
STARLET • An Affix-Based Compiler Compiler des igned

as a Logic P r o g r a m m i n g S y s t e m

J e a n B E N E y 1 J e a n - F r a n c o i s B O U L I C A U T 1 - 2

I n s t i t u t N a t i o n a l d e s S c i e n c e s A p p l i q u 6 e s d e L y o n 1

Laboratoire d'Informatique Appliqu6e, Batiment 502

F-69621 Villeurbanne Cedex (France)

Ecole Centrale de Lyon 2

D6partement Math6matiques-lnformatique-Syst~mes, BP 163

F-69131 Ecully Cedex (France)

Abstract : We present STARLET, a new compiler compiler which compiles

Extended Affix Grammars defining a t ranslat ion into an executable program : the

translator. We look at its operational semantics and we focus on the points which are

close to or different from Prolog procedural semantics. We discuss the two interwoven

issues which are Program Reliability (due to many static checks) and Program Efficiency

(optimizations at compile time). Both are reached through a systematic use of

grammatical properties.

I I n t r o d u c t i o n

Our research group has been working on grammatical programming development

i.e. an approach to software construction based on compiling methods [Beney-86],

Compiler compilers are designed as high-level programming environments and if

compiler writing is the major application field, we also investigate other application

fields [Fr~con 89].

72

Within the grammatical programming framework, the specification step must

produce abstract language definitions. As context-free grammars are non-algorithmic

descriptions for the syntax of languages, two-level grammars are grammatical

formalisms which enable the semantic part to be defined. Among the best known types of

two-level grammars are the W-grammars devised by A. van Wijngaarden and the

Attribute Grammars devised by D.E. Knuth. To help language prototyping and also to

improve its final implementations, the idea of analysis-orlented two-level grammars

(and compiler compilers] leads to restricted classes of attribute grammars (L-attrlbuted

systems [E2S-84], SNC attribute grarmnars [Jourdan-88].,.) or restricted classes of W-

grammars (Affix Grammars, Extended Affix Grammars, RW-grammar and transparent

W-grammars devised respectively by C.H,a~. Koster [Koster-70], D.~ Watt [Watt-74], M.

Simonet [Simonet-81] and J, Maluszynskl [Maluszynski-84]). CDL was the first

compiler compile r based on afl?u~ grammars [Koster-77].

Our group has worked on affix grammars and one CDL-like implementation based

on its own set of well-form conditions to deal with a deterministic top-down analysis

[Beney-80]. This system is called LET [trademark of INSA de Lyon). Then, we needed to

extend the class of grammar which was accepted as well as to improve the translator

writing facilities. Independently of the research in Berlin or in Nijmegen (e.g. EAGLE

[Franzen-77] or PROGRAMMAR [Meijer-86]), thls has lead to a shift from Affix

Grammars to Extended Affix Grammars and a shift from an algorithmic language to a

logic programming language. We called this grammatical system and its metalanguage

STARLET while the first implementation is called STARLET/GL.

I I Background : Aff ix Grammars and related fo rma l i sms

Like W-grammars, Affix Grammars have two grammatical levels but there is a

clear distinction between the notions (i.e. the non-termlnals) and their parameters : the

so-called affiw positions which are variables. It introduces structural constraints on

hypernotions and an underlying context-free grammar [UCFG). The affix level (affix

rules) assign domains to affix positions. The referencing problem known to be

undecidable for W-grammars is then decidable and one can make straightforward

extensions of context-free parsers. As it is oriented towards analysis and

metacompilation, mode assignment is introduced to specify the data flow. Another

useful concept for programming purposes is the "primitive predicate". The primitive

predicates, described in CDL and LET by some programming languages, are used to

73

define i npu t /ou tpu t operations (reading or writing of terminal symbols) or any

algorithmic processing (e.g. symbol table management).

The class of grammars accepted by CDL or even LET is rather poor since the

analysis method is an adaptation of the recursive descent (without any automatic

backtracking and a one-pass left to right evaluation of every affix value}. These systems

are not good enough for general programming purposes since they look like algorithmic

programming languages where coding and concrete data structure processing always

interferes with higher-level analysis tasks.

D_~ Watt proposed Extended Affix Grammars (EAG} (Watt-74} in order to

eliminate primitive predicates and return to a more generative formalism. An EAG is

"extended" since affix positions can be affix expressions and this allows all

relationships between the affix in each rule to be implicitly defined. Thus, explicit

evaluation rules (which are often simple copies} and constraints become unnecessary

since the Uniform Replacement Rule combined with the type discipline (following affix

rules specifications for affix positions) are enough. Therefore, one of the major

problems in designing a compiler compiler which processes EAG is to implement a

grammatical unification algorithm [Maluszynski-84] (see § III.2}.

The question arises of the differences between Affix Grammars (Extended or not)

and Attribute Grammars. Some answer that there is no distinction : EAG has become

either Extended Affix Grammars or Extended Attribute Grammars in [Watt-83},

assuming that the original W-grammar mechanism for context-sensitive requirements

by predicative hyperrules could be applied to attribute grammars as constraints

associated to each rule. We also notice that affLx grammars which are processed by the

LET compiler compiler are 1L-Attribute Grammars (see for example the MIRA compiler

compiler [E2S-841 or [Deransart-88a] for a survey}. This arises from the fact that in LET,

affix rules (and thus two-level grammar mechanisms) are not really used since the user

has to choose concrete data structures for affix variables and use them via the primitive

predicates. In both cases, semantic values can be used to drive syntactic analysis (values

may be computed during parsing}.

However, there are differences between affix and attribute formalisms when no

context-free basis is apparent. An attribute grammar ought to be defined from an

underlying context-free language (which is independent from the attribute values). This

means that the underlying language must be defined by a well-formed context-free

grammar according to a particular parsing method (LL, LR ...).

74

Within the affix framework, the UCFG m a y have unwanted properties (e.g.

ambiguities) that affix-driven parsing can allow because of the contextual analysis

method. This problem has already been informally considered in [Beney-89].

On the other hand, many grammatical formalisms have been proposed under the

generic term of "Log/c Grammars ". Metamorphosis Grammars (MG) [Colmerauer-77] or

Defmite Clause Grammars (DCG) [Pereira-80] are grammatical formalisms designed for

natural language processing which are easily compiled into (or interpreted as) logic

programs. Furthermore, it is interesting to consider MG or DCG as programming

languages and implement with them more sophisticated grammar processors. S. Saidi

and J .F Boulicaut are working on such an implementat ion of t ransparen t two-level

grammars [Saidi-90].

Logic Programming features such as the tree data structure of terms, the variable

instantiation by unification and the systematic backtracking mechanism are useful to

handle multiple analysis and hhus ambiguities in language processing. Given the SLD-

resolution, interpreters t u m Prolog into a real generator of non-deterministic top-down

parsers.

The well-known shortcomings of top-down parsing (prefix sharing and local

ambiguities, e-productions, ambiguities} can easily be managed but it costs too much

for many applications of practical interest. The efficiency of Prolog programs mus t be

improved by means of explicit control over resolution (e.g. cut, freeze,diff, wait...), mode

assignments or the informed use of unification (e.g. taking concatenation assoclativity

into account). On the other hand, the production of more reliable logic programs is made

easier by certain systems which have explicit type definitions [Borland-86],

EAG provided with operational semantics (given a compiler compiler) are very

close to logic programs, We decided to execute an EAG defining an unambiguous left to

right translation as a logic program. Thus, the rules mus t be selected by means of affix

values to check whether the tried productions do not lead to blind alleys (we want only

programs which deliver at least one result). This means that the affix values (or at least

some of them) have to be computed while parsing, Local ambiguities are allowed since

the right decision can be taken by inspecting known affix values (contextual LL(k)

parsing). Each rule call can only have one successful completion as ff there was an

implicit "cut" at the end of each rule (see the recursive back-up scheme in [Koster-74]).

Two-level g r a m m a r features found in STARLET extend logic programming

facilities for this class of problem fleft to right unambiguous translations) by a well-

motivated introduction of types, modes and implicit control of computations.

75

Other well-form conditions ensure the grammar computability i.e. the ability to

recognize the axiom of the grammar while instantiating every affix variable. Therefore,

our work on the reliability and the efficiency of translators developed with STARLET/GL

contributes to the software engineering of logic programming on this restricted class of

problem.

I I I T H E S T A R L E T / G L o p e r a t i o n a l s e m a n t i c s

The reference manual of the STARLET/GL implementation is [Beney-87]. The

STARLET/GL programming environment PLEIADE is running on a BULL DPX5000

under SPIX and the compiler can be used on other UNIX-like systems. This has been

implemented by J. Beney (STARLET/GL compiler), A.N. Benharkat (Syntactic Editor,

Pretty-Printer and Application Managment : [Benharkat-90] } and H. Harti (interpreter

[Harti-89]).

III. 1 DeJ~ming languages, translations and programs

The STARLET grammatical formalism is a set of conventions to specify EAG (see

references for formal definitions}. Our notations for EAG have been influenced by the

van Wijngaarden style and also by our practical experiences with the LET language.

Lexical features bring STARLET grammars very close to the natural language style of W-

grammars.

A non-terminal symbol is made up of letters, spaces, quotes, minus signs and

dollar signs (e.g. "do $ times $"). The number of dollar signs is the arity of the symbol (the

number of the affix positions of the symbol). A hypernot ion is written with

parenthesized affix sentential forms in place of the dollar signs (e.g. "do (one N) times

(ABC)"). We say that STARLET/GL allows split identifiers.

We illustrate the notations on a classic example : L1 = { anbncn, n >_ 1 }

Exump/e 1 :

ROOT : anbncrL $ EAG ax/om $

AFFIXES : $ The metarules $

ABC : alpha ; beta ; gamma. $ A ru/e which enumerates the available t~tluesforABC $

N : zero ; one N. $ An affix rule which defines the natural numbers $

NOTIONS: $ Rules defining the non-terminals $

anbncn: do(N)t lmes (alpha), do(N)t lmes (beta), do(N)t imes (gamma).

76

do (: zero) t imes (: A B C } : TRUE.

do{ : o n e N) t imes(: A B C) : a n {ABC), do(N) t imes(ABC).

an { : alpha} : object{"a").

an (: beta) : obJect('~'~.

an (: gamma) : object{"c').

STARLET/GL keywords are in uppe rca se style. Modes are lexical ly defined with

t he s y m b o l " : " in front of (resp. behind) a p a r a m e t e r to define the inher i ted mode (resp.

the synthesized) . An unde r sco re in front of an affix var iable deno tes t ha t i ts va lue will

be unused by the computation.

This EAG is a spec~cation of the language LI.

We can cons ider th is EAG as a generative g r a m m a r (assuming tha t "object" p lays

t he role of "pro tonot ions end ing with symbol" in the two-level g r a m m a r s c h e m e a n d

forget t ing mode a s s i g n m e n t or underscores) b u t it is wor th us ing it e i ther to genera te

sentences of L I or pa r se some str ings which m u s t belong to L1.

In fact, "object" is a n ex te rna l func t ion which o u t p u t s i ts s t r ing pa rame te r . A

s l ight change to Example 1 gives a correct STARLET/GL p rog ram which gene ra t e s

sentences . We c a n give a va lue to N by an in t roduc t ion of an inher i ted affix pos i t ion to

"anbncn" : anbncn (: N).

With 'ROOT : anbncn (one one one zero)" the output is "aaabbbccc"

A recognizer of L1 could eas i ly be i m p l e m e n t e d too. The effective t e rmina l

symbols a re recognized by a n externa l funct ion "symbol". This funct ion manages a buffer

which allows source back t r ack ing when necessary . The funct ion "object" gene ra t e s the

object code wi th b a c k t r a c k i n g synchron ized to source back t r ack . A recognizer of L1

{with the affix rules of Example 1} could be :

ROOT : parser.

NOTIONS : $ "write string" and "needed EOF' are extemal self-explanatory functions $

parse r : anbncn, needed EOF, write string ("OK") ; write string ("KO").

?anbncn / N : accept and count (N) t imes (alpha),

accept (N) t imes (beta), accept (N) t imes (gamma).

?accept and count (one N :) t imes (: a lpha) :

there is an (alpha) on input, accept and count (N) t imes (a lpha).

accept and count (zero :) t imes (: a lpha) : TRUE.

accept{zero :) t tmes{:ABC} : TRUE.

?accept (one N :) t imes (: ABC } : there is an { ABC) on input, accept (N } t imes (A t ~).

77

?there is a n (: a lpha) on input : symbol ("a'~.

?there is an (: beta) on input : symbol ('~").

?there is a n (: gamma) on input : symbol ("c'~.

Character "?" is used to specify tha t the rule is supposed to be a Test (vs. Actior~.

There is a (static) check of the algorithmic consistency of this specification : a test may

fail while a n ac t ion never fails. It is useful to help error recovery dur ing parsing.

Character "/" is followed by local variables used in the right h a n d side of a rule.

111.2 Grammatical unification and Uniform Replacement Rule

To execute a STARLET/GL program is to try to recognize the root of the FAG for a

given i npu t text. Its resul ts are available as a n object text. Data types are considered as

in termediate l anguages defined by m e a n of the context-free aft'ix rules. Affix sen ten t ia l

forms parameterize the non- t e rmina l symbols and are generally man ipu la t ed via their

der iva t ion tree in th i s g r a m m a r of affixes. Thus , the genera l case of g rammat i ca l

unif ica t ion is the tree confronta t ion which is used to bu i ld a nd look at affix sentent ia l

form s t ruc tu re s . Var iables are cons idered as logic var iab les : the program tr ies to

i n s t a n t i a t e t h e m (at present , every var iable of a STARLET/GL program has to be

ins tan t ia ted) .

A not ion rule defines a n analys is method for the non-terrr~nal which is its left

h a n d side. There may be several ru les defining a given non- te rmina l . Alternatives in a

rule development are considered from left to right.

A rule call in t roduces a confrontation between formal parameters and a rgumen t s

i.e. a n or ien ted type-sens i t ive g rammat i ca l uni f ica t ion . W h e n the con f ron t a t i on

succeed, the resu l t is ei ther a tree construction or a tree split (expression in front of

expression is no t allowed). A rule call is a success if : ~nput confrontation is a success,

the development of the rule is a success and finally the output confrontation is a success.

T h u s a rule call may fail ei ther because of the confronta t ions or i ts development.

The Uniform Replacement Rule is responsible for the correct propagat ion of the values

a l ready known. The conf ron ta t ion of a variable a n d a n affix express ion m a y succeed

only if this expression and one of the legal s t ruc tu re s for the variable data type are

compatible (e.g. a n affix expression 'e' is compatible with the s t ruc ture of a n affix 'a' ff

affix rules exist such that 'e' can be derived from 'a' according to the afl~LX rules).

78

A t ree cons t ruc t i on h a p p e n s wheneve r a n affix sen ten t i a l form a p p e a r s as a n

a r g u m e n t to be unif ied with a n inher i ted var iable affix pos i t ion or a s a syn thes ized affix

pos i t ion .

A t ree sp l i t h a p p e n s wheneve r an affix sen ten t i a l form a p p e a r s a s a n inher i t ed

affix posi t ion or as an a rgumen t to be unified with a synthes ized affix posit ion.

There a re spec ia l ca se s of conf ron ta t ion s ince we need predef ined da t a types

(INTEGER for Integer, CHARAC for c h a r a c t e r a n d STRING for c h a r a c t e r s tr ings) or

e n u m e r a t e d types (every va lue is a single t e rmina l affix : it a l lows the del 'mit lon of the

implici t in te r sec t ion of types).

W h e n possible, tes t which are needed dur ing the confronta t ions are carr ied out at

compile t ime a n d therefore ru les which are able to succeed are s ta t ica l ly sorted. It avoids

use le s s a t t empt s at confrontat ion (see § IV).

A p p l i c a t i o n of t h e Uniform Replacement Rule c o m b i n e d wi th t he spl i t

ident i f iers and the confrontation fac i l i t ies give a n idea of t h e conc i s ion and

readabi l i ty of the p r o g r a m s :

With these affix ru les defining list of integers :

L: empty ; X L . X: INIEGER

Test for the equal i ty of two list If(:L) is (: L) : T R U E .

Ext rac t the first e lement of a l ist The First of (: X _L) is (X :) : TRUE.

Test the flrst e lement of a l i s t I f thef l rs t of (: X _ L) is (: X) : T R U E .

Unused variables are a convenient m e a n s of imposing type cons t r a in t s over the

values . We i l lus t ra te the use of STARLET a s a logic p rogramming language on a complete

p rog ram tha t r e a d s a n in teger l ist , bu i lds it in m e m o r y and o u t p u t s it in the reverse

order .

Example 2 : $ I n p u t 3 4 2 ¢xalputs 2 4 3 5

ROOT : Reverse, next llne.

$ "next line", "read integeV', "write integer", "write charac" are external functions $

AFFIXES : L: e rnp ty ;XL. X: INIEGER. CAR : CHARAC.

NOTIONS :

Reverse / L, LI : Read (L), Reversed list of (L) in front of (empty) is (L1), Wptte (L1).

Reversed list of (: X L) infront of (:Ll)is (L 2 :) :

Reversed list of (L) i n f r o n t o f (X L 1) i s (L 2) .

Reversed list of { : e m p t y) infront o f (: L) i s (L :) : T R U E .

79

?Read (X L :) : read integer (X), write integer (X}, write charac (' '),Read (L).

Read(empty :) : next l lne .

Write(: X L) : write integer (X), write charac (' ') , Write (L).

Write { : empty) : TRUE.

111.3 A translator written in STARLET/GL

We i l l u s t r a t e STARLET p r o g r a m m i n g wi th t h e e x a m p l e of e x p r e s s i o n

t rans la t ion . We ob ta in a l ist of identif iers a n d t hen a n a s s ignmen t ins t ruc t ion where the

r i gh thand side is a n infLx express ion (input device is the s t a n d a r d one).

We pa r se it a n d check for the identif ier use : each u sed ident if ier m u s t have been

declared once only. Then the t ree represen ta t ion of a correct "program" is t r ans la t ed into

i ts postf ix r ep resen ta t ion on the s t a n d a r d ou tpu t device. If the express ion t u r n s out to be

cons t an t (each of i ts ope rands is a constant) , the t r ans l a to r eva lua tes it.

Example 3: $ input "a, b, c; c := b+c*a" outputs "c b c a * + =" $

$ input "a ; a := 2 + 3 * 4"outputs "a 14 =" $

R(xYr : t ranslate .

WITH : lexico. $

AFFIXES :

absy : absy op absy ; cste ; name.

cste: INTEGER.

name : STRING.

op : p lus ; mnl t ; ass.

symbtab : name symbtab ; emp ty .

VARIABLES : symbtab .

This program uses notions from this module : needed EOF, error,

symbol, iden~ constant... $

$ Abstract syntax $

$.4 symbol table is a list of identifiers $

$ Global variable to contain the symbol table $

NOTIONS :

t r ans l a t e : ini t(symbtab], declara t ions , i n s t r u c t i o n , needed EOF.

dec la ra t ions : identif ier l i s t , needed symbol (";"].

ident i f ier l ist : one v a r i a b l e , o thers identifiers.

o thers identif iers: symbol C,"), identif ier l ist ; TRUE.

one variable / name I :

i den t (name l} , check and enter {name 1) in (symbtab) gives (symbtab) ;

error("ident if ier expected").

ins t ruct ion / absy : ass ignment (absy), postfix (absy).

80

assignment{ name I ass absyl :) / absy :

variable reference (nameD, needed symbol{":="},

expression(absy) , optimization of (absy) gives {absyl).

?variable reference (name:) : ident(name) , check for (name) .

variable reference ("foo":): error("identffier expected").

$ 'foo" replaces the missing ident~er in symbtab $

expression (absyl:} / absy2 : te rm (absy2), rest of expression (absy2,absyl) .

?rest of expression (: absy, absyl:) / absy2 :

symb{"+"), term{absy2), rest of expression (absy plus absy2,absyl) .

rest of expression (: absy,absy : } : TRUE.

t e rm(absy :) / absy l : factor(absyl) , rest of te rm (absyl ,absy).

?rest of te rm (:absyl,absy:} / absy2 :

symb("*"), factor(absy2), rest of te rm (absyl mul t absy2,absy) o

rest of term (: absy , absy :) : TRUE.

?factor(cste :): cons tant (cste).

?factor(absy :): symb("("), expression (absy), needed symbol (")").

?factor{name : }: variable reference (name).

factor (0:} : error ("operand is needed").

postfix(: este): write integer (cste).

postfix(: name) : write string (name).

postfix(: a b s y l op absy) : posffix(absyl), postfix(absy), write op (op).

write op (: plus) : write string (" + ").

write op (: mult) : write string (" * ").

write op (: ass) : write string (" = ").

$ Optimization $

?optimizat ion of {:absy) gives (absyl:} : ff expression {absy) is cons tan t its value is {absyl).

optimization of (: absy) gives (absy :) : TRUE.

?if expression (: absy l ..op absy2 } is constant its value is { absy30 : } / absy l0 , absy20 :

ff expression {absyl} is constant its value is (a b s y l 0) ,

ff expression (absy2} is constant its value is (absy20 },

eval (absyl0, op, absy20, absy30).

ff expression (: cste) is constant its value is { cste :) : TRUE.

?eval (: absy l , : plus, : absy2, cste : } : add (cstel,cste2,cste).

?eval (: absy l , : mult, : absy2, cste :) : mul (estel,cste2,cste}.

81

$ Symbol table management $

in l t (empty :) : TRUE.

?check and enter (: name) in (: symbtab) gives (symbtab :) :

look for (name) in (s y m b t a b) , error("identifier a l r eady declared").

check and enter (: name) in (: symbtab) gives (name symbtab :) : TRUE.

look for (: name) in (: name _symbtab) : TRUE.

? look for (: name) in (: _name1 symbtab) : look for (name) in (symbtab) .

check for (: name) : look for (name) in (symbtab) ; error("identifier not declared").

IV STARLET/GL f o r grammatical debugging

Opt imiza t ions cons is t of cu t t ing use le s s p ieces of the genera ted program. Dur ing

th i s p rocess , t he t r a n s l a t i o n of some ru le-ca l l or some ru l e s m a y become imposs ib le .

Therefore, op t imlza t ions c a n lead to e r ror m e s s a g e s t h a t he lp to debug the p rog ram

wi thou t hav ing to execute it. We in t roduce some of the op t imiza t ions m a d e by the

STARLET/GL compi le r which a re re la ted to g r a m m a t i c a l proper t ies . It he lps e i ther

language des ign (grammatical debugging) or t r ans l a to r debugg ing ,

Firs t , for each rule call, we select only the ru les whose pa r ame te r s are of the "right

type". Note t ha t wi th Prolog th i s canno t be done and t ha t some ru les a re a lways re jected

when t r ied dur ing execution.

Th is op t im i za t i on m a y show logical e r ro r s s ince we only work on p r o g r a m s

which have a t l eas t one so lu t ion :

if, for a call, not one single rule has good p a r a m e t e r s ; the call will a lways

fail so tha t the rule t ha t con ta ins th is call is a systematic blind alley.

ff a rule is never used because of i ts pa ramete r types

This is checked a t compile t ime by m e a n s of affix ru les pars ing. To sort the ru les

before r un t ime enab les t he u s e r to give the s ame n a m e to ru les which p rocess objects of

different types wi thout u se l e s s a t t emp t s at confrontat ion.

Example :

Given the affix ru les

LE : e m p t y ; e LE.

I ~ : e m p t y ; n LN.

e : INTEGER.

n : STRING

82

write (: e LE) : ...

write (: n LN) : ...

write (: empty) : ...

A : ... write (LE), write (LN) .,.

In t ry ing the development of "A", the first '~r i te" call will no t use the second

"write" rule while the second will not use the first "write" rule. A single rule c a n be used to

process va lues which are not of the same type b u t which share some s t ruc tu res (e.g.

"empty"). The third rule will be used for each of the '~vrlte" call in the development of '7¢'.

Static checks ensure tha t tree cons t ruc t ion will always succeed. At r u n time, in

the case of tree split, one m u s t also check tha t the actual value for variables have the

r ight s t ruc tures . Thus , for the rule call "write (LE)", there is a tes t which tells ff the

s t ructure of the variable "LE" is "e LE" (the first 'h~rite" rule is tried)) or "empty" (the third

"write" rule is tried).

Note t ha t it may reveal problems w h e n the affix ru les define a n a mb i guous

g rammar [Maluszynski-84] {as the "absy" affix rule in I~.ample 3). As only one successful

parse is re ta ined (parse of affix sentent ia l forms given the afflx rules), one ma y not split

some trees. However, Example 3 implements a n u n a m b i g u o u s t r ans l a t i on s ince the

g rammar which is used to parse infix expressions is u n a m b i g u o u s (operator precedence is

well-defined).

Secondly, we reject some rules by checking the context of a call i.e. the type or

value cons t r a in t s fixed by the previous and the following calls in the development. It

enab les opt imiza t ions bu t ff every possibi l i ty is e l imina ted it shows tha t there are

logical errors.

Here we also Fred some errors : a succession of calls may always fail or a rule is no

longer used because of the context of its calls.

Example :

Given the affix rule L : x L ; empty .

Read (x L :) :

Read (empty :) :

Write (: x L) :

Write (: empty) :

Try / L: Read (L) , write (L) .

83

Ins ide 'Try" development , ff the first rule '~ead" is a succes s (resp. the second), we

should t ry only the first rule WCrite" (resp. the second).

The d e c l a r a t i o n s of the poss ib le fa i lure of the ru les (test rules) al low ano the r

opt imizat ion to be m a d e when unreachab le rule cal ls can be cut. This can lead to ano the r

logical e r ror de tec t ion when a rule is a lways un reachab l e because of a previous rule t ha t

a lways succeeds (action rules).

Lastly, dataf low checking is very s t r ic t in the cu r r en t imp lemen ta t ion s ince every

var iab le m a y receive a value . Global va r iab les a re no t cons ide red a s logical va r i ab le s :

they are ass igned by a side-effect and their use is not checked.

V Conclusion

We are work ing on a n efficient i m p l e m e n t a t i o n of E x t e n d e d Affix G r a m m a r s

which provides high-level debug facfllties (g rammar debugging) th rough n u m e r o u s s ta t ic

checks . Previous expe r imen t s with a n a lgor i thmic i m p l e m e n t a t i o n of affix g r a m m a r s

(LET} were m a d e a n d a n d we a l r e a d y app rec i a t e t he ease of u se of the STARLET

predica t ive i n t e rp re t a t i on s ince i t e l imina tes m a n y of the coding diff icult ies p rev ious ly

encounte red .

We have few expe r imen ta l r e su l t s s ince STARLET/GL is c u r r e n t l y u s e d in a

r e s e a r c h p r o g r a m on the au toma t i c ana lys i s of F rench (3000 l ines, M. De Brito) or h a s

been u sed for an exper t sys t em genera to r (5000 l ines, L. Coudouneau) . Moreover, our

s t u d e n t s l ea rn compil ing techniques with th is compiler compiler (150 per year).

On the o the r h a n d , we stil l have a lot of work with the a s soc ia t ed p rogramming

tools. It i n c l u d e s no t only fu r t he r deve lopmen t s a n d m a i n t e n a n c e on the PLEIADE

e n v i r o n m e n t b u t a l so t he des ign of new tools a s soon a s we are ab le to expl ici t

g r a m m a t i c a l p r o g r a m m i n g methodolog ies {method-dr iven p r o g r a m m i n g tools}.

References

Many references are only avai lable in F rench (see "-F-"). INSAL denotes Ins t i tu t

Nat iona l des Sc iences Appl iqu6es de Lyon. BULLET is a local j o u r n a l (6 i s s u e s s ince

1986) which can be obta ined upon reques t to the au thors . Most of the L~-~I " a n d STARLET

app l ica t ions are repor ted in it.

84

Beney-80

- r -

Beney-86

- r -

Beney-87

Beney-89

Benharkat -90

- r -

Borland-86

Colmerauer-77

Deransar t -88a

Deransart-88b

E2S-84

Franzen- 77

Frecon-89

-F-

Hart l -89

- r -

Jourdan-88

BENEY (J.), FRECON (L.). Langage et Systemes d'Ecriture de

Transducteurs. RAIRO Informatique, 1980, Voi.14, n°4, p. 379-394.

BENEY (J.). La notion de programmation grammaticale.

BULLET, Juin 1986, n°l, p, 16-21.

BENEY (J.). Presentation de STARLET/GL.

Rapport Interne INSAL, Laboratotre d'Informatique Appliquee, 1987.

BENEY (J.), BOULICAUT (J.F.). Transfer of Expertise between Two-

Grammars and Logic Programs Through an Affix Implementation.

in : Proceedings of Informatlka'89, (E. Tyugu Ed.), Tallin (URSS),

May 29th - June 2nd 1988, 18 p.

BENHARKAT {A.N.). Atelier Logiclel PLEIADE : Edition des modules et

suivi des applications STARLET. Ph-D thesis : INSAL, 1990, 228 p.

BORLAND International.

Turbo Prolog Owner's Handbook, Scott Valley, USA, 1986.

COLMERAUER (A~). Metamorphosis grammars, in : Natural

Communication with Computer,

Springer-Verlag, 1977, LNCS 63, p. 133-189.

DERANSART (P.), JOURDAN [M.), LOHRO (B.).

Attribute Grammars : Definitions, Systems and Bibliography.

Sprtnger-Verlag, LNCS 323, August 1988, 232 p.

DERANSART (P.), MALUSZYNSKI {J.)~ Grammatical view of Logic.

in : Proceedings of PLILP 88, Orleans, France, May 1988,

Sprknger-Verlag, LNCS 348, 1989, p. 219-251.

E~pert Software System. MIRA user 's guide.

E2S Building "de Schelde" Moutstaat 100 B~9000 GHENT.

FRANZEN {H.), HOFFMANN (B.), POHL {B.), SCHMIEDECKE {I.IL).

The EAGLE Parser Generator : an Experimental Step towards a

Practical Compiler-Compiler using Two Level Grammars.

in : 5th Annual HI Conference, Guidel~ France, May 1977, p.397-420.

FRECON (L.). Gran.amalres aff~es : applications et questions

ouvertes. Document de travail, Atelier Lyon-Nimegue sur les

grammatres afflxes~ 24-26juin 1989 (Organlsation INSAL), 25 p.

HARTI (H.). Exploitation predlcative des grarnmaires affixes :

interprete et machine vlrtueUe STARLET.

These de Doctorat : INSAL, 1989, 168p.

JOURDAN (M.), PARIGOT (D.}.

The FNC-2 System : advances in attribute grammars technology.

!NR/A, april 1988~RR-834,28p.

85

Koster- 70

Koster-74

Koster-77

Maluszynski-84

Meijer-86

Pereira-80

Saidi-90

Slmonet-81

-F-

Watt-74

Watt-83

KOSTER (C.HJL).

Affix Grammars. in : ALGOL 68 Implementation,

J.E.L. PECK Ed., North-Holland, 1970, p.95-109.

KOSTER (C.H.A.), A technique for parsing ambiguous grammars.

in : Proceedings of GI-4 Jahrestagung, (D. Siefkes Ed.),

Sprlnger-Verlag, 1975, LNCS 26, p. 233-246.

KOSTER (C.H.A~). CDL : a Compiler Implementation Language.

in : Methods of Algorithmic Language Implementation,

Springer-Verlag, 1977, LNCS 47, p. 341-351.

MALUSZYNSKI (J.). Towards a programming language based on the

notion of two-level grammars.

Theoretical Computer Science, 1984, Voi.28, p.13-43.

MEIJER (H.). PROGRAMMAR : a translator generator,

Ph-D thesis : University of Nijmegen, 1986, 225 p.

PEREIRA (F.C.N.), WARREN {D.H.D.). Definite Clause Grammars for

Language Analysis : a survey of the formalism and a comparison with

Augmented Transition Networks.

Artificial Intelligence, 1980, Vol. 13, p. 231-278.

SAIDI (S.), BOULICAUT (J.F.).

Checking and Debugging Transparent Two-Level Grammars.

ECL : Research Report 90-10, July 1990, 24 p.

SIMONET (M.). W-grammaires et logique du premier ordre pour la

definition et l'Implantation des langages.

Th6se d'Etat : Grenoble, 1981, 329 p.

WATT (D.A.). Analysis-oriented two-level grammars.

Ph.D. thesis : University of Glasgow, january 1974.

WATT (D.A.), MADSEN (O,L.). Extended Attribute Grammars.

The Computer Journal, 1983, Vol. 26, n ° 2, p. 142-153.

