parts of the search space.
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Fig. 3. Comparing similarity thresholds for cosine and Jaccard for 2 datasets (ϑ = 20)

4.3 Qualitative Results

We examine the patterns obtained on the DBLP dataset without the equality evolu-
tion. Considering the Jaccard similarity, Table 2 reports two patterns having the most
important number of timestamps whose vertices have at least 10% of common neigh-
borhood. The first cohesive co-evolution pattern depicts a set of nine authors close in the
co-autorship graph. Their respective number of publications in VLDB conference series
decrease whereas their number of publications in PVLDB increases between 2002-2006
and 2004-2008 and between 2004-2008 and 2006-2010. For the sake of simplicity, let
us say the number of publications increases/decreases between 2002 and 2010. This
pattern reflects the new policy of the VLDB endowment. Indeed, PVLDB appeared in
2008, the review process of the VLDB conference series is done in collaboration with
in 2010 and entirely through PVLDB in 2011. The second pattern describes a group of
4 authors who have an increasing number of publications in top data mining/databases
conferences between 1998 and 2006. These authors are major actors in the data mining
community. Notice that the patterns extracted with the activation measure are similar to
those extracted with Jaccard ones.

Table 3 presents a pattern extracted using the signature similarity with a similarity
threshold of 0.999 and a volume threshold of 30. This pattern identifies rising authors in
the bioinformatics area (understood as publishing in journals Bioinformatics and BMC
Bioinformatics). Indeed, they have none or few publications in the two journals during
the period 2000-2004 and more publications within the period 2002-2006. Notice that
these authors do not have the same co-authors thus this pattern can not be discovered
considering a Jaccard, cosine or activation measures.

For the Brazil landslide dataset, we aim at discovering patterns that characterize
landslides. We ran experiments with the Jaccard similarity (σ = 0.5) to discover sets of
vertices that are in a similar neighborhood and have some attributes that significantly
change between the two timestamps (δ = 0.7). Preliminary experiments seem to be
promising. If we select patterns which contain the attribute NDVI (a vegetation index)
we obtain those represented in white in Figure 5. The Groups of regions 1 and 4 are
actually landslides while the Groups 2, 3 and 5 do not. When looking at the original
data, we can see a shift between the two pictures, because of which the Groups of
regions 2, 3 and 5 contain vegetation boarding the road in the first picture and a road in
the second one.
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Fig. 4. Running times of the different experiments

Table 2. Patterns extracted from DBLP with the Jaccard similarity (σ = 0.1, ϑ = 30)

N T P
Authors Time steps Decreasing

publications
Increasing pub-
lications

Jeffrey F.Naughton, Hector Garcia-Molina, Joseph M. Heller-
stein, Gerhard Weikum, David J. DeWitt, Stanley B. Zdonik,
Michael Stonebraker, Serge Abiteboul, Michael J. Franklin

2002-2006
2004-2008

VLDB PVLDB

Jianyong Wang, Ke Wang, Jiawei Han, Jian Pei 1998-2002
2000-2004

- TKDE, ICDE,
KDD, SDM

Table 3. Pattern extracted from DBLP with the signature similarity (σ = 0.999, ϑ = 30)

N T P
Authors Time steps Increasing pub-

lications
Debashis Gosh, Thomas Mailund, Jotun Hein, Gordon K. Smyth, Shuangge
Ma, Jan A. Kors, Michael Q.Zhang, Sandor Pongor, Olivier Poch, Jong Bhak,
Yudi Pawitan, Steven J.M. Jones, Jonas S. Almeida, Wei Pan, Wen-Lian Hsu,
Hiroyuki Toh, Jianping Hua, Alessandro Sette, Falk Schreiber

2000-2004 Bioinformatics,
BMC Bioinfor-
matics

5 Related Work

Graph mining is well studied in data mining. In the literature, there exists two ways
to analyse graphs. On one hand, graphs are studied by means of clustering techniques
[11,9,4,10]. On the other hand, pattern mining allows the extraction of interesting pat-
terns describing some interesting behavior. This has been applied both on dynamic and
attributed graphs.
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Fig. 5. Patterns extracted from Brazil landslide dataset with Jaccard similarity (σ = 0.5, δ = 0.7)

Pattern mining in dynamic graphs is extensively studied. In [6], Borgwardt et al.
define frequent dynamic subgraph mining (i.e., looking for subgraphs appearing sim-
ilarly in consecutive times). Following the same idea, [15] mines subgraph appearing
at periodic timestamps. Inokuchi and Washio [12] extract frequent induced subgraph
subsequences such that a graph is considered as subgraph of another if there is an in-
jective function on vertices, edges, labels and graphs of the sequence. In [19], Prado et
al. propose an algorithm dedicated to mine frequent dynamic plane subgraphs from a
database of plane graphs. These patterns then can be used as the basis for the extrac-
tion of what the authors called spatiotemporal patterns. All these methods are looking
for patterns that are somehow stable or preserved but they do not consider patterns on
evolutions. On the contrary [1] mines the evolution of conserved relational states (i.e.,
sequences of consecutive time-conserved patterns sharing a minimum number of ver-
tices). Also, [20] proposes the extraction of evolving patterns such that pseudo-cliques
of consecutive timestamps are related if they have a temporal event relationship. An
other way to characterize a graph is the extraction of rules. Berlingerio et al. [3] intro-
duce graph evolution rules based on frequency time patterns and in [18], the authors
propose multidimensional association rules. [24] studies how a graph is structurally
transformed through time. The proposed method computes graph rewriting rules that
describe the evolution between consecutive graphs. These rules are then abstracted into
patterns representing the dynamics of graphs.

In parallel, static attributed graph have been widely studied as well. Moser et al. [16]
pioneered this topic proposing a method to find dense homogeneous subgraphs (i.e.,
whose vertices share a large set of attributes). Silva et al. [22] extract pairs of dense sub-
graphs and boolean attribute sets such that the attributes are strongly associated with the
subgraphs. The authors of [17] introduce the task of finding collections of homogeneous
k-clique percolated components (i.e., made of overlapping cliques sharing a common
set of attributes). A larger neighborhood is considered in [14] where the authors relax
the constraints on the structure while extracting proximity patterns. Roughly speaking,
they propose a probabilistic approach to both construct the neighborhood of a vertex
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and to propagate information into this neighborhood. Following the same motivation,
Sese et al. [21] extract (not necessarily dense) subgraphs with common itemsets. Note
that all these methods only use one topological information based on the neighborhood,
although it may be larger or less strict depending on the methods. Moreover, they do
not handle numerical attributes.

In [13], Jin et al. introduce the Trend Motif approach. Their objectives are quite
similar to ours: they consider weighted vertices, they aim at analyzing the dynamics of
a network by discovering connected subgraphs whose vertex weights follow the same
evolution. The evolution of weight is limited to increase and decrease on consecutive
timestamps. Our approach is much more general since vertex attributes are not reduced
to a singleton and timestamps in co-evolution patterns are not necessarily consecutive.
Furthermore, notice that given a co-evolution pattern (N, T, P ), for each t ∈ T , the
subgraph induced on the complete graph Gt by N may be not connected.

6 Conclusion

Designing new methods to discover patterns gathering the dynamics of a graph is a
timely challenge. Recently, such methods were proposed for the extraction of different
kinds of patterns or rules in dynamic graphs (see for instance [3,8,12,18,20]). This work
investigates a new direction in dynamic graph mining. We take into account the fact
that attributes are often related to vertices in dynamic graphs. First, we have defined
the novel problem of mining cohesive co-evolution patterns in the so-called dynamic
attributed graphs. Then, we have designed and implemented a complete algorithm that
computes them in a feasible time. We have reported an experimental study on both
synthetic and real-world datasets. Building a global model by means of these patterns
to summarize dynamic attributed graphs is an interesting topic that we may consider in
the near future.
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